
A Project Report

on

Android Multi-Media Player

Submitted in partial fulfillment of the

requirement for the award of the degree of

B. TECH COMPUTER SCIENCE

ENGINEERING

Under The Supervision of

Dr.M.Thirunavukkarasn

Submitted By:

Nikhil Ranjan

18SCSE1010361

SCHOOL OF COMPUTING SCIENCE AND ENGINEERING

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

GALGOTIAS UNIVERSITY, GREATER NOIDA

INDIA MONTH

October 2021

SCHOOL OF COMPUTING SCIENCE AND

ENGINEERING GALGOTIAS UNIVERSITY,

GREATER NOIDA

CANDIDATE’S DECLARATION

I/We hereby certify that the work which is being presented in the project, entitled “ Android Multi-Media

Player” in partial fulfillment of the requirements for the award of the Bachelor of Technology in

Computer Science and Engineering submitted in the School of Computing Science and Engineering of

Galgotias University, Greater Dr.M.Thirunavukkarasn Assistant Professor , Department of Computer

Science and Engineering of School of Computing Science and Engineering , Galgotias University, Greater

Noida

The matter presented in the thesis/project/dissertation has not been submitted by me/us for the award of

any other degree of this or any other places.

Nikhil Ranjan(18SCSE1010361)This is to certify that the above statement made by the candidates is

correct to the best of my knowledge.

 Dr.M.Thirunavukkarasn

 Assistant Professor

CERTIFICATE

The Final Project Viva-Voce examination of Nikhil Ranjan (18SCSE1010361) has been held on DEC 2021

and his work is recommended for the award of Bachelor of Technology in Computer Science and

Engineering.

Signature of Examiner(s) Signature of Supervisor(s)

Signature of Project Coordinator Signature of Dean

Date: DECEMBER, 2021

Place: Greater Noida

 ABSTRACT

In latest years, the emergence of clever phones has modified the definition of

cell telephones. The phone is not just a communique tool, but additionally a

crucial part of the humans' communique and everyday lifestyles. And this same

thing is with music, it is also a part of life nowadays. Everyone in this world

loves a different type of music and to listen is they had to either download it or

to visit online site for it.Just to provide a better and useful platform for music

lovers I came up with the idea of an Android App. This app is going to be small

in size but larger in functionalities as compared to other applications. The UI is

going to be great to get a better UX.Media players Are One Of The Most Used

And Important Software Application In Today’s World. Maximum Computer

Users Switch On To The Media Player As Soon As They Start The Computers

And Then Move To Their Respective Woks. Today’s Era Is To Do Work With

High Efficiency But At The Same Time, It Should Consume Very Less Time.

And Thus Answer To The Problems Arising In The Use Of Traditional Media

Players And The Lack Of Features In Proposed Media Players Is “Versatile

Media Player” Versatile Media Player Is A Unique Player Developed To Fulfill

Maximum Requirements Of User Regarding Audio And Video Songs. This

Player Gives Numerous Facilities Which Differentiate It From The

Conventional Media Players. The Various Features Included In The Versatile

Media Player Are Shut-Down Facility, Alarm Facility, Lyrics Display, Splitting

Windows, Access To More Than One Media File Simultaneously

LIST OF FIGURES

S.no Image Page no

1

2

3

 Android Studio

Android SDK

DexTer

10

11

12

4

5

6

7

UML Diagram

Object Diagram

Gradel Code

Icon

13

14

19

20

LIST OF CONTENTS

Title

 Abstract

List of Figures

1 Introduction

 1.1 Introduction

 1.2 Formulation of Problem

 2 Literature Survey/Project Design

 2.1 Methodology

 2.2 tools used

 2.3 UML diagram

 2.4 Object diagram

 3 System Required

 3.1 Windows

 3.2 Mac

 4 Code

 4.1 Manifest code

 4.2 Icon

 4.3 Gradel code

 5 Conclusion

 6 Reference

INTRODUCTION

Media players have commanded tremendous notice over the previous decade and

pulled in most PC clients in this manner making the clients dependent on

recordings and music. In the course of the last decade, human-PC cooperation has

become a functioning exploration region, which deliveries individuals from

latent, firm correspondence with the machine. Most extreme PC clients switch on

to the media player when they start the PCs and afterward move to their works.

Additionally, many have a propensity for hauling the melodies into the rundown

sheet of the media player, check out music, and afterward work. So we realize

what amount are the media player utilized and required. Communicating with

PCs cleverly make a critical commitment to the future use of human-PC

collaboration. Today’s time is to tackle the job with high productivity and yet, it

ought to devour next to no time. Also, accordingly, reply to the issue emerging in

the utilization of customary media players and the absence of elements

inaccessible media players in the planning and advancement of the Versatile

Media Player. In this paper, we intend to create a Flexible Media Player which

will satisfy the most extreme prerequisites of the client concerning sound and

recordings. This player gives various offices which separate it from the ordinary

media players. The different components remembered for the Versatile Media

Player are Shut-down office, Alarm office, Lyrics show, Splitting windows,

Admittance to more than one media records at the same time. Consequently, we

can say Versatile Media Player is a completely stacked media player and a

superior choice over the conventional media players. Flexible Media Player is a

decent and dynamic choice for music darlings, PC clients, and that load of

dynamic individuals and love changes.

1.2 Formulation of Problem

1.2.1 Bloated software and user interfaces

Due to the fierce competition between music player applications, many

developers tried to add many features, advertise, and content to their

respective music players to retain their users and attract new users. This

trend has made it harder for users to get content from their music player,

which also means it's harder to filter the content that they want. With the

continuous iteration of the application and a growing number of features,

the music player will become even more bloated and the user's experience

will become less smooth. Based on Mehul (2018), users tend to feel

frustrated and angry if they take a long time to get a reply from the mobile

application, so they will never return to the same application, and 48% of

users will simply uninstall or stop using it.

1.2.2 Lack of gestures to control

Most music player apps use touch buttons to play, pause and switch

between previous and next songs while ignoring the convenience of using

gesture swiping to control the music player. For instance, when a user is

working and intends to skip to the next song in the music player, he/she

have to switch their attention to the console from work and click the button.

This problem does not affect music players' proper work, but it does have

some inconvenience. However, Scacca (2020) said that as our physical

devices and appliances develop the button-free design, consumers will

become more comfortable and confident in this way of interaction, so we

should consider using gesture control on more mobile applications.

1.2.3 Lack of sorting and searching features

When users continuously add new songs into the playlist, the difficulty of

the songs the user wants to filter will increase. After the songs in the

playlist are added to reach hundreds of songs, the user can only search

songs by continuously swipe up or down. If not carefully check the content,

it is possible to miss the songs that the user wants to filter, and then repeat

the behavior until the result is found. Therefore, it is an extremely poor

experience for users

About Music Player App:

The music player app that we will develop in this article would allow the users to

play the songs present on the device. You can download songs on your device and

then use the music player to play those songs. Let’s see the quite exciting features

that you get along with this app.

Features of Music Player App:

1. Alluring user interface with loaded animations and music bars.

2. You can access all the songs present on your device.

3. Play your songs on the go without even having an internet connection.

4. Play or pause your music.

5. Listen to music even on your device background—no need to keep the app open

all the time.

6. Music Visualizer that helps you to visualize the beats of a song.

LITERATURE SURVEY

There are various media player available in this world developed and

manufactured by various other companies. The variety of players provide user

with the plenty of features and characteristics. As it goes the saying that you

cannot have happiness without sorrows, applies here. Every player has a

drawback which pulls it back from the race. The pros and cons of the various

media players are given in details here. And to overcome these problems we are

devising the versatile media player

2.1 METHODOLOGY:

The technologies used to develop this system were as follows:-

Working on android studio with the help of Java, XML, and another language

according to the need of frontend and backend. Such as:-

Android Studio with :-

• SDK tools

• SDK platform tools

• SDK build tools

And other libraries which are required are as:-

• Google APIs

• ARM EABI V7A System Image

• Intel x86 Atom_ 64 System image.. ETC..

Android Studio:

Android Studio is the official Integrated Development Environment (IDE) for

Android app development, based on IntelliJ IDEA. On top of IntelliJ's powerful

code editor and developer tools, Android Studio offers even more features that

enhance your productivity when building Android apps, such as:

• A flexible Gradle-based build system

• A fast and feature-rich emulator

• A unified environment where you can develop for all Android devices

• Apply Changes to push code and resource changes to your running app

without restarting your app

• Lint tools to catch performance, usability, version compatibility, and other

problems

• C++ and NDK support

• Built-in support for Google Cloud Platform, making it easy to integrate

Google Cloud Messaging and App Engine

• Implementing MediaPlayer class and using its methods like pause,

play and stop.

• Using external files(images, audios, etc) in our project.

• Building the interface of our Music Player Android App.

After finishing all the following subsequent steps our app will look like this:

Step 1: Open a new android project

After opening the Android Studio you have to create a new project using

the Empty Activity with language as Java and give your project a unique

name as you wish but don’t forget to keep the first alphabet capital.

1. Go to the top left corner and then hit File->New->New Project as

shown in the following screenshot.

2.Select Empty Activity as shown in the following screenshot.

As shown in the fig. below.

Step 2: Designing the User Interface of the app

In this app, we have used 4 components:

 a imageView– to show our given image for the song

 3 Buttons:

 a play button to play our song

 a pause button to pause our song

 a stop button to stop our song

after stop then our song will play from the beginning) (Note: if we press play

after pressing the pause then our song will continue playing immediately after

where it was paused but if we press play button

These components are implemented on the below two layouts:

 Vertical LinearLayout

 Horizontal LinearLayout

Inside the LinearLayout (vertical) there are two components:

 imageView component

 LinearLayout(horizontal)

This layout will vertically divide our app screen in two halves.

The imageView component will be on upper half and the Horizontal Linear

Layout will be on the lower half. The horizontal layout will contain three

buttons (play, pause and stop button). This horizontal layout will align these

three buttons one after another horizontally on the lower half of our app

screen.

To understand this clearly, please go through the following blue print

and Component Tree of our app:

2.2 REQUIRED TOOLS:-

• A software development toolkit is set of software tools and programs

provided by hardware and software vendors that developers can use to

build applications for specific platforms. These providers make their SDKs

available to help developers easily integrate their apps with their services.

• Android SDK Platform-Tools is a component for the Android SDK. It

includes tools that interface with the Android platform, such as ADB,

fastboot, and systrace. These tools are required for Android app

development. They're also needed if you want to unlock your device

bootloader and flash it with a new system image.

• Android SDK Build-Tools is a component of the Android SDK required

for building Android apps. It's installed in the<sdk>/build-tools/ directory.

 Google APIs are a set of application programming interfaces (API)

developed by Google which allows communication with Google Services.

APIs adhere to specific rules and methods to communicate requests and

responses.

 Using the Google Play Developer API, you can automate a variety of app-

management tasks, including:

 Uploading and releasing new versions of your app

 Editing your app Google Play Store listings, including localized text

and graphics.

 Managing your in-app product catalog, your products purchase

status, and your app subscriptions

 ARM EABI V7A System Image The system image is used by the

emulator to virtualize the Android OS so Apps can be tested/debugged on

a PC without the need to upload the App to a phone whenever a change in

the code is made. This speeds up the development process and allows

testing for phones that aren't physically available.

 Dexter We all know that Android Marshmallow introduced runtime

permissions letting user to allow or deny any permission at runtime.

Implementing runtime permissions is a tedious process and developer

needs to write lot of code just to get a single permission.

 we are going to simplify the process of adding the runtime permissions

using Dexter library. Using this library, the permissions can be

implemented in few minutes.

 onPermissionGranted() will be called once the permission is granted.

 onPermissionDenied() will be called when the permission is denied. Here

you can check whether the permission is permanently denied by

using response.isPermanentlyDenied() condition.

 Google recently released a developer preview of the upcoming Android

11 and this shows just how far android development has come over the last

few years. One of the major changes in regards to development came in

Android 6 i.e Marshmallow and this was how apps dealt with user

permissions.

 Permissions authorize app access to the user’s device resources and data

and are mainly grouped into two types of permissions:

 Normal Permissions

 This refers to permissions that cover the app’s need to access device

resources but that does not pose any danger to the user’s privacy and

functionality of other apps. An example is the permission to access the

Internet.

 As long as the permission is declared in the app’s AndroidManifest.xml,

the system automatically grants the app access to the defined permissions

and the user does not have the option of revoking them.

 Dangerous Permissions

 This refers to permissions that grant the app access to potentially

manipulate the user’s stored data and could infringe on the user’s personal

information or affect the functionality of other apps. An example is the

permission to access the user’s contact list or device storage.

 In devices prior to Marshmallow, once declared in

the AndroidManifest.xml, the permissions were requested at install time

from the Google Play Store and the app would only install once the user

granted them.

 Starting from Marshmallow however, the app explicitly needs to request

the permission during run time by prompting the user to grant access.

https://play.google.com/store/apps

 In this article, we are going to see a simple and convenient way to request

permissions on the fly.

DEXTER code for premission

class MainActivity

:

AppCompatActivity()

{

 ...

 // Request for permission

 private fun requestContactsPermission() {

 Dexter.withActivity(this)

 .withPermission(Manifest.permission.READ_CONTACTS)

 .withListener(object : PermissionListener {

 override fun onPermissionGranted(response:

PermissionGrantedResponse?) {

 // User has granted permission

 // Proceed and read list of contacts

 }

 override fun

onPermissionRationaleShouldBeShown(permission: PermissionRequest?,

token: PermissionToken?) {

 // User previously denied the request, proceed

and ask them again

 token?.continuePermissionRequest()

 }

 override fun onPermissionDenied(response:

PermissionDeniedResponse?) {

 // User has rejected request

 }

 })

 .check()

 }

 ...

}

What Is the Android SDK?

The Android SDK is a collection of software development tools and libraries

required to develop Android applications. Every time Google releases a new

version of Android or an update, a corresponding SDK is also released which

developers must download and install. It is worth noting that you can also

download and use the Android SDK independently of Android Studio, but

typically you'll be working through Android Studio for any Android

development.

The Android SDK comprises all the tools necessary to code programs from

scratch and even test them. These tools provide a smooth flow of the development

process from developing and debugging, through to packaging.

The Android SDK is compatible with Windows, macOS, and Linux, so you can

develop on any of those platforms.

How to Install the Android SDK

The Android SDK is optimized for Android Studio, and hence to effectively reap

its benefits, you will need to install Android Studio. Having the Android SDK

managed from within Android Studio is easier since support for languages like

Java, Kotlin, and C++ is handled automatically. Not only that, but updates to the

Android SDK are handled automatically by Android Studio.

To install the Android SDK from within Android Studio, first start Android

Studio.

 From the Android Studio start page, select Configure > SDK Manager.

 If you already have Android Studio open, the SDK Manager icon is found

on the top right corner, as shown below.

Install the required Android SDK platform packages and developer tools. A good

start is to install:

 Android SDK Build-Tools

 Android Emulator

 Android SDK Platform-Tools

 Android SDK Tools

 Documentation for Android SDK

Click Apply, and Android Studio will install the selected tools and packages.

What Is the SDK Manager?

The Android SDK is composed of modular packages that you can download,

install, and update separately using the Android SDK Manager. The SDK

Manager helps to update new SDK releases and updates whenever a new Android

platform is released. The SDK manager can be found in the top-right corner of

the Android Studio screen, as shown below.

All that is required to follow the instructions provided, and the updates will be

immediately downloaded to your environment.

Android KTX

Android KTX is a set of Kotlin extensions that are included with

Android Jetpack and other Android libraries. KTX extensions provide concise,

idiomatic Kotlin to Jetpack, Android platform, and other APIs. To do so, these

extensions leverage several Kotlin language features, including the following:

 Extension functions

 Extension properties

 Lambdas

 Named parameters

 Parameter default values

 Coroutines

 As an example, when working with SharedPreferences, you must create

an editor before you can make modifications to the preferences data. You

must also apply or commit those changes when you are finished editing,

as shown in the following example:

 sharedPreferences

 .edit() // create an Editor

 .putBoolean("key", value)

 .apply() // write to disk asynchronously

 Kotlin lambdas are a perfect fit for this use case. They allow you to take a

more concise approach by passing a block of code to execute after the

editor is created, letting the code execute, and then letting

the SharedPreferences API apply the changes atomically.

https://developer.android.com/jetpack
https://developer.android.com/reference/android/content/SharedPreferences
https://developer.android.com/reference/android/content/SharedPreferences#edit()
https://developer.android.com/reference/android/content/SharedPreferences#edit()

 Here's an example of one of the Android KTX Core

functions, SharedPreferences.edit, which adds an edit function

to SharedPreferences. This function takes an optional boolean flag as its

first argument that indicates whether to commit or apply the changes. It

also receives an action to perform on the SharedPreferences editor in the

form of a lambda.

 // SharedPreferences.edit extension function signature from Android KTX

- Core

// inline fun SharedPreferences.edit(

// commit: Boolean = false,

// action: SharedPreferences.Editor.() -> Unit)

// Commit a new value asynchronously

sharedPreferences.edit { putBoolean("key", value) }

// Commit a new value synchronously

sharedPreferences.edit(commit = true) { putBoolean("key", value) }

 The caller can choose whether to commit or apply the changes.

The action lambda is itself an anonymous extension function

on SharedPreferences.Editor which returns Unit, as indicated by its

signature. This is why inside the block, you are able to perform the work

directly on the SharedPreferences.Editor.

 Finally, the SharedPreferences.edit() signature contains

the inline keyword. This keyword tells the Kotlin compiler that it should

copy and paste (or inline) the compiled bytecode for the function each

https://developer.android.com/reference/kotlin/androidx/core/content/package-summary#edit

time the function is used. This avoids the overhead of instantiating a new

class for every action each time this function is called.

 This pattern of passing code using lambdas, applying sensible defaults

that can be overridden, and adding these behaviors to existing APIs

using inline extension functions is typical of the enhancements provided

by the Android KTX library.

AndroidX Modules

Android KTX is organized into modules, where each module contains one or

more packages.

You must include a dependency for each module artifact in your

app's build.gradle file. Remember to append the version number to the artifact.

You can find the latest version numbers in each artifact's corresponding section

in this topic.

Android KTX contains a single core module that provides Kotlin extensions for

common framework APIs and several domain-specific extensions.

With the exception of the core module, all KTX module artifacts replace the

underlying Java dependency in your build.gradle file. For example, you can

replace androidx.fragment:fragment dependency,with androidx.fragment:fragm

ent-ktx. This syntax helps to better manage versioning and does not add additional

dependency declaration requirements.

Core KTX

The Core KTX module provides extensions for common libraries that are part of

the Android framework. These libraries do not have Java-based dependencies that

you need to add to build.gradle.

Collection KTX

The Collection extensions contain utility functions for working with Android's

memory-efficient collection libraries,

including ArrayMap, LongSparseArray, LruCache, and others.

To use this module, add the following to your app's build.gradle file:

GroovyKotlin

dependencies {

 implementation "androidx.collection:collection-ktx:1.2.0"

}

Collection extensions take advantage of Kotlin’s operator overloading to

simplify things like collection concatenation, as shown in the following

example:

// Combine 2 ArraySets into 1.

val combinedArraySet = arraySetOf(1, 2, 3) + arraySetOf(4, 5, 6)

// Combine with numbers to create a new sets.

val newArraySet = combinedArraySet + 7 + 8

Fragment KTX

The Fragment KTX module provides a number of extensions to simplify the

fragment API.

To include this module, add the following to your app's build.gradle file:

GroovyKotlin

dependencies {

 implementation "androidx.fragment:fragment-ktx:1.4.0"

}

With the Fragment KTX module, you can simplify fragment transactions with

lambdas, for example:

fragmentManager().commit {

 addToBackStack("...")

 setCustomAnimations(

 R.anim.enter_anim,

 R.anim.exit_anim)

 add(fragment, "...")

}

You can also bind to a ViewModel in one line by using

the viewModels and activityViewModels property delegates:

// Get a reference to the ViewModel scoped to this Fragment

val viewModel by viewModels<MyViewModel>()

// Get a reference to the ViewModel scoped to its Activity

val viewModel by activityViewModels<MyViewModel>()

Lifecycle KTX

Lifecycle KTX defines a LifecycleScope for each Lifecycle object. Any

coroutine launched in this scope is canceled when the Lifecycle is destroyed.

You can access the CoroutineScope of the Lifecycle by using

the lifecycle.coroutineScope or lifecycleOwner.lifecycleScope properties.

To include this module, add the following to your app's build.gradle file:

GroovyKotlin

dependencies {

 implementation "androidx.lifecycle:lifecycle-runtime-ktx:2.4.0"

}

The following example demonstrates how to

use lifecycleOwner.lifecycleScope to create precomputed text asynchronously:

class MyFragment: Fragment() {

 override fun onViewCreated(view: View, savedInstanceState: Bundle?) {

 super.onViewCreated(view, savedInstanceState)

 viewLifecycleOwner.lifecycleScope.launch {

 val params = TextViewCompat.getTextMetricsParams(textView)

 val precomputedText = withContext(Dispatchers.Default) {

 PrecomputedTextCompat.create(longTextContent, params)

 }

 TextViewCompat.setPrecomputedText(textView, precomputedText)

 }

 }

}

LiveData KTX

When using LiveData, you might need to calculate values asynchronously. For

example, you might want to retrieve a user's preferences and serve them to your

UI. For these cases, LiveData KTX provides a liveData builder function that

calls a suspend function and serves the result as a LiveData object.

To include this module, add the following to your app's build.gradle file:

GroovyKotlin

dependencies {

 implementation "androidx.lifecycle:lifecycle-livedata-ktx:2.4.0"

}

In the following example, loadUser() is a suspend function declared elsewhere.

You can use the liveData builder function to call loadUser() asynchronously,

and then use emit() to emit the result:

val user: LiveData<User> = liveData {

 val data = database.loadUser() // loadUser is a suspend function.

 emit(data)

}

For more information on using coroutines with LiveData, see Use Kotlin

coroutines with Architecture components.

Navigation KTX

Each component of the Navigation library has its own KTX version that adapts

the API to be more succinct and Kotlin-idiomatic.

To include these modules, add the following to your app's build.gradle file:

GroovyKotlin

dependencies {

 implementation "androidx.navigation:navigation-runtime-ktx:2.3.5"

 implementation "androidx.navigation:navigation-fragment-ktx:2.3.5"

 implementation "androidx.navigation:navigation-ui-ktx:2.3.5"

}

Use the extension functions and property delegation to access destination

arguments and navigate to destinations, as shown in the following example:

class MyDestination : Fragment() {

 // Type-safe arguments are accessed from the bundle.

 val args by navArgs<MyDestinationArgs>()

 ...

 override fun onViewCreated(view: View, savedInstanceState: Bundle?) {

 view.findViewById<Button>(R.id.next)

 .setOnClickListener {

 // Fragment extension added to retrieve a NavController from

 // any destination.

 findNavController().navigate(R.id.action_to_next_destination)

 }

 }

 ...

}

Palette KTX

The Palette KTX module offers idiomatic Kotlin support for working with color

palettes.

To use this module, add the following to your app's build.gradle file:

GroovyKotlin

dependencies {

 implementation "androidx.palette:palette-ktx:1.0.0"

}

As an example, when working with a Palette instance, you can retrieve

the selected swatch for a given target by using the get operator ([]):

val palette = Palette.from(bitmap).generate()

val swatch = palette[target]

Other KTX modules

You can also include additional KTX modules that exist outside of AndroidX.

Firebase KTX

Some of the Firebase SDKs for Android have Kotlin extension libraries that

enable you to write idiomatic Kotlin code when using Firebase in your app. For

more information, see the following topics:

 Firebase Android SDK

 Firebase Common Kotlin Extensions

Google Maps Platform KTX

There are KTX extensions available for Google Maps Platform Android SDKs

which allow you to take advantage of several Kotlin language features such as

extension functions, named parameters and default arguments, destructuring

declarations, and coroutines. For more information, see the following topics:

 Maps Android KTX

 Places Android KTX

Play Core KTX

Play Core KTX adds support for Kotlin coroutines for one-shot requests and

Flow for monitoring status updates by adding extension functions

to SplitInstallManager and AppUpdateManager in the Play Core library.

2.3 WORKING & UML DIAGRAM OF Media Player :

2.3.1 Object diagram

3.0 System Requirement

 3.1 Windows

 64-bit Microsoft® Windows® 8/10.

 x86_64 CPU architecture; 2nd generation Intel Core or newer, or AMD CPU with

support for a Windows Hypervisor.

 8 GB RAM or more.

 8 GB of available disk space minimum (IDE + Android SDK + Android Emulator)

 1280 x 800 minimum screen resolution.

 3.2 Mac

 MacOS® 10.14 (Mojave) or higher

 ARM-based chips, or 2nd generation Intel Core or newer with support

for Hypervisor.Framework

 8 GB RAM or more

 8 GB of available disk space minimum (IDE + Android SDK + Android Emulator)

 1280 x 800 minimum screen resolution

Advantage of proposed system

The return on investment for good requirements gathering is virtually always higher than the

cost. In almost all cases if you spend the time to develop the requirements you can develop a

far superior product with much less hassle and frustration. At the same time not doing the right

amount of requirements gathering can create a chaotic environment in which stakeholders are

upset with the managers, managers are upset with the developers, developers are upset with

managers and in the end, what suffers is the product. Some of the benefits from good

requirements gathering can be:

 Fewer defects in the delivered product

 Less development rework

 Faster delivery of the finished product

 Less unused features

 Lower cost of development

 Less miss-communicated requirements

 Reduced project chaos

 Higher levels of satisfaction from stakeholders

 Higher levels of satisfaction from developers

 Higher levels of satisfaction from consumers and users

 Products that work well and have a useful feature set

4.0 AndroidManifest.xml code

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 package="com.ldt.musicr">

 <uses-permission android:name="android.permission.WAKE_LOCK" />

 <uses-permission android:name="android.permission.READ_EXTERNAL_STORAGE"

/>

 <uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"

/>

 <uses-permission

android:name="android.Manifest.permission.WRITE_EXTERNAL_STORAGE" />

 <uses-permission android:name="android.permission.INTERNET" />

 <uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />

 <uses-permission android:name="android.permission.BROADCAST_STICKY" />

 <uses-permission android:name="android.permission.RECEIVE_BOOT_COMPLETED"

/>

 <uses-permission android:name="android.permission.FOREGROUND_SERVICE" />

 <uses-permission android:name="android.permission.VIBRATE" />

 <application

 android:name=".App"

 android:allowBackup="true"

 android:icon="@mipmap/ic_launcher"

 android:label="@string/app_name"

 android:roundIcon="@mipmap/ic_launcher"

 android:supportsRtl="true"

 android:theme="@style/AppThemeNoWallpaper"

 tools:ignore="UnusedAttribute">

 <activity

 android:name=".ui.AppActivity"

 android:theme="@style/SplashThemeV2"

 android:screenOrientation="portrait"

 android:configChanges="keyboardHidden|orientation|screenSize"

 android:launchMode="singleInstance"

 android:windowSoftInputMode="adjustPan|adjustResize"

 tools:ignore="LockedOrientationActivity">

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <action android:name="android.intent.action.MUSIC_PLAYER" />

 <category android:name="android.intent.category.LAUNCHER" />

 <category android:name="android.intent.category.APP_MUSIC" />

 <category android:name="android.intent.category.DEFAULT" />

 </intent-filter>

 <intent-filter>

 <action android:name="android.intent.action.VIEW" />

 <category android:name="android.intent.category.DEFAULT" />

 <data android:scheme="content" />

 <data android:mimeType="audio/*" />

 <data android:mimeType="application/ogg" />

 <data android:mimeType="application/x-ogg" />

 <data android:mimeType="application/itunes" />

 </intent-filter>

 <intent-filter>

 <action android:name="android.intent.action.VIEW" />

 <category android:name="android.intent.category.DEFAULT" />

 <data android:scheme="file" />

 <data android:mimeType="audio/*" />

 <data android:mimeType="application/ogg" />

 <data android:mimeType="application/x-ogg" />

 <data android:mimeType="application/itunes" />

 </intent-filter>

 <intent-filter>

 <action android:name="android.intent.action.VIEW" />

 <category android:name="android.intent.category.DEFAULT" />

 <category android:name="android.intent.category.BROWSABLE" />

 <data android:scheme="http" />

 <data android:mimeType="audio/*" />

 <data android:mimeType="application/ogg" />

 <data android:mimeType="application/x-ogg" />

 <data android:mimeType="application/itunes" />

 </intent-filter>

 <intent-filter>

 <action android:name="com.cyanogenmod.eleven.AUDIO_PLAYER" />

 <category android:name="android.intent.category.DEFAULT" />

 </intent-filter>

 <intent-filter>

 <action android:name="android.intent.action.PICK" />

 <category android:name="android.intent.category.DEFAULT" />

 <category android:name="android.intent.category.OPENABLE" />

 <data android:mimeType="vnd.android.cursor.dir/audio" />

 </intent-filter>

 <intent-filter>

 <action android:name="android.intent.action.VIEW" />

 <category android:name="android.intent.category.DEFAULT" />

 <data android:mimeType="vnd.android.cursor.dir/playlist" />

 <data android:mimeType="vnd.android.cursor.dir/albums" />

 <data android:mimeType="vnd.android.cursor.dir/artists" />

 </intent-filter>

 </activity>

 <service

 android:name=".service.MusicService"

 android:enabled="true"/>

 <meta-data

 android:name="android.max_aspect"

 android:value="2.1" />

 <provider

 android:name="androidx.core.content.FileProvider"

 android:authorities="${applicationId}"

 android:exported="false"

 android:grantUriPermissions="true">

 <meta-data

 android:name="android.support.FILE_PROVIDER_PATHS"

 android:resource="@xml/provider_paths" />

 </provider>

 <receiver android:name=".service.MediaButtonIntentReceiver">

 <intent-filter>

 <action android:name="android.intent.action.MEDIA_BUTTON" />

 </intent-filter>

 </receiver>

 <receiver android:name=".appwidgets.BootReceiver">

 <intent-filter>

 <action android:name="android.intent.action.BOOT_COMPLETED" />

 <action android:name="android.intent.action.QUICKBOOT_POWERON"

/>

 </intent-filter>

 </receiver>

 <receiver

 android:name=".appwidgets.AppWidgetBig"

 android:exported="false"

 android:label="@string/app_widget_big_name">

 <intent-filter>

 <action

android:name="android.appwidget.action.APPWIDGET_UPDATE" />

 </intent-filter>

 <meta-data

 android:name="android.appwidget.provider"

 android:resource="@xml/app_widget_big_info" />

 </receiver>

 <receiver

 android:name=".appwidgets.AppWidgetClassic"

 android:exported="false"

 android:label="@string/app_widget_classic_name">

 <intent-filter>

 <action

android:name="android.appwidget.action.APPWIDGET_UPDATE" />

 </intent-filter>

 <meta-data

 android:name="android.appwidget.provider"

 android:resource="@xml/app_widget_classic_info" />

 </receiver>

 <receiver

 android:name=".appwidgets.AppWidgetSmall"

 android:exported="false"

 android:label="@string/app_widget_small_name">

 <intent-filter>

 <action

android:name="android.appwidget.action.APPWIDGET_UPDATE" />

 </intent-filter>

 <meta-data

 android:name="android.appwidget.provider"

 android:resource="@xml/app_widget_small_info" />

 </receiver>

 <receiver

 android:name=".appwidgets.AppWidgetCard"

 android:exported="false"

 android:label="@string/app_widget_card_name">

 <intent-filter>

 <action

android:name="android.appwidget.action.APPWIDGET_UPDATE" />

 </intent-filter>

 <meta-data

 android:name="android.appwidget.provider"

 android:resource="@xml/app_widget_card_info" />

 </receiver>

 </application>

</manifest>

package com.ldt.trung.musicplayer;

import android.content.Context;

import androidx.test.platform.app.InstrumentationRegistry;

import androidx.test.ext.junit.runners.AndroidJUnit4;

import org.junit.Test;

import org.junit.runner.RunWith;

import static org.junit.Assert.*;

/**

 * Instrumentation test, which will onRunning on an Android device.

 *

 * @see Testing

documentation

 */

@RunWith(AndroidJUnit4.class)

public class ExampleInstrumentedTest {

 @Test

 public void useAppContext() throws Exception {

 // Context of the app under test.

 Context appContext = InstrumentationRegistry.getTargetContext();

 assertEquals("com.example.trung.myapplication",

appContext.getPackageName());

 }

}

Gradle.XML

<?xml version="1.0" encoding="UTF-8"?>

<project version="4">

 <component name="GradleMigrationSettings" migrationVersion="1" />

 <component name="GradleSettings">

 <option name="linkedExternalProjectsSettings">

 <GradleProjectSettings>

 <option name="testRunner" value="GRADLE" />

 <option name="distributionType" value="DEFAULT_WRAPPED" />

 <option name="externalProjectPath" value="$PROJECT_DIR$" />

 <option name="modules">

 <set>

 <option value="$PROJECT_DIR$" />

 </set>

 </option>

 <option name="resolveModulePerSourceSet" value="false" />

 </GradleProjectSettings>

 </option>

 </component>

</project>

WorkSpace.XML

<?xml version="1.0" encoding="UTF-8"?>

<project version="4">

 <component name="AutoImportSettings">

 <option name="autoReloadType" value="NONE" />

 </component>

 <component name="ChangeListManager">

 <list default="true" id="cbf6d689-a3a4-43c4-ac6d-cba155fff8c6"

name="Default Changelist" comment="" />

 <option name="SHOW_DIALOG" value="false" />

 <option name="HIGHLIGHT_CONFLICTS" value="true" />

 <option name="HIGHLIGHT_NON_ACTIVE_CHANGELIST" value="false" />

 <option name="LAST_RESOLUTION" value="IGNORE" />

 </component>

 <component name="ExternalProjectsData">

 <projectState path="$PROJECT_DIR$">

 <ProjectState />

 </projectState>

 </component>

 <component name="ProjectId" id="21ryHF2giGnV7YRabQkcndV6g5T" />

 <component name="ProjectViewState">

 <option name="hideEmptyMiddlePackages" value="true" />

 <option name="showLibraryContents" value="true" />

 </component>

 <component name="PropertiesComponent">

 <property name="RunOnceActivity.OpenProjectViewOnStart" value="true" />

 <property name="RunOnceActivity.ShowReadmeOnStart" value="true" />

 </component>

 <component name="SpellCheckerSettings" RuntimeDictionaries="0"

Folders="0" CustomDictionaries="0" DefaultDictionary="application-level"

UseSingleDictionary="true" transferred="true" />

 <component name="TaskManager">

 <task active="true" id="Default" summary="Default task">

 <changelist id="cbf6d689-a3a4-43c4-ac6d-cba155fff8c6" name="Default

Changelist" comment="" />

 <created>1638713420323</created>

 <option name="number" value="Default" />

 <option name="presentableId" value="Default" />

 <updated>1638713420323</updated>

 </task>

 <servers />

 </component>

</project>

Icon

5.0 Conclusion

Through the development of the music player on the Android platform, we get a clear

understanding of the overall process of the system. The core part of the music player is mainly

composed of the main interface, playlists, menus, play Settings, file browsing, and song search.

Grasping the development of the six parts, the music player has had the preliminary scale.

Based on the function of the six categories, add some other small features. Music player system

realized the basic function of player: play, pause, and stop, up/down a volume adjustment,

lyrics display, play mode, song search, file browser, playlists query, and other functions. This

development implicated the popular mobile terminal development technology.

6.0. Reference

• https://developer.android.com/guide

• developer.android.com/guide/topics/media/mediaplayer

• developer.android.com/guide/topics/media/mediaplayer#releaseplayer

• https://developer.android.com/google/play/developer-api

• https://www.tutorialspoint.com/android/android_mediaplayer.htm

	Submitted By:
	Nikhil Ranjan
	18SCSE1010361
	CANDIDATE’S DECLARATION
	CERTIFICATE
	About Music Player App:
	Features of Music Player App:

	What Is the Android SDK?
	How to Install the Android SDK
	What Is the SDK Manager?
	AndroidX Modules
	Core KTX
	Collection KTX
	Fragment KTX
	Lifecycle KTX
	LiveData KTX
	Navigation KTX
	Palette KTX

	Other KTX modules
	Firebase KTX
	Google Maps Platform KTX
	Play Core KTX

