
1

A Project Review-2 Report

on

CLUB EVENT REGULATOR AND

UPDATER

Submitted in partial fulfillment of the

requirement for the award of the degree of

Bachelor of Technology

In

Computer Science

Under The

Supervision of Dr.M.

Thirunavukkarasan

Assistant Professor

Submitted By

Twinkle Deep

18SCSE1010655

Shubham Kashyap

18SCSE1010061

SCHOOL OF COMPUTING SCIENCE AND ENGINEERING

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

GALGOTIAS UNIVERSITY, GREATER NOIDA
INDIA

OCTOBER, 2021

2

SCHOOL OF COMPUTING SCIENCE AND
ENGINEERING
GALGOTIAS UNIVERSITY, GREATER NOIDA

 CANDIDATE’S DECLARATION

We hereby certify that the work which is being presented in the thesis/project/dissertation,

entitled “CLUB EVENT REGULATOR AND UPDATER” in partial fulfillment of the

requirements for the award of the Bachelor of Technology In Computer Science submitted

in the School of Computing Science and Engineering of Galgotias University, Greater Noida,

is an original work carried out during the period of September, 2021 to May, 2021, under

the supervision of Dr.M. Thirunavukkarasan Assistant Professor, Department of Computer

Science and Engineering, of School of Computing Science and Engineering , Galgotias

University, Greater Noida

The matter presented in the project has not been submitted by me/us for the award of any

other degree of this or any other places.

 Twinkle Deep 18SCSE1010655

Shubham Kashyap 18SCSE1010061

This is to certify that the above statement made by the candidates is correct to the best of

my knowledge.

 Supervisor

Name

 Designation

CERTIFICATE

The Final Project Viva-Voce examination of Twinkle Deep (18SCSE1010655) and

Shubham Kashyap (18SCSE1010061) has been held on _________________ and their work

is recommended for the award of Bachelor of Technology in Computer Science.

Signature of Examiner(s) Signature of

Supervisor(s)

Signature of Project Coordinator Signature of

Dean

Table of Contents

Title Page
No.

Acknowledgement 4

Abstract 5

Chapter 1 Introduction 6

 Chapter 2 Literature Survey 11

 Chapter 3 Project Design 13

 Chapter 4 Snapshots of Design 15

 Chapter 5 Module Description 17

 Chapter 6 Result and Discussions 55

 Chapter 7 Conclusion 56

 Chapter 8 References 57

4

Acknowledgement

We wish to express our heartfelt gratitude to the all the people who have played a

crucial role in the research for this project, without their active cooperation the

preparation of this project could not have been proceeding in the way it is

proceeding at the current given time.

We are thankful to our respected Guide, Dr.M. Thirunavukkarasan, Assistant

Professor, for motivating us to complete this project with complete focus and

attention.

He has always continued to guide us through all the problems we have faced in the

process of making this project from scratch.

We are also thankful to our reviewers who supported us and made us realize the

shortcomings in our project, all this time, with utmost cooperation and patience,

helping us in advancing with this project of ours.

5

Abstract

Every college has their own set of clubs and it’s a task to maintain records and

make each announcement through emails. The problem with E-mail

announcements is that it does not provide any surety that every person has been

informed and the process is very cumbersome and boring for the masses.

Therefore, using this web based MERN project we aim to make a website that

not only maintains but also provides for attractive and new ways to let the

masses know about club events and even actively participate in them. It’ll have

different logins for club administrators and club members, providing them with

different administrative tools.

The tools and technology used would be:

• MongoDB

• Express

• React

• Node

By this project we aim to provide a revised and seamless platform for

maintenance and updating of clubs’ events in the respective institutions.

6

Introduction

The technology stack is a set of frameworks and tools used to develop a software

product. This set of frameworks and tools are very specifically chosen to work

together in creating a well-functioning software.

Here are some examples of widely used web development technology stacks in

use today:

MERN (MongoDB, ExpressJS, ReactJS, NodeJS)

LAMP (Linux, Apache, MySQL, PHP)

MEAN (MongoDB, ExpressJS, AngularJS, NodeJS)

MERN stack is a web development framework. It consists of MongoDB,

ExpressJS, ReactJS, and NodeJS as its working components. Here are the details

of what each of these components is used for in developing a web application

when using MERN stack:

MongoDB: A document-oriented, No-SQL database used to store the application

data.

NodeJS: The JavaScript runtime environment. It is used to run JavaScript on a

machine rather than in a browser.

ExpressJS: A framework layered on top of NodeJS, used to build the backend of

a site using NodeJS functions and structures. Since NodeJS was not developed to

make websites but rather run JavaScript on a machine, ExpressJS was developed.

7

ReactJS: A library created by Facebook. It is used to build UI components that

create the user interface of the single page web application.

Figure 1

As shown in the illustration above, the user interacts with the ReactJS UI

components at the application front-end residing in the browser. This frontend is

served by the application backend residing in a server, through ExpressJS

running on top of NodeJS.

Any interaction that causes a data change request is sent to the NodeJS based

Express server, which grabs data from the MongoDB database if required, and

returns the data to the frontend of the application, which is then presented to the

user.

MERN stack is a technology that has been gaining a lot of popularity in the

recent times due to its high level of efficiency in the field of full stack

development.

8

Management of everything is moving towards digitization and using our project

we are looking forward to digitizing the updating and regulation of the college

clubs.

MERN is a user-friendly full-stack JavaScript framework ideal for building

dynamic websites and applications. It is a free and open-source stack designed to

supply developers with a quick and organized method for creating rapid

prototypes of MERN-based web applications.

One of the main benefits of the MERN stack is that a single language, JavaScript,

runs on every level of the application, making it an efficient and modern

approach to web development.

We look forward to developing a full stack project using MERN which will give

the users two paths. The first one being the Administrator and second being the

Member.

The Administrator and Members will have their own set of features available for

them. The tools and technology used would be:

• MongoDB

• Express

• React

• Node

Using the implementation of this project we aim to provide a revised and

seamless platform for maintenance and updating of clubs’ events in the

respective institutions.

9

It’s hard to accomplish much on the web without JavaScript, which is the single

language that runs the entire MERN full stack and boasts one of the most active

developer communities. Because every part of MERN programming is written in

one language, it allows unique server-side and client-side execution

environments. Valued for its versatility in building fast, robust and maintainable

production web applications, MERN is in high demand with numerous startups

and employers.

Advantages of MERN Stack:

UI rendering and performance

React JS is the best when it is about UI layer abstraction. Since React is only a

library, it provides you the freedom to build the application and organize the code

however you want. So, it is better than Angular in terms of UI rendering and

performance.

2. Cost-Effective

As MERN Stack uses one language throughout that is Javascript so it will be

beneficial for a company to hire Javascript experts only rather than hiring

different specialists for different technology. This move will save a lot of time

and money.

3. Open Source

10

All technologies that are involved in MERN are open-source. This feature allows

a developer to get solutions to queries that may evolve during development, from

the available open portals. As a result, it will be beneficial for a developer.

4. Easy to switch between client and server

As everything is written in one language this is why MERN is simple and fast.

And also it is easy to switch between client and server.

Disadvantages of MERN Stack

1. Productivity

Since React is just a library it uses many third-party libraries which provides

lower developer productivity. And due to this upgrading, the React code requires

more effort.

2. Large-Scale Applications

It becomes difficult with MERN to make a large project in which many

developers are involved. MERN stack is best suited for single-page applications.

3. Error prevention:

If you want a technology stack that prevents common coding errors by its very

design, then the MEAN stack is a better choice. As Angular uses Typescript, so

prevents common coding errors at the coding stage itself. However, React lags

behind here.

11

Literature Review

MERN stack is becoming a highly popular technology and recently there have

been a lot of research papers available to read and learn new knowledge from.

One of the papers from IJERT, on, “Performance Optimization using MERN

stack on Web Applications”, helps us know about how using the knowledge

of MERN stack we can optimize the performance of the websites we design.

MERN stack is becoming a highly popular technology and recently there have

been a lot of research papers available to read and learn new knowledge from.

One of the papers from IJERT, on, “Performance Optimization using MERN

stack on Web Applications”, helps us know about how using the knowledge

of MERN MERN stack is becoming a highly popular technology and recently

there have been a lot of research papers available to read and learn new

knowledge from.

One of the papers from IJERT, on, “Performance Optimization using MERN

stack on Web Applications”, helps us know about how using the knowledge

of MERN stack we can optimize the performance of the websites we design.

Reading another paper on “Content Management on Websites” gave us the

knowledge about how we can efficiently manage contents on a website we

design. The paper also stated the need of portals and how important they are

to us.

The paper also gave information about the architecture of the portals and

about how they can be made more secure. We tend to read more such papers

related to our project and use all the information gained from them, in our

12

project. Using MERN stack we can optimize the performance of the websites

we design.

Reading another paper on “Content Management on Websites” gave us the

knowledge about how we can efficiently manage contents on a website we

design. The paper also stated the need of portals and how important they are

to us. The paper also gave information about the architecture of the portals

and about how they can be made more secure.

We tend to read more such papers related to our project and use all the

information gained from them, in our project.

Reading another paper on “Content Management on Websites” gave us the

knowledge about how we can efficiently manage contents on a website we

design. The paper also stated the need of portals and how important they are

to us.

The paper also gave information about the architecture of the portals and

about how they can be made more secure.

We tend to read more such papers related to our project and use all the

information gained from them, in our project.

13

Project Design

ER-Diagram:

14

Functionality for end user:

• Log In

• Refer

• Promote Event

• Check Upcoming Events of Schools and clubs

• Register for events

• Check profiles of event organizer

Functionality for Schools and clubs’ admin:

• Log In

• Create events

• Delete events

• Announce Results

• See registered student

• Manage your profile

Basic working:

Students have to login using their college credentials. Then they can select

any school or club. On the next screen student can see all the upcoming events

and auditions of respective school or club. Student will get all the details of

event/audition and can register for them. Students can also check the profile

of the event or audition organizers. Below are the few images to understand it

better.

15

Snapshots of the Design

Figure 1

Figure 2

16

Figure 3

Figure 4

17

Modules Description

MongoDB

Introduction to MongoDB

Welcome to the MongoDB 5.0 Manual! MongoDB is a document database

designed for ease of development and scaling. The Manual introduces key

concepts in MongoDB, presents the query language, and provides operational

and administrative considerations and procedures as well as a comprehensive

reference section.

MongoDB offers both local and cloud-hosted deployment options:

• For locally hosted deployments, MongoDB offers both

a Community and an Enterprise version of the database:

o MongoDB Community is the source available and free to

use edition of MongoDB.

o MongoDB Enterprise is available as part of the MongoDB

Enterprise Advanced subscription and includes comprehensive

support for your MongoDB deployment. MongoDB Enterprise

also adds enterprise-focused features such as LDAP and

Kerberos support, on-disk encryption, and auditing.

• MongoDB Atlas is a hosted MongoDB Enterprise service option in the

cloud which requires no installation overhead and offers a free tier to

get started.

Document Database

18

A record in MongoDB is a document, which is a data structure composed of

field and value pairs. MongoDB documents are similar to JSON objects. The

values of fields may include other documents, arrays, and arrays of

documents.

The advantages of using documents are:

• Documents (i.e. objects) correspond to native data types in many

programming languages.

• Embedded documents and arrays reduce need for expensive joins.

• Dynamic schema supports fluent polymorphism.

Collections/Views/On-Demand Materialized Views

MongoDB stores documents in collections. Collections are analogous to

tables in relational databases.

In addition to collections, MongoDB supports:

• Read-only Views (Starting in MongoDB 3.4)

• On-Demand Materialized Views (Starting in MongoDB 4.2).

Key Features

High Performance

MongoDB provides high performance data persistence. In particular,

19

• Support for embedded data models reduces I/O activity on database

system.

• Indexes support faster queries and can include keys from embedded

documents and arrays.

Rich Query Language

MongoDB supports a rich query language to support read and write

operations (CRUD) as well as:

• Data Aggregation

• Text Search and Geospatial Queries.

See also:

• SQL to MongoDB Mapping Chart

• SQL to Aggregation Mapping Chart

• Learn about the latest query language features with the MongoDB

Query Language: What's New presentation from MongoDB.live 2020.

High Availability

MongoDB's replication facility, called replica set, provides:

• automatic failover

• data redundancy.

A replica set is a group of MongoDB servers that maintain the same data set,

providing redundancy and increasing data availability.

Horizontal Scalability

20

MongoDB provides horizontal scalability as part of its core functionality:

• Sharding distributes data across a cluster of machines.

• Starting in 3.4, MongoDB supports creating zones of data based on

the shard key. In a balanced cluster, MongoDB directs reads and writes

covered by a zone only to those shards inside the zone. See

the Zones manual page for more information.

Support for Multiple Storage Engines

MongoDB supports multiple storage engines:

• WiredTiger Storage Engine (including support for Encryption at Rest)

• In-Memory Storage Engine.

In addition, MongoDB provides pluggable storage engine API that allows

third parties to develop storage engines for MongoDB.

Install MongoDB Community Edition on Windows

MongoDB Atlas

MongoDB Atlas is a hosted MongoDB service option in the cloud which

requires no installation overhead and offers a free tier to get started.

1. Overview

Use this tutorial to install MongoDB 5.0 Community Edition on Windows

using the default installation wizard.

21

1. MongoDB Version

This tutorial installs MongoDB 5.0 Community Edition. To install a different

version of MongoDB Community, use the version drop-down menu in the

upper-left corner of this page to select the documentation for that version.

2. Installation Method

This tutorial installs MongoDB on Windows using the default MSI

installation wizard. To install MongoDB using the msiexec.exe command-

line tool instead, see Install MongoDB using msiexec.exe.

The msiexec.exe tool is useful for system administrators who wish to deploy

MongoDB in an unattended fashion using automation.

2. Considerations

1. MongoDB Shell, mongosh

The MongoDB Shell (mongosh) is not installed with MongoDB Server. You

need to follow the mongosh installation instructions to download and

install mongosh separately.

2. Platform Support

MongoDB 5.0 Community Edition supports the following 64-bit versions of

Windows on x86_64 architecture:

• Windows Server 2019

• Windows 10 / Windows Server 2016

22

MongoDB only supports the 64-bit versions of these platforms.

See Supported Platforms for more information.

3. Virtualization

Oracle offers experimental support for VirtualBox on Windows hosts where

Hyper-V is running. However, Microsoft does not support VirtualBox on

Hyper-V.

Disable Hyper-V if you want to install MongoDB on Windows using

VirtualBox.

4. Production Notes

Before deploying MongoDB in a production environment, consider

the Production Notes document which offers performance considerations and

configuration recommendations for production MongoDB deployments.

3. Install MongoDB Community Edition

1. Procedure

Follow these steps to install MongoDB Community Edition using the

MongoDB Installer wizard. The installation process installs both the

MongoDB binaries as well as the default configuration file <install

directory>\bin\mongod.cfg.

1. Download the installer.

Download the MongoDB Community .msi installer from the following link:

23

➤ MongoDB Download Center

a. In the Version dropdown, select the version of MongoDB to download.

b. In the Platform dropdown, select Windows.

c. In the Package dropdown, select msi.

d. Click Download.

2. Run the MongoDB installer.

For example, from the Windows Explorer/File Explorer:

a. Go to the directory where you downloaded the MongoDB installer

(.msi file). By default, this is your Downloads directory.

b. Double-click the .msi file.

3. Follow the MongoDB Community Edition

installation wizard.

The wizard steps you through the installation of MongoDB and MongoDB

Compass.

a. Choose Setup Type

You can choose either the Complete (recommended for most users)

or Custom setup type. The Complete setup option installs MongoDB

and the MongoDB tools to the default location. The Custom setup

option allows you to specify which executables are installed and where.

b. Service Configuration

Starting in MongoDB 4.0, you can set up MongoDB as a Windows

service during the install or just install the binaries.

24

MongoDB ServiceMongoDB

The following installs and configures MongoDB as a Windows service.

Starting in MongoDB 4.0, you can configure and start MongoDB as a

Windows service during the install, and the MongoDB service is started

upon successful installation.

o Select Install MongoD as a Service MongoDB as a service.

o Select either:

▪ Run the service as Network Service user (Default)

This is a Windows user account that is built-in to

Windows

or

▪ Run the service as a local or domain user

▪ For an existing local user account, specify a period

(i.e. .) for the Account Domain and specify

the Account Name and the Account Password for

the user.

▪ For an existing domain user, specify the Account

Domain, the Account Name and the Account

Password for that user.

o Service Name. Specify the service name. Default name

is MongoDB. If you already have a service with the specified

name, you must choose another name.

o Data Directory. Specify the data directory, which corresponds to

the --dbpath. If the directory does not exist, the installer will

create the directory and sets the directory access to the service

user.

25

o Log Directory. Specify the Log directory, which corresponds to

the --logpath. If the directory does not exist, the installer will

create the directory and sets the directory access to the service

user.

c. Install MongoDB Compass

Optional. To have the wizard install MongoDB Compass, select Install

MongoDB Compass (Default).

d. When ready, click Install.

2. Install mongosh

The .msi installer does not include mongosh. Follow the mongosh installation

instructions to download and install the shell separately.

3. If You Installed MongoDB as a Windows Service

The MongoDB service starts upon successful installation. Configure the

MongoDB instance with the configuration file <install

directory>\bin\mongod.cfg.

4. If You Did Not Install MongoDB as a Windows Service

If you only installed the executables and did not install MongoDB as a

Windows service, you must manually start the MongoDB instance.

See Run MongoDB Community Edition from the Command Interpreter for

instructions to start a MongoDB instance.

26

4. Run MongoDB Community Edition as a Windows Service

Starting in version 4.0, you can install and configure MongoDB as

a Windows Service during installation. The MongoDB service starts upon

successful installation. Configure the MongoDB instance with the

configuration file <install directory>\bin\mongod.cfg.

If you have not already done so, follow the mongosh installation

instructions to download and install the MongoDB Shell (mongosh).

Be sure to add the path to your mongosh.exe binary to

your PATH environment variable during installation.

Open a new Command Interpreter and enter mongosh.exe to connect to

MongoDB.

For more information on connecting to a mongod using mongosh.exe, such as

connecting to a MongoDB instance running on a different host and/or port,

see Connect to a Deployment.

For information on CRUD (Create, Read, Update, Delete) operations, see:

• Insert Documents

• Query Documents

• Update Documents

• Delete Documents

27

1. Start MongoDB Community Edition as a Windows

Service

To start/restart the MongoDB service, use the Services console:

1. From the Services console, locate the MongoDB service.

2. Right-click on the MongoDB service and click Start.

2. Stop MongoDB Community Edition as a Windows

Service

To stop/pause the MongoDB service, use the Services console:

1. From the Services console, locate the MongoDB service.

2. Right-click on the MongoDB service and click Stop (or Pause).

3. Remove MongoDB Community Edition as a Windows

Service

To remove the MongoDB service, first use the Services console to stop the

service. Then open a Windows command prompt/interpreter (cmd.exe) as

an Administrator, and run the following command:

sc.exe delete

MongoDB

28

5. Run MongoDB Community Edition from the Command

Interpreter

You can run MongoDB Community Edition from the Windows command

prompt/interpreter (cmd.exe) instead of as a service.

Open a Windows command prompt/interpreter (cmd.exe) as

an Administrator.

You must open the command interpreter as an Administrator.

1. Create database directory.

Create the data directory where MongoDB stores data. MongoDB's default

data directory path is the absolute path \data\db on the drive from which you

start MongoDB.

From the Command Interpreter, create the data directories:

cd C:\

md "\data\db"

2. Start your MongoDB database.

To start MongoDB, run exe.

"C:\Program Files\MongoDB\Server\5.0\bin\mongod.exe" --

dbpath="c:\data\db"

The --dbpath option points to your database directory.

29

If the MongoDB database server is running correctly, the Command

Interpreter displays:

[initandlisten] waiting for connections

Depending on the Windows Defender Firewall settings on your Windows

host, Windows may display a Security Alert dialog box about blocking

"some features" of C:\Program

Files\MongoDB\Server\5.0\bin\mongod.exe from communicating on

networks. To remedy this issue:

a. Click Private Networks, such as my home or work network.

b. Click Allow access.

To learn more about security and MongoDB, see the Security Documentation.

3. Connect to MongoDB.

If you have not already done so, follow the mongosh installation

instructions to download and install the MongoDB Shell (mongosh).

Be sure to add the path to your mongosh.exe binary to

your PATH environment variable during installation.

Open a new Command Interpreter and enter mongosh.exe to connect to

MongoDB.

For more information on connecting to mongod using mongosh.exe, such as

connecting to a MongoDB instance running on a different host and/or port,

see Connect to a Deployment.

30

For information on CRUD (Create, Read, Update, Delete) operations, see:

• Insert Documents

• Query Documents

• Update Documents

• Delete Documents

6. Additional Considerations

1. Localhost Binding by Default

By default, MongoDB launches with bindIp set to 127.0.0.1, which binds to

the localhost network interface. This means that the mongod.exe can only

accept connections from clients that are running on the same machine.

Remote clients will not be able to connect to the mongod.exe, and

the mongod.exe will not be able to initialize a replica set unless this value is

set to a valid network interface.

This value can be configured either:

• in the MongoDB configuration file with bindIp, or

• via the command-line argument --bind_ip

Before binding to a non-localhost (e.g. publicly accessible) IP address, ensure

you have secured your cluster from unauthorized access. For a complete list

of security recommendations, see Security Checklist. At minimum,

consider enabling authentication and hardening network infrastructure.

For more information on configuring bindIp, see IP Binding.

31

2. Point Releases and .msi

If you installed MongoDB with the Windows installer (.msi),

the .msi automatically upgrades within its release series (e.g. 4.2.1 to 4.2.2).

Upgrading a full release series (e.g. 4.0 to 4.2) requires a new installation.

3. Add MongoDB binaries to the System PATH

If you add C:\Program Files\MongoDB\Server\5.0\bin to your

System PATH you can omit the full path to the MongoDB Server binaries.

You should also add the path to mongosh if you have not already done so.

Express JS

Installing

Assuming you’ve already installed Node.js, create a directory to hold your

application, and make that your working directory.

$ mkdir myapp

$ cd myapp

Use the npm init command to create a package.json file for your application.

For more information on how package.json works, see Specifics of npm’s

package.json handling.

$ npm init

This command prompts you for a number of things, such as the name and

version of your application. For now, you can simply hit RETURN to accept

the defaults for most of them, with the following exception:

32

entry point: (index.js)

Enter app.js, or whatever you want the name of the main file to be. If you

want it to be index.js, hit RETURN to accept the suggested default file name.

Now install Express in the myapp directory and save it in the dependencies

list. For example:

$ npm install express --save

To install Express temporarily and not add it to the dependencies list:

$ npm install express --no-save

Express application generator

Use the application generator tool, express-generator, to quickly create an

application skeleton.

You can run the application generator with the npx command (available in

Node.js 8.2.0).

$ npx express-generator

For earlier Node versions, install the application generator as a global npm

package and then launch it:

$ npm install -g express-generator

$ express

Display the command options with the -h option:

33

$ express -h

 Usage: express [options] [dir]

 Options:

 -h, --help output usage information

 --version output the version number

 -e, --ejs add ejs engine support

 --hbs add handlebars engine support

 --pug add pug engine support

 -H, --hogan add hogan.js engine support

 --no-view generate without view engine

 -v, --view <engine> add view <engine> support

(ejs|hbs|hjs|jade|pug|twig|vash) (defaults to jade)

 -c, --css <engine> add stylesheet <engine> support

(less|stylus|compass|sass) (defaults to plain css)

 --git add .gitignore

 -f, --force force on non-empty directory

For example, the following creates an Express app named myapp. The app

will be created in a folder named myapp in the current working directory and

the view engine will be set to Pug:

$ express --view=pug myapp

 create : myapp

 create : myapp/package.json

34

 create : myapp/app.js

 create : myapp/public

 create : myapp/public/javascripts

 create : myapp/public/images

 create : myapp/routes

 create : myapp/routes/index.js

 create : myapp/routes/users.js

 create : myapp/public/stylesheets

 create : myapp/public/stylesheets/style.css

 create : myapp/views

 create : myapp/views/index.pug

 create : myapp/views/layout.pug

 create : myapp/views/error.pug

 create : myapp/bin

 create : myapp/bin/www

Then install dependencies:

$ cd myapp

$ npm install

On MacOS or Linux, run the app with this command:

$ DEBUG=myapp:* npm start

On Windows Command Prompt, use this command:

> set DEBUG=myapp:* & npm start

35

On Windows PowerShell, use this command:

PS> $env:DEBUG='myapp:*'; npm start

Then load http://localhost:3000/ in your browser to access the app.

The generated app has the following directory structure:

.

├── app.js

├── bin

│ └── www

├── package.json

├── public

│ ├── images

│ ├── javascripts

│ └── stylesheets

│ └── style.css

├── routes

│ ├── index.js

│ └── users.js

└── views

 ├── error.pug

 ├── index.pug

 └── layout.pug

7 directories, 9 files

36

React JS

Add React to a Website

Use as little or as much React as you need.

React has been designed from the start for gradual adoption, and you can use

as little or as much React as you need. Perhaps you only want to add some

“sprinkles of interactivity” to an existing page. React components are a great

way to do that.

The majority of websites aren’t, and don’t need to be, single-page apps.

With a few lines of code and no build tooling, try React in a small part of your

website. You can then either gradually expand its presence, or keep it

contained to a few dynamic widgets.

• Add React in One Minute

• Optional: Try React with JSX (no bundler necessary!)

Add React in One Minute

In this section, we will show how to add a React component to an existing

HTML page. You can follow along with your own website, or create an

empty HTML file to practice.

There will be no complicated tools or install requirements — to complete this

section, you only need an internet connection, and a minute of your time.

Optional: Download the full example (2KB zipped)

Step 1: Add a DOM Container to the HTML

First, open the HTML page you want to edit. Add an empty <div> tag to mark

the spot where you want to display something with React. For example:

<!-- ... existing HTML ... -->

37

<div id="like_button_container"></div>

<!-- ... existing HTML ... -->

We gave this <div> a unique id HTML attribute. This will allow us to find it

from the JavaScript code later and display a React component inside of it.

Tip

You can place a “container” <div> like this anywhere inside the <body> tag.

You may have as many independent DOM containers on one page as you

need. They are usually empty — React will replace any existing content

inside DOM containers.

Step 2: Add the Script Tags

Next, add three <script> tags to the HTML page right before the

closing </body> tag:

 <!-- ... other HTML ... -->

 <!-- Load React. -->

 <!-- Note: when deploying, replace "development.js" with

"production.min.js". -->

 <script src="https://unpkg.com/react@17/umd/react.development.js"

crossorigin></script> <script src="https://unpkg.com/react-

dom@17/umd/react-dom.development.js" crossorigin></script>

 <!-- Load our React component. -->

 <script src="like_button.js"></script>

</body>

The first two tags load React. The third one will load your component code.

Step 3: Create a React Component

Create a file called like_button.js next to your HTML page.

38

Open this starter code and paste it into the file you created.

Tip

This code defines a React component called LikeButton. Don’t worry if you

don’t understand it yet — we’ll cover the building blocks of React later in

our hands-on tutorial and main concepts guide. For now, let’s just get it

showing on the screen!

After the starter code, add two lines to the bottom of like_button.js:

// ... the starter code you pasted ...

const domContainer =

document.querySelector('#like_button_container');ReactDOM.render(e(LikeB

utton), domContainer);

These two lines of code find the <div> we added to our HTML in the first

step, and then display our “Like” button React component inside of it.

Quickly Try JSX

The quickest way to try JSX in your project is to add this <script> tag to your

page:

<script src="https://unpkg.com/babel-standalone@6/babel.min.js"></script>

Now you can use JSX in any <script> tag by

adding type="text/babel" attribute to it. Here is an example HTML file with

JSX that you can download and play with.

This approach is fine for learning and creating simple demos. However, it

makes your website slow and isn’t suitable for production. When you’re ready

to move forward, remove this new <script> tag and

the type="text/babel" attributes you’ve added. Instead, in the next section you

will set up a JSX preprocessor to convert all your <script> tags automatically.

39

Add JSX to a Project

Adding JSX to a project doesn’t require complicated tools like a bundler or a

development server. Essentially, adding JSX is a lot like adding a CSS

preprocessor. The only requirement is to have Node.js installed on your

computer.

Go to your project folder in the terminal, and paste these two commands:

Step 1: Run npm init -y (if it fails, here’s a fix)

Step 2: Run npm install babel-cli@6 babel-preset-react-app@3

Tip

We’re using npm here only to install the JSX preprocessor; you won’t need it

for anything else. Both React and the application code can stay

as <script> tags with no changes.

Congratulations! You just added a production-ready JSX setup to your

project.

Run JSX Preprocessor

Create a folder called src and run this terminal command:

npx babel --watch src --out-dir . --presets react-app/prod

Note

npx is not a typo — it’s a package runner tool that comes with npm 5.2+.

If you see an error message saying “You have mistakenly installed

the babel package”, you might have missed the previous step. Perform it in

the same folder, and then try again.

Don’t wait for it to finish — this command starts an automated watcher for

JSX.

If you now create a file called src/like_button.js with this JSX starter code, the

watcher will create a preprocessed like_button.js with the plain JavaScript

40

code suitable for the browser. When you edit the source file with JSX, the

transform will re-run automatically.

As a bonus, this also lets you use modern JavaScript syntax features like

classes without worrying about breaking older browsers. The tool we just

used is called Babel, and you can learn more about it from its documentation.

If you notice that you’re getting comfortable with build tools and want them

to do more for you, the next section describes some of the most popular and

approachable toolchains.

React Top-Level API

React is the entry point to the React library. If you load React from

a <script> tag, these top-level APIs are available on the React global. If you

use ES6 with npm, you can write import React from 'react'. If you use ES5

with npm, you can write var React = require('react').

Overview

Components

React components let you split the UI into independent, reusable pieces, and

think about each piece in isolation. React components can be defined by

subclassing React.Component or React.PureComponent.

React.Component

React.PureComponent

If you don’t use ES6 classes, you may use the create-react-class module

instead. See Using React without ES6 for more information.

React components can also be defined as functions which can be wrapped:

React.memo

41

Creating React Elements

We recommend using JSX to describe what your UI should look like. Each

JSX element is just syntactic sugar for calling React.createElement(). You

will not typically invoke the following methods directly if you are using JSX.

createElement()

createFactory()

See Using React without JSX for more information.

Transforming Elements

React provides several APIs for manipulating elements:

cloneElement()

isValidElement()

React.Children

Fragments

React also provides a component for rendering multiple elements without a

wrapper.

React.Fragment

Refs

React.createRef

React.forwardRef

Suspense

Suspense lets components “wait” for something before rendering. Today,

Suspense only supports one use case: loading components dynamically

42

with React.lazy. In the future, it will support other use cases like data

fetching.

React.lazy

React.Suspense

Hooks

Hooks are a new addition in React 16.8. They let you use state and other

React features without writing a class. Hooks have a dedicated docs

section and a separate API reference:

• Basic Hooks

• useState

• useEffect

• useContext

• Additional Hooks

• useReducer

• useCallback

• useMemo

• useRef

• useImperativeHandle

• useLayoutEffect

• useDebugValue

Reference

React.Component

React.Component is the base class for React components when they are

defined using ES6 classes:

class Greeting extends React.Component {

43

 render() {

 return <h1>Hello, {this.props.name}</h1>;

 }

}

See the React.Component API Reference for a list of methods and properties

related to the base React.Component class.

React.PureComponent

React.PureComponent is similar to React.Component. The difference between

them is that React.Component doesn’t implement shouldComponentUpdate(),

but React.PureComponent implements it with a shallow prop and state

comparison.

If your React component’s render() function renders the same result given the

same props and state, you can use React.PureComponent for a performance

boost in some cases.

Note

React.PureComponent’s shouldComponentUpdate() only shallowly compares

the objects. If these contain complex data structures, it may produce false-

negatives for deeper differences. Only extend PureComponent when you

expect to have simple props and state, or use forceUpdate() when you know

deep data structures have changed. Or, consider using immutable objects to

facilitate fast comparisons of nested data.

Furthermore, React.PureComponent’s shouldComponentUpdate() skips prop

updates for the whole component subtree. Make sure all the children

components are also “pure”.

React.memo

const MyComponent = React.memo(function MyComponent(props) {

44

 /* render using props */

});

React.memo is a higher order component.

If your component renders the same result given the same props, you can

wrap it in a call to React.memo for a performance boost in some cases by

memoizing the result. This means that React will skip rendering the

component, and reuse the last rendered result.

React.memo only checks for prop changes. If your function component

wrapped in React.memo has a useState, useReducer or useContext Hook in its

implementation, it will still rerender when state or context change.

By default it will only shallowly compare complex objects in the props object.

If you want control over the comparison, you can also provide a custom

comparison function as the second argument.

function MyComponent(props) {

 /* render using props */

}

function areEqual(prevProps, nextProps) {

 /*

 return true if passing nextProps to render would return

 the same result as passing prevProps to render,

 otherwise return false

 */

}

export default React.memo(MyComponent, areEqual);

This method only exists as a performance optimization. Do not rely on it to

“prevent” a render, as this can lead to bugs.

Note

45

Unlike the shouldComponentUpdate() method on class components,

the areEqual function returns true if the props are equal and false if the props

are not equal. This is the inverse from shouldComponentUpdate.

createElement()

React.createElement(

 type,

 [props],

 [...children]

)

Create and return a new React element of the given type. The type argument

can be either a tag name string (such as 'div' or 'span'), a React

component type (a class or a function), or a React fragment type.

Code written with JSX will be converted to use React.createElement(). You

will not typically invoke React.createElement() directly if you are using JSX.

See React Without JSX to learn more.

cloneElement()

React.cloneElement(

 element,

 [config],

 [...children]

)

Clone and return a new React element using element as the starting

point. config should contain all new props, key, or ref. The resulting element

will have the original element’s props with the new props merged in

46

shallowly. New children will replace existing children. key and ref from the

original element will be preserved if no key and ref present in the config.

React.cloneElement() is almost equivalent to:

<element.type {...element.props} {...props}>{children}</element.type>

However, it also preserves refs. This means that if you get a child with

a ref on it, you won’t accidentally steal it from your ancestor. You will get the

same ref attached to your new element. The new ref or key will replace old

ones if present.

This API was introduced as a replacement of the

deprecated React.addons.cloneWithProps().

createFactory()

React.createFactory(type)

Return a function that produces React elements of a given type.

Like React.createElement(), the type argument can be either a tag name string

(such as 'div' or 'span'), a React component type (a class or a function), or

a React fragment type.

This helper is considered legacy, and we encourage you to either use JSX or

use React.createElement() directly instead.

You will not typically invoke React.createFactory() directly if you are using

JSX. See React Without JSX to learn more.

isValidElement()

React.isValidElement(object)

Verifies the object is a React element. Returns true or false.

React.Children

47

React.Children provides utilities for dealing with

the this.props.children opaque data structure.

React.Children.map

React.Children.map(children, function[(thisArg)])

Invokes a function on every immediate child contained

within children with this set to thisArg. If children is an array it will be

traversed and the function will be called for each child in the array. If children

is null or undefined, this method will return null or undefined rather than an

array.

Note

If children is a Fragment it will be treated as a single child and not traversed.

React.Children.forEach

React.Children.forEach(children, function[(thisArg)])

Like React.Children.map() but does not return an array.

React.Children.count

React.Children.count(children)

Returns the total number of components in children, equal to the number of

times that a callback passed to map or forEach would be invoked.

React.Children.only

React.Children.only(children)

Verifies that children has only one child (a React element) and returns it.

Otherwise this method throws an error.

Note:

React.Children.only() does not accept the return value

of React.Children.map() because it is an array rather than a React element.

React.Children.toArray

48

React.Children.toArray(children)

Returns the children opaque data structure as a flat array with keys assigned to

each child. Useful if you want to manipulate collections of children in your

render methods, especially if you want to reorder or

slice this.props.children before passing it down.

React.Fragment

The React.Fragment component lets you return multiple elements in

a render() method without creating an additional DOM element:

render() {

 return (

 <React.Fragment>

 Some text.

 <h2>A heading</h2>

 </React.Fragment>

);

}

You can also use it with the shorthand <></> syntax. For more information,

see React v16.2.0: Improved Support for Fragments.

React.createRef

React.createRef creates a ref that can be attached to React elements via the ref

attribute.

class MyComponent extends React.Component {

 constructor(props) {

 super(props);

 this.inputRef = React.createRef(); }

49

 render() {

 return <input type="text" ref={this.inputRef} />; }

 componentDidMount() {

 this.inputRef.current.focus(); }

}

React.forwardRef

React.forwardRef creates a React component that forwards the ref attribute it

receives to another component below in the tree. This technique is not very

common but is particularly useful in two scenarios:

Forwarding refs to DOM components

Forwarding refs in higher-order-components

React.forwardRef accepts a rendering function as an argument. React will call

this function with props and ref as two arguments. This function should return

a React node.

const FancyButton = React.forwardRef((props, ref) => (<button ref={ref}

className="FancyButton"> {props.children}

 </button>

));

// You can now get a ref directly to the DOM button:

const ref = React.createRef();

<FancyButton ref={ref}>Click me!</FancyButton>;

In the above example, React passes a ref given to <FancyButton

ref={ref}> element as a second argument to the rendering function inside

50

the React.forwardRef call. This rendering function passes the ref to

the <button ref={ref}> element.

As a result, after React attaches the ref, ref.current will point directly to

the <button> DOM element instance.

For more information, see forwarding refs.

React.lazy

React.lazy() lets you define a component that is loaded dynamically. This

helps reduce the bundle size to delay loading components that aren’t used

during the initial render.

You can learn how to use it from our code splitting documentation. You

might also want to check out this article explaining how to use it in more

detail.

// This component is loaded dynamically

const SomeComponent = React.lazy(() => import('./SomeComponent'));

Note that rendering lazy components requires that there’s

a <React.Suspense> component higher in the rendering tree. This is how you

specify a loading indicator.

Note

Using React.lazywith dynamic import requires Promises to be available in the

JS environment. This requires a polyfill on IE11 and below.

React.Suspense

React.Suspense lets you specify the loading indicator in case some

components in the tree below it are not yet ready to render. Today, lazy

loading components is the only use case supported by <React.Suspense>:

// This component is loaded dynamically

const OtherComponent = React.lazy(() => import('./OtherComponent'));

51

function MyComponent() {

 return (

 // Displays <Spinner> until OtherComponent loads

 <React.Suspense fallback={<Spinner />}>

 <div>

 <OtherComponent />

 </div>

 </React.Suspense>

);

}

It is documented in our code splitting guide. Note that lazy components can

be deep inside the Suspense tree — it doesn’t have to wrap every one of them.

The best practice is to place <Suspense> where you want to see a loading

indicator, but to use lazy() wherever you want to do code splitting.

While this is not supported today, in the future we plan to let Suspense handle

more scenarios such as data fetching. You can read about this in our roadmap.

Node.js

As an asynchronous event-driven JavaScript runtime, Node.js is designed to

build scalable network applications. In the following "hello world" example,

many connections can be handled concurrently. Upon each connection, the

callback is fired, but if there is no work to be done, Node.js will sleep.

const http = require('http');

const hostname = '127.0.0.1';

52

const port = 3000;

const server = http.createServer((req, res) => {

 res.statusCode = 200;

 res.setHeader('Content-Type', 'text/plain');

 res.end('Hello World');

});

server.listen(port, hostname, () => {

 console.log(`Server running at http://${hostname}:${port}/`);

});

This is in contrast to today's more common concurrency model, in which OS

threads are employed. Thread-based networking is relatively inefficient and

very difficult to use. Furthermore, users of Node.js are free from worries of

dead-locking the process, since there are no locks. Almost no function in

Node.js directly performs I/O, so the process never blocks except when the

I/O is performed using synchronous methods of Node.js standard library.

Because nothing blocks, scalable systems are very reasonable to develop in

Node.js.

If some of this language is unfamiliar, there is a full article on Blocking vs.

Non-Blocking.

Node.js is similar in design to, and influenced by, systems like Ruby's Event

Machine and Python's Twisted. Node.js takes the event model a bit further. It

presents an event loop as a runtime construct instead of as a library. In other

53

systems, there is always a blocking call to start the event-loop. Typically,

behavior is defined through callbacks at the beginning of a script, and at the

end a server is started through a blocking call like EventMachine::run(). In

Node.js, there is no such start-the-event-loop call. Node.js simply enters the

event loop after executing the input script. Node.js exits the event loop when

there are no more callbacks to perform. This behavior is like browser

JavaScript — the event loop is hidden from the user.

HTTP is a first-class citizen in Node.js, designed with streaming and low

latency in mind. This makes Node.js well suited for the foundation of a web

library or framework.

Node.js being designed without threads doesn't mean you can't take advantage

of multiple cores in your environment. Child processes can be spawned by

using our child_process.fork() API, and are designed to be easy to

communicate with. Built upon that same interface is the cluster module,

which allows you to share sockets between processes to enable load balancing

over your cores.

HTTP#

To use the HTTP server and client one must require('http').

The HTTP interfaces in Node.js are designed to support many features of the

protocol which have been traditionally difficult to use. In particular, large,

possibly chunk-encoded, messages. The interface is careful to never buffer

entire requests or responses, so the user is able to stream data.

HTTP message headers are represented by an object like this:

54

{ 'content-length': '123',

 'content-type': 'text/plain',

 'connection': 'keep-alive',

 'host': 'mysite.com',

 'accept': '*/*' }

Keys are lowercased. Values are not modified.

In order to support the full spectrum of possible HTTP applications, the

Node.js HTTP API is very low-level. It deals with stream handling and

message parsing only. It parses a message into headers and body but it does

not parse the actual headers or the body.

See message.headers for details on how duplicate headers are handled.

The raw headers as they were received are retained in

the rawHeaders property, which is an array of [key, value, key2, value2, ...].

For example, the previous message header object might have

a rawHeaders list like the following:

['ConTent-Length', '123456',

 'content-LENGTH', '123',

 'content-type', 'text/plain',

 'CONNECTION', 'keep-alive',

 'Host', 'mysite.com',

 'accepT', '*/*']

55

Results and Discussions

Taking up a new work in a comparatively new technology like MERN stack

leaves us with new experiences and a huge amount of new knowledge. This

project was a very challenging one for both of us, but with the help of various

references, the continuous support of our guide and the internet, we were able

to complete our visioned project in time.

There were quite many challenges in linking the different modules once they

were ready. All the errors took us a lot of research through GitHub and

rectifying them took time.

Hence, with a lot of hard work and constant support we were able to finish the

project work. It may not be perfect and there may be a number of errors, but

we put our best in the development of the project and will continuously work

on its improvement in the future.

56

Conclusion

Like any other stack, you can use the MERN stack to build any application you

want. Although it is ideally used where the application is cloud-native, JSON-

heavy, and need dynamic web interfaces like Todo apps, workflow

management, interactive forums, and social products.

So, if you want to develop an app that is cost-effective, open-source, and offers

better performance and UI rendering, you can always opt for the MERN stack.

The project itself gave us a lot of challenges and we also got to learn about

many new technologies and ways to implement ideas into real world

application.

We have tried to keep the project as useful and as glitch free as possible, but

nevertheless, there may be some nits and glitches. The lifecycle of a software

is the improvement in its performance with continuous updates and this project

of ours will also continue to do so.

57

References

[1] J. Kwon and S. Moon, "Work-in-

progress: JSDelta: serializing

modified javascript states for state

sharing," 2017 International

Conference onEmbedded Software

(EMSOFT), Seoul, 2017, pp.1-2.

[2]J. Heo, S. Woo, H. Jang, K. Yang

and J. W. Lee, "Improving

JavaScript performance via efficient

in-memory bytecode caching,"

2016 IEEE International

Conference on Consumer

Electronics-Asia (ICCE-Asia),

Seoul, 2016, pp.1-4.

[3]H. Park, W. Jung and S. Moon,

"Javascript ahead-of-time

compilation for embedded web

platform," 2015 13th IEEE

Symposium on Embedded Systems

For Real-time Multimedia

(ESTIMedia), Amsterdam, 2015,

pp.1-9.

[4]G. Prabagaren, "Systematic

approach for validating Java-

MongoDB Schema," International

Conference on Information

Communication and Embedded

Systems (ICICES2014), Chennai,

2014, pp.1-4.

[5]Velliangiri, S., Karthikeyan, P.,

Xavier, V. A., & Baswaraj, D.

(2021). Hybrid electro search with

genetic algorithm for task

scheduling in cloud computing.Ain

Shams Engineering Journal,12(1),

631-639.

[6]J. Kumar and V. Garg, "Security

analysis of unstructured data in

NOSQL MongoDB database," 2017

International Conference on

Computing and Communication

Technologies for Smart Nation

(IC3TSN), Gurgaon, 2017, pp. 300-

305.

