
A Project Review - 1 Report

On

Payment Processing System using Blockchain

Submitted in partial fulfillment of the

Requirement for the award of the degree of

B.Tech with Specialization in AI/ML

Under the supervision of:

Ravindra Kumar Chahar

Submitted By:

Sakshi Jain (18SCSE180014)

Rakshit Singh (18SCSE1180060)

SCHOOL OF COMPUTING SCIENCE AND ENGINEERING

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

GALGOTIAS UNIVERSITY, GREATER NOIDA

INDIA

Declaration

I, the undersigned solemnly declare that the project report is based on our own

work carried out during the course of our study under the supervision of Mr.

Ravindra Kumar Chahar. I assert the statements made and conclusions drawn are

an outcome of my research work. I further certify that

The work contained in the report is original and has been done by me under the

general supervision of my supervisor.

The work has not been submitted to any other Institution for any other

degree/diploma/certificate in this university or any other University of India or

abroad.

We have followed the guidelines provided by the university in writing the report.

Whenever we have used materials (data, theoretical analysis, and text) from other

sources, we have given due credit to them in the text of the report and giving their

details in the references.

Sakshi Jain (18SCSE180014)

Rakshit Singh (18SCSE1180060)

Bonafide Certificate

Certified that this project report “Payment Processing System using Blockchain”

is the Bonafide work of Sakshi Jain and Rakshit Singh who carried out the project

work under my supervision.

SUPERVISOR:

Ravindra Kumar Chahar

(Professor)

Statement of Project Report

Preparation

• Thesis title: Payment Processing System using Blockchain

• Degree for which the report is submitted: B. Tech in CSE

• Project Supervisor was referred to for preparing the report.

• Specifications regarding thesis format have been closely followed.

• The contents of the thesis have been organized based on the guidelines.

• The report has been prepared without resorting to plagiarism.

• All sources used have been cited appropriately.

• The report has not been submitted elsewhere for a degree.

Acknowledgment

The success and result outcome of this project “Payment Processing System using

Blockchain” required a lot of guidance and assistance from many people and I

am extremely privileged to have got this all along the completion of my project.

All that I have done is only due to such supervision and assistance and I would

not forget to thank them.

I respect and thank our guide: Mr. Ravindra Kumar Chahar, for providing me an

opportunity to do the project work under their guidance and giving us all support

and guidance which made me complete the project duly. I am extremely thankful

to my college Galgotias University for providing such a nice support and

guidance through our teachers.

Index

Contents
Declaration .. 2

Bonafide Certificate ... 3

Statement of Project Report Preparation ... 4

Acknowledgment ... 5

Abstract ... 7

Introduction to Blockchain.. 8

Overview of E-Payment Methods and their Disadvantages ... 13

Hyperledger Fabric .. 15

Hyperledger Fabrics vs Traditional Blockchains .. 17

Usage in Payment Processing ... 25

Requirements .. 31

React JS .. 32

The Project UI ... 37

Deploying a Production Network .. 38

Conclusion .. 49

References .. 50

Abstract

The world of e-commerce and m-commerce is an ever-expanding one in

today’s age and with the number of online transactions reaching a record high.

So is the need to secure the way people make these transactions. The

traditional method uses some negotiable instruments such as drafts, debit

cards, credit cards, electronic funds, direct credits, direct debits, internet

banking, etc. A normal payment processing system is normally more prone to

exploits like card theft and other types of fraud.

This calls for the need for a more secure and fraud-proof payment system.

This is where the need of blockchain comes in. The power of cryptocurrency

and blockchain in the payment system can do wonders. Payments made on a

blockchain are fast, secure and cheap and facilitate international payment

processing services through the use of encrypted distributed ledgers that

provide trusted real-time verification of transactions without the need for

intermediaries such as correspondent banks.

The result of this introduction in payment systems improves it by making it

more secure and private with no middle man in between to break the end-to-

end encryption.

Our aim in this project is to come up with a system for payment processing

that removes the demerits of a conventional payment processing system and

brings in the merits of blockchain (DLT). The payment system developed

using blockchain can be used in other areas for payments.

Introduction to Blockchain

A blockchain is a distributed peer to peer linked structure. It can be used to solve

many problems such as maintaining ledger and order of all transactions. It is

evolved from Merkle Tree. It is a tree in which every node has cryptographic hash

of its children. It allows efficient and secure verification of contents in a large

data structure.

Blockchain is a fully decentralized register that keeps track of all data exchanges

in a secure manner. Each transaction is placed in a cryptographic block. Chain

develops as new blocks are mounted to the chain as it develops into data storage

structure. Sequence of blocks that holds entire list of dealing as public ledger. A

block has a block header and Parent hash will point towards its parent. It stores

transactions. There are other values also that are stored in the block header with

parent block has such as block version, time stamp, nonce, merkle tree root has

etc. The primary block which has no parent is called genesis block.

Root node

Top Hash

Hash (hash 0 + hash 1)

Hash 0

Hash 1

L1 L2 Data Blocks

Blockchain is an emerging technology. In recent years, it is targeting almost every

field revolving around humans.

Applications of blockchain

• Money transfer

• Financial exchanges

• Lending

• Insurance

• Real estate

• Secure personal information

• Voting

• Government benefits

• Securely sharing medical information

• Artist royalties

Block Header

Transaction
center

Block Header

Transaction
center

Block Header

Transaction
center

Parent Block Hash Parent Block Hash Parent Block Hash

Transaction

Transaction

Transaction

Transaction

Transaction

Transaction

As the people are undergoing digital movement, the payment sector has adopted

new and secured technology to ease out the payment processes. Until recently,

people only accepted cash in exchange of good or services, but we have started

building cashless economies. With advancement in technology we started moving

towards payments via blockchain. It helps us to facilitate and process and most

importantly verify payments on blockchain.

Smart contract have helped enormously by:

• Reducing time taken for payment

• Instant payments

• Automation of payments

Most companies have shifted their traditional payment system with new and

improved technology. Companies like Veem, Circle and Robinhood uses

blockchain for payment system.

Customer pays

with card

Merchant captures

card info

Upon approval,

transaction is

submitted for approval

Backend processing

Merchant acquires

funds

Posts transaction to

customer account

Customer receives

statement

Blockchain security is a comprehensive risk management system for a blockchain

network, using cybersecurity frameworks, assurance services and best practices

to reduce risks against attacks and fraud.

Blockchain technology produces a structure of data with inherent security

qualities. It's based on principles of cryptography, decentralization and

consensus, which ensure trust in transactions. In most blockchains or distributed

ledger technologies (DLT), the data is structured into blocks and each block

contains a transaction or bundle of transactions. Each new block connects to all

the blocks before it in a cryptographic chain in such a way that it's nearly

impossible to tamper with. All transactions within the blocks are validated and

agreed upon by a consensus mechanism, ensuring that each transaction is true and

correct.

Blockchain technology enables decentralization through the participation of

members across a distributed network. There is no single point of failure and a

single user cannot change the record of transactions. However, blockchain

technologies differ in some critical security aspects.

When building a blockchain application, it’s critical to assess which type of

network will best suit your business goals. Private and permissioned networks

can be tightly controlled and preferable for compliance and regulatory reasons.

However, public and permissionless networks can achieve greater

decentralization and distribution.

https://www.ibm.com/topics/what-is-blockchain

Public blockchains are public, and

anyone can join them and validate

transactions.

Private blockchains are restricted and

usually limited to business networks.

A single entity, or consortium,

controls membership.

Permissionless blockchains have no

restrictions on processors.

Permissioned blockchains are

limited to a select set of users who are

granted identities using certificates.

One proposed system provides a secure way to transfer payment and offers

CRUD (Create, Read, Update and Deletion) operations

A V2G networks are proposed as both energy supply and consumers. It enables

data sharing while securing sensitive user information. It ensures the anonymity

of user payment data while enabling payment auditing by privileged users.

Overview of E-Payment Methods and

their Disadvantages

1. Credit Card

Credit cards offer you a line of credit that can be used to make purchases, balance

transfers and/or cash advances and requiring that you pay back the loan amount

in the future. ... This money is not a loan, and no interest is charged. You will not

have to make any minimum monthly payments.

Disadvantages:

• High rates of interest. If you fail to pay outstanding dues on credit cards within

the due date, you will incur high interest rates. You can avoid paying

additional interest by making timely repayments every month.

• Overspending. The ease of using credit cards often leads to overspending.

2. Bank Transfer

Bank transfer (or wire transfer) is a payment method that allows consumers to

transfer money to a bank account around the world. The consumer is provided

with a unique reference number and details of the bank account where they can

make their payment.

Disadvantages:

• The order is not always a completed payment.

• There are potential delays in the payment completion process.

• There is the potential for payments that are not completed by the customer

because the customer must contact the bank to complete the payment.

3. Digital Wallet

A digital wallet (or e-wallet) is a software-based system that securely stores users'

payment information and passwords for numerous payment methods and

websites. By using a digital wallet, users can complete purchases easily and

quickly with near-field communications technology.

Disadvantages

• Limited retailers. The number of retailers that accept payments from an

electronic wallet depends on the actual wallet you choose.

• Charges. There are some apps that might charge you for doing a transaction.

• Support Technology.

Payment Methods Weaknesses

e-credit card

payments

It is hard to implement a sustainable

system of anonymity with data that are

hard to trace. Data security is necessary in

order to prevent fraud and allow disputes

of transaction

e-cash payments

Overlooked due the popularity of e-credit.

It can take longer for transactions to

settle. The speed of settlement and

disbursement also depends on the

processor.

e-check payments

These transactions can’t provide

anonymity and have security issues due to

fraudulent activities.

Hyperledger Fabric

Hyperledger Fabric is an open source enterprise-grade permissioned distributed

ledger technology platform, designed for use in enterprise contexts that delivers

some key differentiating capabilities over other popular distributed ledger or

blockchain platforms.

The combination of different design features makes Fabric one of the better

performing platforms available today both in terms of transaction processing and

transaction conformation latency, and it enables privacy and confidentiality of

transactions and the smart contracts (or “chaincode”) that implement them

Hyperledger Foundation hosts a number of enterprise-grade blockchain software

projects. The projects are conceived and built by the developer community for

vendors, end user organizations, service providers, start-ups, academics and

others to use to build and deploy blockchain networks or commercial solutions.

The Hyperledger Foundation staff is part of a larger Linux Foundation team that

has years of experience in providing program management services for open

source projects.

Companies currently using:

• USAA

• DTCC

• Amazon

• myGwok

• State Street Global Advisor

All Hyperledger projects follow the same design philosophy:

Modular

Highly secure

Interoperable

Cryptocurrency-Agnostic

Complete with APIs

Hyperledger Fabrics vs Traditional

Blockchains

1. Modularity

Hyperledger Fabric has been specifically architected to have a modular

architecture. Whether it’s pluggable consensus, pluggable identity management

protocols, key management protocols or cryptographic libraries, it has been

designed at its core to be configured to meet enterprise use case requirements.

While Blockchain is a concept which can be implemented in many ways. It is

basically a technology that stores data, on the other hand hyperledger uses

blockchain as its database with another logic which is platform or framework

dependent. Hyperledger transactions are stored in the blockchain nodes.

Following are the modular components that Fabric is comprised of:

• A pluggable ordering service establishes consensus on the order of

transactions and then broadcasts blocks to peers.

• A pluggable membership service provider, which is responsible for

associating entities in the network with cryptographic identities.

• An optional peer-to-peer gossip service that disseminates the blocks output

by ordering service to other peer nodes.

• Smart contracts (“chaincode”) run within a container environment for

isolation and can be written in standard programming languages but do not

have direct access to the ledger state.

• The ledger can be used to support a variety of DBMSs.

• A pluggable endorsement and validation policy enforcement that can be

independently configured per application.

2. Permissioned vs Permissionless Blockchain

Permissionless blockchain, allow virtually anyone to participate and every

participant is anonymous. In such a situation, there can be no trust other than that

the state of the blockchain, prior to a certain depth, is immutable. In order to

mitigate this absence of trust, permissionless blockchains typically employ a

“mined” native cryptocurrency or transaction fees to provide economic incentive

to offset the extraordinary costs of participating in a form of byzantine fault

tolerant consensus based on “Proof of Work”.

Whereas in a permissioned blockchain, its user belong to a set of known,

identified and often vetted participants operating under a single governance

model that yields a certain degree of trust. A permissioned blockchain provides a

way to secure the interactions among a group of entities that have a common goal

but which may not fully trust each other. By relying on the identities of the

participants, a permissioned blockchain can use more traditional crash fault

tolerant (CFT) or byzantine fault tolerant (BFT) consensus protocols that do not

require costly mining.

3. Smart Contracts

A smart contract, or “chaincode”, act as a trusted distributed application that gains

its security and trust from the blockchain and the underlying consensus among

the peers it is the business logic of a blockchain application.

There are three key points that apply to smart contracts, especially when applied

to a platform:

• Many smart contracts run concurrently in the network

• They may be deployed dynamically

• Application code should be treated as untrusted, potentially even

malicious

Most existing smart-contracts capable blockchain platforms follow and order-

execute architecture in which the consensus protocol:

• Validates and orders transactions then propagates them to all peer

nodes

• Each peer then executes the transactions sequentially.

Smart contracts being used in a blockchain that works with the order-execute

architecture must be deterministic, otherwise, consensus might never be reached.

To address this issue, many platforms require that the smart contracts be written

in non-standard, or domain-specific language so that non-deterministic operations

can be eliminated. Further, since all transactions are executed one by one by all

nodes, performance and scale is limited. The fact that the smart contract code

executes on every node in the system demands that complex measures be taken

to protect the overall system from potentially malicious contracts in order to

ensure resiliency of the overall system.

4. A New Approach

Fabric introduced a new architecture for transactions, called execute-order-

validate. It addresses the resiliency, flexibility, faced by the order-execute model

by separating the transaction flow into three steps:

• Execute a transaction and check if its correct, and thereby endorse it

• Order transactions via a consensus protocol

• Validate transactions against an application-specific endorsement

policy before committing them to the ledger.

This design departs radically from the order-execute paradigm in that Fabric

executes transactions before reaching final agreement on their order.

In Fabric, an application-specific endorsement policy specifies which peer nodes,

or how many of them, need to vouch for the correct execution of a given smart

contract. Thus, each transaction need only be executed by the subset of the peer

nodes necessary to satisfy the transaction’s endorsement policy. This allows for

parallel execution increasing overall performance and scale of the system. This

first phase also eliminates any non-determinism, as inconsistent results can be

filtered out before ordering.

Because we have eliminated non-determinism, Fabric is the first blockchain

technology that enables use of standard programming languages.

• Validates and orders transactions then propagates them to all peer

nodes,

• Each peer then executes the transactions sequentially.

Smart contracts being used in a blockchain that works with the order-execute

architecture must be deterministic, otherwise, consensus might never be reached.

To address this issue, many platforms require that the smart contracts be written

in non-standard, or domain-specific language so that non-deterministic operations

can be eliminated. Further, since all transactions are executed one by one by all

nodes, performance and scale is limited. The fact that the smart contract code

executes on every node in the system demands that complex measures be taken

to protect the overall system from potentially malicious contracts in order to

ensure resiliency of the overall system.

Hyperledger Fabric Model

The key design features woven into Hyperledger Fabric that fulfill its promise of

a comprehensive, yet customizable, enterprise blockchain solution:

• Assets — Asset definitions enable the exchange of almost anything with

monetary value over the network, from whole foods to antique cars to currency

futures.

Assets can range from the tangible (real estate and hardware) to the intangible

(contracts and intellectual property). Hyperledger Fabric provides the ability to

modify assets using chaincode transactions.

Assets are represented in Hyperledger Fabric as a collection of key-value pairs,

with state changes recorded as transactions on a Channel ledger. Assets can be

represented in binary and/or JSON form.

• Chaincode — Chaincode execution is partitioned from transaction ordering,

limiting the required levels of trust and verification across node types, and

optimizing network scalability and performance.

Chaincode is software defining an asset or assets, and the transaction instructions

for modifying the asset(s); in other words, it’s the business logic. Chaincode

enforces the rules for reading or altering key-value pairs or other state database

information. Chaincode functions execute against the ledger’s current state

database and are initiated through a transaction proposal. Chaincode execution

results in a set of key-value writes (write set) that can be submitted to the network

and applied to the ledger on all peers.

• Ledger Features — The immutable, shared ledger encodes the entire

transaction history for each channel, and includes SQL-like query capability

for efficient auditing and dispute resolution.

The ledger is the sequenced, tamper-resistant record of all state transitions in the

fabric. State transitions are a result of chaincode invocations (‘transactions’)

submitted by participating parties. Each transaction results in a set of asset key-

value pairs that are committed to the ledger as creates, updates, or deletes.

The ledger is comprised of a blockchain (‘chain’) to store the immutable,

sequenced record in blocks, as well as a state database to maintain current fabric

https://hyperledger-fabric.readthedocs.io/en/release-2.2/fabric_model.html#assets
https://hyperledger-fabric.readthedocs.io/en/release-2.2/fabric_model.html#chaincode
https://hyperledger-fabric.readthedocs.io/en/release-2.2/fabric_model.html#ledger-features

state. There is one ledger per channel. Each peer maintains a copy of the ledger

for each channel of which they are a member.

Some features of a Fabric ledger:

o Query and update ledger using key-based lookups, range queries, and

composite key queries

o Read-only queries using a rich query language (if using CouchDB as

state database)

o Read-only history queries — Query ledger history for a key, enabling

data provenance scenarios

o Transactions consist of the versions of keys/values that were read in

chaincode (read set) and keys/values that were written in chaincode

(write set)

o Transactions contain signatures of every endorsing peer and are

submitted to ordering service

o Transactions are ordered into blocks and are “delivered” from an

ordering service to peers on a channel

o Peers validate transactions against endorsement policies and enforce the

policies

o Prior to appending a block, a versioning check is performed to ensure

that states for assets that were read have not changed since chaincode

execution time

o There is immutability once a transaction is validated and committed

o A channel’s ledger contains a configuration block defining policies,

access control lists, and other pertinent information. Channels contain

Membership Service Provider instances allowing for crypto materials

to be derived from different certificate authorities

• Privacy — Channels and private data collections enable private and

confidential multi-lateral transactions that are usually required by competing

businesses and regulated industries that exchange assets on a common

network.

Hyperledger Fabric employs an immutable ledger on a per-channel basis, as well

as chaincode that can manipulate and modify the current state of assets (i.e.

update key-value pairs). A ledger exists in the scope of a channel — it can be

shared across the entire network (assuming every participant is operating on one

https://hyperledger-fabric.readthedocs.io/en/release-2.2/glossary.html#msp
https://hyperledger-fabric.readthedocs.io/en/release-2.2/fabric_model.html#privacy

common channel) — or it can be privatized to include only a specific set of

participants.

In the latter scenario, these participants would create a separate channel and

thereby isolate/segregate their transactions and ledger. In order to solve scenarios

that want to bridge the gap between total transparency and privacy, chaincode can

be installed only on peers that need to access the asset states to perform reads and

writes (in other words, if a chaincode is not installed on a peer, it will not be able

to properly interface with the ledger).

When a subset of organizations on that channel need to keep their transaction data

confidential, a private data collection (collection) is used to segregate this data in

a private database, logically separate from the channel ledger, accessible only to

the authorized subset of organizations.

Thus, channels keep transactions private from the broader network whereas

collections keep data private between subsets of organizations on the channel.

To further obfuscate the data, values within chaincode can be encrypted (in part

or in total) using common cryptographic algorithms such as AES before sending

transactions to the ordering service and appending blocks to the ledger. Once

encrypted data has been written to the ledger, it can be decrypted only by a user

in possession of the corresponding key that was used to generate the cipher text.

• Security & Membership Services — Permissioned membership provides a

trusted blockchain network, where participants know that all transactions can

be detected and traced by authorized regulators and auditors.

Hyperledger Fabric underpins a transactional network where all participants have

known identities. Public Key Infrastructure is used to generate cryptographic

certificates which are tied to organizations, network components, and end users

or client applications. As a result, data access control can be manipulated and

governed on the broader network and on channel levels. This “permissioned”

notion of Hyperledger Fabric, coupled with the existence and capabilities of

channels, helps address scenarios where privacy and confidentiality are

paramount concerns.

• Consensus — It is a unique approach to consensus enables the flexibility and

scalability needed for the enterprise.

In distributed ledger technology, consensus has recently become synonymous

with a specific algorithm, within a single function. However, consensus

https://hyperledger-fabric.readthedocs.io/en/release-2.2/fabric_model.html#security-membership-services
https://hyperledger-fabric.readthedocs.io/en/release-2.2/fabric_model.html#consensus

encompasses more than simply agreeing upon the order of transactions, and this

differentiation is highlighted in Hyperledger Fabric through its fundamental role

in the entire transaction flow, from proposal and endorsement, to ordering,

validation and commitment. In a nutshell, consensus is defined as the full-circle

verification of the correctness of a set of transactions comprising a block.

Consensus is achieved ultimately when the order and results of a block’s

transactions have met the explicit policy criteria checks. These checks and

balances take place during the lifecycle of a transaction, and include the usage of

endorsement policies to dictate which specific members must endorse a certain

transaction class, as well as system chaincodes to ensure that these policies are

enforced and upheld. Prior to commitment, the peers will employ these system

chaincodes to make sure that enough endorsements are present, and that they were

derived from the appropriate entities. Moreover, a versioning check will take

place during which the current state of the ledger is agreed or consented upon,

before any blocks containing transactions are appended to the ledger. This final

check provides protection against double spend operations and other threats that

might compromise data integrity, and allows for functions to be executed against

non-static variables.

In addition to the multitude of endorsement, validity and versioning checks that

take place, there are also ongoing identity verifications happening in all directions

of the transaction flow. Access control lists are implemented on hierarchical

layers of the network (ordering service down to channels), and payloads are

repeatedly signed, verified and authenticated as a transaction proposal passes

through the different architectural components. To conclude, consensus is not

merely limited to the agreed upon order of a batch of transactions; rather, it is an

overarching characterization that is achieved as a byproduct of the ongoing

verifications that take place during a transaction’s journey from proposal to

commitment.

In addition to the horde of endorsements, validity and versioning checks that

occur, identity verifications also occur most of the time in all directions of the

transaction flow. Access management lists are enforced on hierarchic layers of

the network, and payloads are repeatedly signed, verified and checked if they

contain the required authentication as a transaction proposal passes through

different parts of the network. To conclude, consensus isn’t merely limited to the

agreed upon order of a batch of transactions; rather it’s an overarching

characterization that’s achieved as a byproduct of the continued verifications that

happen throughout a transaction’s journey from proposal to commitment.

Fig: Swim lane sequence diagram of transaction flow.

Usage in Payment Processing

So far we’ve read on why Hyperledger Fabric is a good fit in the domain of

payment processing. To see how exactly we can use it to help create a Blockchain

network that can make a difference in the field of payment processing we’ll have

to understand the working of a Hyperledger Fabric network with an example.

Let’s suppose, four banks, A, B, C and D have jointly decided, and written into

an agreement, that they will setup and use a Hyperledger Fabric network. Creating

such a network will be divided into parts, as followed:

1. Setting up the network

A Hyperledger Fabric network is started when an order is created. In this example

network, N the ordering service comprising a single node O-A is configured

according to network configuration NC-A, which gives administrative rights to

bank A. Certificate Authority CA-A is used to dispense identities to the

administrators and network nodes of bank A.

The first thing that defines a network is an ordering service, in this case O-A. The

ordering service O-A is the initial administrative point for the network. As agreed

beforehand, O-A is initially configured and started by an administrator in bank

A, and hosted in A. The configuration NC-A contains the policies that describe

the starting set of administrative capabilities for the network. In the beginning,

this is set to only give bank A rights over the network.

2. Defining a consortium

A consortium defines the set of organizations in the network who share a need to

transact with one another.

Although the network can now be administered by bank A, there is not much that

can be done on the network at this stage. The next step in creating the network

will be to define a consortium. First banks B and C are added to the network as

members along with their certificate authorities CA-B and CA-C, now, a network

administrator (bank A in this case) can define a consortium X1 that contains the

banks B and C. This consortium definition is stored in the network configuration

NC-A, and will be used at the next stage of network development. The network,

although started by a single bank/organization, is now controlled by a larger set

of banks/organizations.

3. Creating a channel for consortium

A channel is the main communications mechanism by which the members of a

consortium can communicate with each other.

A channel C-BC will be created for B and C using the consortium definition X1.

The channel is governed by a channel configuration CC-BC, completely separate

from the network configuration. CC-BC is managed by B and C who have equal

rights over C-BC and A has no rights in CC-BC whatsoever.

The channel C-BC provides a private communications mechanism for the

consortium X1. We can see channel C-BC has been connected to the ordering

service O-A but that nothing else is attached to it and even though channel C-BC

is a part of the network N, it is quite separate from it. Also, bank A and D are not

in this channel as it is for transaction processing between B and C only. Channels

are therefore useful because they allow private communications between the

participants constituting the channel. Also, the data in a channel is completely

separated from the rest of the network and channels.

4. Peers and Ledgers

Our network N has acquired two new components, namely a peer node P-B and

a ledger instance, L-A.

Peer nodes are the network components where copies of the blockchain ledger

are hosted. P-B’s purpose in the network is only to host a copy of the ledger L-B

for others to access. We can think of L-B as being physically hosted on P-B, but

logically hosted on the channel C-BC.

A key part of P-B’s configuration is an X.509 identity issued by CA-B which

associates P-B with bank B. When an administrator from bank A takes the action

of joining peer P-B to channel C-BC, and the peer starts pulling blocks from the

orderer O-A, the ordered uses the channel configuration CC-BC to determine P-

B’s permissions on this channel. For example, policy in CC-BC determines

whether P-B (or bank A) can read and/or write on the channel C1.

5. Applications and Smart Contract chaincode

Now that channel C-BC has a ledger on it, we can start connecting client

applications to allow users to transact on the network.

A smart contract S-B will be installed onto P-B. Client application App-B in bank

B can use S-B to access the ledger via peer node P-B. App-B, P-B and O-A are

all joined to channel C-BC, i.e. they can all make use of the communication

facilities provided by the channel.

It might now appear that App-B can access the ledger L-B directly via P-B, but

in fact, all access is managed by a special program called a smart contract

chaincode, S-B. Think of S-B as defining all the common access patterns to the

ledger. S-B provides a well-defined set of ways by which the ledger L-B can be

queried or updated. In short, client application A-B has to go through smart

contract S-B to get to ledger L-B.

Hyperledger Fabric mostly uses the term “chaincode”. Generally, smart contracts

are used to define the transaction logic. Chaincode is just packaged smart

contracts that can be deployed to a blockchain network.

6. Installing a chaincode package

After a smart contract S-B has been developed, an administrator in bank B must

create a chaincode package and deploy it onto peer node P-B. After this operation

is completed, P-B has full knowledge of S-B. Specifically, P-B can see the

implementation logic of S-B, the program code that it uses to access the ledger

L-B. If a bank has multiple peers on a single channel then it can select which

peers to install the smart contracts on; it does not need to install a smart contract

on every peer.

7. Defining a chaincode

Although a chaincode is installed on the peers of individual organizations, it is

governed and operated in the scope of a channel. Each organization need to allow

a chaincode definition, a set of params that establish how a chaincode will be used

on a channel. An organization must allow a chaincode definition in order to use

the installed smart contract to query the ledger and endorse transactions. In this

example, which only has a single peer node P-B, an administrator in bank B must

approve a chaincode definition for S-B.

An appropriate amount of organizations/banks need to approve a chaincode

definition (by default, majority) before the chaincode definition can be committed

to the channel and used to interact with the channel ledger. Because the channel

only has one member, the administrator of A can commit the chaincode definition

of S-B to the channel C-B. Once the definition has been committed, S-B can now

be invoked by client application A-B.

Requirements

Operating System: Ubuntu

Common Requirements:

1. Git

2. cURL

3. Node.js

4. Npm

Backend Requirements:

1. Docker and Docker Compose

2. Go

3. SoftHSM

4. Express

Frontend Requirements:

1. React.js

2. Material-UI

3. Axios

React JS

React.js is an open-source JavaScript library that is used for building user

interfaces specifically for single-page applications. It’s used for handling the view

layer for web and mobile apps. React also allows us to create reusable UI

components. React was first created by Jordan Walke, a software engineer

working for Facebook. React first deployed on Facebook’s newsfeed in 2011 and

on Instagram.com in 2012.

React allows developers to create large web applications that can change data,

without reloading the page. The main purpose of React is to be fast, scalable, and

simple. It works only on user interfaces in the application. This corresponds to

the view in the MVC template. It can be used with a combination of other

JavaScript libraries or frameworks, such as Angular JS in MVC.

React JS is also called simply to React or React.js.

React.js properties includes the following

• React.js is declarative

• React.js is simple

• React.js is component based

• React.js supports server side

• React.js is extensive

• React.js is fast

• React.js is easy to learn

JSX

In React, instead of using regular JavaScript for templating, it uses JSX. JSX is a

simple JavaScript that allows HTML quoting and uses these HTML tag syntax to

render subcomponents. HTML syntax is processed into JavaScript calls of React

Framework. We can also write in pure old JavaScript.

Single-Way data flow

In React, a set of immutable values are passed to the components renderer as

properties in its HTML tags. The component cannot directly modify any

properties but can pass a call back function with the help of which we can do

modifications. This complete process is known as “properties flow down; actions

flow up”.

Virtual Document Object Model

React creates an in-memory data structure cache which computes the changes

made and then updates the browser. This allows a special feature that enables the

programmer to code as if the whole page is rendered on each change whereas

react library only renders components that actually change.

Structure of a React JS project

The most common “src” folder looks somewhat like this:

Why React?

1. Simplicity

React.js is just simpler to grasp right away. The component-based approach, well-

defined lifecycle, and use of just plain JavaScript make React very simple to

learn, build a professional web (and mobile applications), and support it. React

uses a special syntax called JSX which allows you to mix HTML with JavaScript.

This is not a requirement; Developer can still write in plain JavaScript but JSX is

much easier to use.

2. Easy to learn

Anyone with a basic previous knowledge in programming can easily understand

React while Angular and Ember are referred to as ‘Domain-specific Language’,

implying that it is difficult to learn them. To react, you just need basic knowledge

of CSS and HTML.

3. Native Approach

React can be used to create mobile applications (React Native). And React is a

diehard fan of reusability, meaning extensive code reusability is supported. So at

the same time, we can make IOS, Android and Web applications.

4. Data Binding

React uses one-way data binding and an application architecture called Flux

controls the flow of data to components through one control point – the

dispatcher. It's easier to debug self-contained components of large ReactJS apps.

5. Performance

React does not offer any concept of a built-in container for dependency. You can

use Browserify, Require JS, EcmaScript 6 modules which we can use via Babel,

ReactJS-di to inject dependencies automatically.

6. Testability

ReactJS applications are super easy to test. React views can be treated as

functions of the state, so we can manipulate with the state we pass to the ReactJS

view and take a look at the output and triggered actions, events, functions, etc.

How to run React JS project

1. Open your terminal and then type “git clone” {the url to the GitHub repo}

This clones the repo.

2. cd into the new folder and type “npm install”. This installs the required

dependencies.

3. To run the React project type “npm start”.

4. The project runs on a local host

Fig : The output of “npm start” command.

The Project UI

The Login Page

User logins using his credentials and all the user data is received from the API.

Output:

The Home Page:

User can pay to other and view transaction history

Output:

Deploying a Production Network

1. Decide on your network configuration

The structure of a blockchain network will be dictated by the use case it’s

serving. There are too many options to give definitive guidance on every point,

but let’s consider a few scenarios.

In contrast to development environments or proofs of concept, security,

resource management, and high availability become a priority when operating in

production. How many nodes do you need to satisfy high availability, and in what

data centers do you wish to deploy them in to satisfy both the needs of disaster

recovery and data residency? How will you ensure that your private keys and roots

of trust remain secure?

In addition to the above, here is a sampling of the decisions you will need to

make before deploying components:

• Certificate Authority configuration. As part of the overall decisions you

have to make about your peers (how many, how many on each channel,

and so on) and about your ordering service (how many nodes, who will

own them), you also have to decide on how the CAs for your organization

will be deployed. Production networks should be using Transport Layer

Security (TLS), which will require setting up a TLS CA and using it to

generate TLS certificates. This TLS CA will need to be deployed before

your enrollment CA. We’ll discuss this more in Step three: Set up your

CAs.

• Use Organizational Units or not? Some organizations might find it

necessary to establish Organizational Units to create a separation

between certain identities and MSPs created by a single CA (for example,

a manufacturer might want one organizational unit for its shipping

department and another for its quality control department). Note that this

is separate from the concept of the “Node OU”, in which identities can

have roles coded into them (for example, “admin” or “peer”).

• Database type. Some channels in a network might require all data to be

modeled in a way CouchDB as the State Database can understand, while

other networks, prioritizing speed, might decide that all peers will use

LevelDB. Note that channels should not have peers that use both

CouchDB and LevelDB on them, as CouchDB imposes some data

restrictions on keys and values. Keys and values that are valid in

LevelDB may not be valid in CouchDB.

• Channels and private data. Some networks might decide that Channels

are the best way to ensure privacy and isolation for certain transactions.

Others might decide that fewer channels, supplemented where necessary

with Private data collections, better serves their privacy needs.

• Container orchestration. Different users might also make different

decisions about their container orchestration, creating separate containers

for their peer process, logging, CouchDB, gRPC communications, and

chaincode, while other users might decide to combine some of these

processes.

• Chaincode deployment method. Users have the option to deploy their

chaincode using either the built in build and run support, a customized

build and run using the External Builders and Launchers, or using an

Chaincode as an external service.

• Using firewalls. In a production deployment, components belonging to

one organization might need access to components from other

organizations, necessitating the use of firewalls and advanced

networking configuration. For example, applications using the Fabric

SDK require access to all endorsing peers from all organizations and the

ordering services for all channels. Similarly, peers need access to the

ordering service on the channels that they are receiving new blocks from.

However and wherever your components are deployed, you will need a high

degree of expertise in your management system of choice (such as Kubernetes) in

order to efficiently operate your network. Similarly, the structure of the network

must be designed to fit the business use case and any relevant laws and regulations

government of the industry in which the network will be designed to function.

This deployment guide will not go through every iteration and potential

network configuration, but does give common guidelines and rules to consider.

2. Set up a cluster for your resources

Generally speaking, Fabric is agnostic to the methods used to deploy and manage

it. It is possible, for example, to deploy and manage a peer on a laptop. For a

number of reasons, this is likely to be unadvisable, but there is nothing in Fabric

that prohibits it.

As long as you have the ability to deploy containers, whether locally (or behind a

firewall), or in a cloud, it should be possible to stand up components and connect

them to each other. However, Kubernetes features a number of helpful tools that

have made it a popular container management platform for deploying and

managing Fabric networks. For more information about Kubernetes, check out the

Kubernetes documentation. This topic will mostly limit its scope to the binaries

and provide instructions that can be applied when using a Docker deployment or

Kubernetes.

However and wherever you choose to deploy your components, you will need to

make sure you have enough resources for the components to run effectively. The

sizes you need will largely depend on your use case. If you plan to join a single

peer to several high volume channels, it will need much more CPU and memory

than if you only plan to join to a single channel. As a rough estimate, plan to

dedicate approximately three times the resources to a peer as you plan to allocate

to a single ordering node (as you will see below, it is recommended to deploy at

least three and optimally five nodes in an ordering service). Similarly, you should

need approximately a tenth of the resources for a CA as you will for a peer. You

will also need to add storage to your cluster (some cloud providers may provide

storage) as you cannot configure Persistent Volumes and Persistent Volume

Claims without storage being set up with your cloud provider first. The use of

persistent storage ensures that data such as MSPs, ledgers, and installed

chaincodes are not stored on the container filesystem, preventing them from being

destroyed if the containers are destroyed.

By deploying a proof of concept network and testing it under load, you will have

a better sense of the resources you will require.

Managing your infrastructure

• The exact methods and tools you use to manage your backend will

depend on the backend you choose. However, here are some

considerations worth noting.

https://kubernetes.io/docs
https://kubernetes.io/docs

• Using secret objects to securely store important configuration files in

your cluster. For information about Kubernetes secrets, check

out Kubernetes secrets. You also have the option to use Hardware

Security Modules (HSMs) or encrypted Persistent Volumes (PVs).

Along similar lines, after deploying Fabric components, you will likely

want to connect to a container on your own backend, for example using

a private repo in a service like Docker Hub. In that case, you will need to

code the login information in the form of a Kubernetes secret and include

it in the YAML file when deploying components.

• Cluster considerations and node sizing. In step 2 above, we discussed a

general outline for how to think about the sizings of nodes. Your use

case, as well as a robust period of development, is the only way you will

truly know how large your peers, ordering nodes, and CAs will need to

be.

• How you choose to mount your volumes. It is a best practice to mount

the volumes relevant to your nodes external to the place where your

nodes are deployed. This will allow you to reference these volumes later

on (for example, restarting a node or a container that has crashed) without

having to redeploy or regenerate your crypto material.

• How you will monitor your resources. It is critical that you establish a

strategy and method for monitoring the resources used by your individual

nodes and the resources deployed to your cluster generally. As you join

your peers to more channels, you will need likely need to increase its

CPU and memory allocation. Similarly, you will need to make sure you

have enough storage space for your state database and blockchain.

3. Set up a cluster for your resources

The first component that must be deployed in a Fabric network is a CA. This is

because the certificates associated with a node (not just for the node itself but also

the certificates identifying who can administer the node) must be created before

the node itself can be deployed. While it is not necessary to use the Fabric CA to

create these certificates, the Fabric CA also creates MSP structures that are needed

for components and organizations to be properly defined. If a user chooses to use

a CA other than the Fabric CA, they will have to create the MSP folders

themselves.

• One CA (or more, if you are using intermediate CAs — more on intermediate

CAs below) is used to generate (through a process called “enrollment”) the

certificates of the admin of an organization, the MSP of that organization, and

any nodes owned by that organization. This CA will also generate the

certificates for any additional users. Because of its role in “enrolling” identities,

this CA is sometimes called the “enrollment CA” or the “ecert CA”.

• The other CA generates the certificates used to secure communications on

Transport Layer Security (TLS). For this reason, this CA is often referred to as

a “TLS CA”. These TLS certificates are attached to actions as a way of

preventing “man in the middle” attacks. Note that the TLS CA is only used for

issuing certificates for nodes and can be shut down when that activity is

completed. Users have the option to use one way (client only) TLS as well as

two way (server and client) TLS, with the latter also known as “mutual TLS”.

Because specifying that your network will be using TLS (which is

recommended) should be decided before deploying the “enrollment” CA (the

YAML file specifying the configuration of this CA has a field for enabling

TLS), you should deploy your TLS CA first and use its root certificate when

bootstrapping your enrollment CA. This TLS certificate will also be used by

the fabric-ca client when connecting to the enrollment CA to enroll identities

for users and nodes.

While all of the non-TLS certificates associated with an organization can be

created by a single “root” CA (that is, a CA that is its own root of trust), for added

security organizations can decide to use “intermediate” CAs whose certificates are

created by a root CA (or another intermediate CA that eventually leads back to a

root CA). Because a compromise in the root CA leads to a collapse for its entire

trust domain (the certs for the admins, nodes, and any CAs it has generated

certificates for), intermediate CAs are a useful way to limit the exposure of the

root CA. Whether you choose to use intermediate CAs will depend on the needs

of your use case. They are not mandatory. Note that it is also possible to configure

a Lightweight Directory Access Protocol (LDAP) to manage identities on a Fabric

network for those enterprises that already have this implementation and do not

want to add a layer of identity management to their existing infrastructure. The

LDAP effectively pre registers all of the members of the directory and allows them

to enroll based on the criteria given.

In a production network, it is recommended to deploy at least one CA per

organization for enrollment purposes and another for TLS. For example, if

you deploy three peers that are associated with one organization and an ordering

node that is associated with an ordering organization, you will need at least four

CAs. Two of the CAs will be for the peer organization (generating the enrollment

and TLS certificates for the peer, admins, communications, and the folder

structure of the MSP representing the organization) and the other two will be for

the orderer organization. Note that users will generally only register and enroll

with the enrollment CA, while nodes will register and enroll with both the

enrollment CA (where the node will get its signing certificates that identify it when

it attempts to sign its actions) and with the TLS CA (where it will get the TLS

certificates it uses to authenticate its communications).

For an example of how to setup an organization CA and a TLS CA and enroll their

admin identity, check out the Fabric CA Deployment Guide. The deploy guide

uses the Fabric CA client to register and enroll the identities that are required when

setting up CAs.

4. Set up a cluster for your resources

After you have created your CAs, you can use them to create the certificates for

the identities and components related to your organization (which is represented

by an MSP). For each organization, you will need to, at a minimum:

• Register and enroll an admin identity and create an MSP. After the

CA that will be associated with an organization has been created, it can

be used to first register a user and then enroll an identity (producing the

certificate pair used by all entities on the network). In the first step, a

username and password for the identity is assigned by the admin of the

CA. Attributes and affiliations can also be given to the identity (for

example, a role of admin, which is necessary for organization admins).

After the identity has been registered, it can be enrolled by using the

username and password. The CA will generate two certificates for this

identity — a public certificate (also known as a “signcert” or “public

cert”) known to the other members of the network, and the private key

(stored in the keystore folder) used to sign actions taken by the identity.

The CA will also generate a set of folders called an “MSP” containing

the public certificate of the CA issuing the certificate and the root of trust

for the CA (this may or may not be the same CA). This MSP can be

https://hyperledger-fabric-ca.readthedocs.io/en/latest/deployguide/ca-deploy.html

thought of as defining the organization associated with the identity of the

admin. In cases where the admin of the org will also be an admin of a

node (which will be typical), you must create the org admin identity

before creating the local MSP of a node, since the certificate of the node

admin must be used when creating the local MSP.

• Register and enroll node identities. Just as an org admin identity is

registered and enrolled, the identity of a node must be registered and

enrolled with both an enrollment CA and a TLS CA (the latter generates

certificates that are used to secure communications). Instead of giving a

node a role of admin or user when registering it with the enrollment CA,

give it a role of peer or orderer. As with the admin, attributes and

affiliations for this identity can also be assigned. The MSP structure for

a node is known as a “local MSP”, since the permissions assigned to the

identities are only relevant at the local (node) level. This MSP is created

when the node identity is created, and is used when bootstrapping the

node.

For more conceptual information about identities and permissions in a Fabric-

based blockchain network, see Identity and Membership Service Provider (MSP).

For more information about how to use a CA to register and enroll identities,

including sample commands, check out Registering and enrolling identities with

a CA.

5. Deploy peers and ordering nodes

 Once you have gathered all of the certificates and MSPs you need, you’re

almost ready to create a node. As discussed above, there are a number of valid

ways to deploy nodes.

 Before any node can be deployed, its configuration file must be customized.

For the peer, this file is called core.yaml, while the configuration file for ordering

nodes is called orderer.yaml.

You have three main options for tuning your configuration.

1. Edit the YAML file bundled with the binaries.

2. Use environment variable overrides when deploying.

3. Specify flags on CLI commands.

Option 1 has the advantage of persisting your changes whenever you bring

down and bring back up the node. The downside is that you will have to port the

options you customized to the new YAML when upgrading to a new binary

version (you should use the latest YAML when upgrading to a new version).

Creating a peer

If you’ve read through the key concept topic on Peers, you should have a good

idea of the role peers play in a network and the nature of their interactions with

other network components. Peers are owned by organizations that are members of

a channel (for this reason, these organizations are sometimes called “peer

organizations”). They connect to the ordering service and to other peers, have

smart contracts installed on them, and are where ledgers are stored.

These roles are important to understand before you create a peer, as they will

influence your customization and deployment decisions. For a look at the various

decisions you will need to make, check out Planning for a production peer.

The configuration values in a peer’s core.yaml file must be customized or

overridden with environment variables. You can find the default core.yaml

configuration file in the sampleconfig directory of Hyperledger Fabric. This

configuration file is bundled with the peer image and is also included with the

downloadable binaries. For information about how to download the production

core.yaml along with the peer image, check out Deploy the peer.

While there are many parameters in the default core.yaml, you will only need to

customize a small percentage of them. In general, if you do not have the need to

change a tuning value, keep the default value.

Among the parameters in core.yaml, there are:

• Identifiers: these include not just the paths to the relevant local MSP and

Transport Layer Security (TLS) certificates, but also the name (known

as the “peer ID”) of the peer and the MSP ID of the organization that

owns the peer.

• Addresses and paths: because peers are not entities unto themselves but

interact with other peers and components, you must specify a series of

addresses in the configuration. These include addresses where the peer

itself can be found by other components as well as the addresses where,

for example, chaincodes can be found (if you are employing external

chaincodes). Similarly, you will need to specify the location of your

ledger (as well as your state database type) and the path to your external

builders (again, if you intend to employ external chaincodes). These

include Operations and metrics, which allow you to set up methods for

monitoring the health and performance of your peer through the

configuration of endpoints.

• Gossip: components in Fabric networks communicate with each other

using the “gossip” protocol. Through this protocol, they can be

discovered by the discovery service and disseminate blocks and private

data to each other. Note that gossip communications are secured using

TLS.

When you’re comfortable with how your peer has been configured, how your

volumes are mounted, and your backend configuration, you can run the command

to launch the peer (this command will depend on your backend configuration).

Deploying a production peer

• Planning for a production peer

• Checklist for a production peer

• Deploy the peer

Creating an ordering node

If you’ve read through the key concept topic on The Ordering Service, you should

have a good idea of the role the ordering service plays in a network and the nature

of its interactions with other network components. The ordering service is

responsible for literally “ordering” endorsed transactions into blocks, which peers

then validate and commit to their ledgers.

These roles are important to understand before you create an ordering service, as

it will influence your customization and deployment decisions. Among the chief

differences between a peer and ordering service is that in a production network,

multiple ordering nodes work together to form the “ordering service” of a channel.

This creates a series of important decisions that need to be made at both the node

level and at the cluster level. Some of these cluster decisions are not made in

individual ordering node orderer.yaml files but instead in the configtx.yaml file

that is used to generate the genesis block for the system channel (which is used to

bootstrap ordering nodes), and also used to generate the genesis block of

application channels. For a look at the various decisions you will need to make,

check out Planning for an ordering service.

The configuration values in an ordering node’s orderer.yaml file must be

customized or overridden with environment variables. You can find the default

orderer.yaml configuration file in the sampleconfig directory of Hyperledger

Fabric.

This configuration file is bundled with the orderer image and is also included with

the downloadable binaries. For information about how to download the production

orderer.yaml along with the orderer image, check out Deploy the ordering service.

While there are many parameters in the default orderer.yaml, you will only need

to customize a small percentage of them. In general, if you do not have the need

to change a tuning value, keep the default value.

Among the parameters in orderer.yaml, there are:

• Identifiers: these include not just the paths to the relevant local MSP and

Transport Layer Security (TLS) certificates, but also the MSP ID of the

organization that owns the ordering node.

• Addresses and paths: because ordering nodes interact with other

components, you must specify a series of addresses in the configuration.

These include addresses where the ordering node itself can be found by

other components as well as Operations and metrics, which allow you to

set up methods for monitoring the health and performance of your

ordering node through the configuration of endpoints.

When you’re comfortable with how your ordering node has been configured, how

your volumes are mounted, and your backend configuration, you can run the

command to launch the ordering node (this command will depend on your

backend configuration).

Conclusion

Blockchain is highly appraised and endorsed for its decentralized and P2P nature.

Blockchain has shown potential in a lot of fields. Due to its property of

immutability and the process of consensus involved in processing a transaction,

Blockchain has shown its potential for transforming the traditional industry with

its key characteristics: decentralization, persistency, anonymity and auditability.

In this paper, we present a comprehensive survey on the blockchain. We first give

an overview of the blockchain technologies including blockchain architecture and

key characteristics of the blockchain. We then discuss the different advantages

and working of the Hyperledger Platform. We analyze and compare these

protocols in different respects. We also investigate typical blockchain

applications. Furthermore, we list some challenges and problems that would

hinder blockchain development and summarize some existing approaches for

solving these problems. Some possible future directions are also discussed.

Nowadays smart contract is developing fast and many smart contract applications

are proposed.

References

[1] Akins, B.W., Chapman, J.L. and Gordon, J.M. (2013) A Whole New

World: Income Tax Considerations of the Bitcoin Economy.

[2] antshares (2016) Antshares Digital Assets for Everyone,

https://www.antshares.org.

[3] Atzori, L., Iera, A. and Morabito, G. (2010) ‘The internet of things: a

survey’, Computer Networks, Vol. 54, No. 15, pp.2787–2805.

[4] Axon, L. (2015) Privacy-Awareness in Blockchain-based PKI, CDT

Technical Paper Series.

[5] azure (2016) Microsoft Azure: Blockchain as a Service,

https://azure.microsoft.com/enus/solutions/blockchain/

[6] Barcelo, J. (2014) User Privacy in the Public Bitcoin Blockchain.

[7] Bentov, I., Lee, C., Mizrahi, A. and Rosenfeld, M. (2014) ‘Proof of

activity: extending Bitcoin’s proof of work via proof of stake [extended

abstract]’, ACM SIGMETRICS Performance Evaluation Review, Vol. 42, No. 3,

pp.34–37. Billah, S. (2015) One Weird Trick to Stop Selfish Miners: Fresh

Bitcoins, A Solution for the Honest Miner

https://www.antshares.org/

