A Project Report

On

Colour Detection using Python

S.No	Enrollment Number	Admission Number	Student Name	Degree / Branch	Sem
1	18021011726	18SCSE1010216	UTTAM DUTTA	B.Tech/CSE	VII
2	18021011698	18SCSE1010470	ADARSH RAJ	B.Tech/CSE	VII

Under the Supervision of

Dr. Shrddha Sagar Assistant Professor

School of Computing Science and Engineering Greater Noida, Uttar Pradesh Fall 2021 – 2022

CANDIDATE'S DECLARATION

We hereby certify that the work which is being presented in the project, entitled "**COLOR DETECTION USING OPENCV**" in partial fulfilment of the requirements for the award of the B.tech computer science submitted in the School of Computing Science and Engineering of Galgotias University, Greater Noida, is an original work carried out during the period of **July 2021 to December 2021**, under the supervision of **Dr. Shrddha Sagar Assistant Professor**, Department of Computer Science and Engineering, of School of Computing Science and Engineering , Galgotias University, Greater Noida.

The matter presented in the project has not been submitted by us for the award of any other degree of this or any other places.

UTTAM DUTTA 18SCSE1010498

ADARSH RAJ 18SCSE1010470

Supervisor Name

CERTIFICATE

The Final Project Viva-Voce examination of Uttam Dutta 18SCSE1010498 and Adarsh Raj 18SCSE1010470 has been held on ______ and their work is recommended for the award of B.Tech in Computer Science Engineering.

Signature of Examiner(s)

Signature of Supervisor(s)

Signature of Project Coordinator

Signature of Dean

Date : December, 2021

Place : Greater Noida

TABLE OF CONTENTS

S.No	Particulars	Page No
1	Abstract	3
2	Literature Reviews/Comparative study	4
3	Problem Formulation	5
4	Dataset of Colors	6
5	Calculating Distance	7
6	Required tools	8
7	Output	9
8	Feasibility Analysis	14

9

Abstract

Color detection is necessary to recognize objects, it is also used as a tool in various image editing and drawing apps. It is the process of detecting the name of any color. Well, for humans this is an extremely easy task but for computers, it is not straightforward. Human eyes and brains work together to translate light into color. Light receptors that are present in our eyes transmit the signal to the brain. Our brain then recognizes the color. Hence the problem that arises in front of us is how to make a computer understand or recognize colors , so we are going to solve this problem. So basically in this project using python we need 3 different parts to be used. Python code which will be recognizing color, Image that will be used for testing the color recognition, a .csv file that will be containing the colors as dataset. Hence the above 3 modules will help us in achieving our aim that is detecting the colors in an image using python.

Literature Review

[1] Color can be identified from the sensory optic nerves of the eyes. Color can only be seen or identified when a source of light is applied to an object. Color blindness can be termed as inability of the differentiation between colors. It is incurable disease that can be termed as lifelong disease. Edges can be very helpful in color differentiation boundary.

[2] Color detection model can be used in mixing of colors especially in paints, dyes and color pigments. It can be also very helpful in to differentiating colors that are used in robotics and in other medical fields. It can also be used in Graphic Arts Industry. Other implementations can also be used in agricultural industry like especially detection of quality of soil.

[3] Color Detection can be used in agriculture industry to find the weeds the along with the crops. Via color detection weeds can be identified and destroyed and the crops can be saved. It can be also used in medical

industries to detect the disease and other disorders especially in face and other internal diseases like cancers.

[4] The main aim of computer vision is to analyze the behavior of human eye and the reduction of human effort. Through computer vision various task can be done that is done by human eye, whether to detect the object or identify its color. By this method it is very helpful to detect the symptoms of the disease and the other applications in other industries like agriculture.

Due to its powerful learning ability and advantages in dealing with occlusion, scale transformation and background switches, deep learning based object detection has been a research hotspot in recent years. This paper provides a detailed review on deep learning based object detection frameworks which handle different subproblems, such as occlusion,

clutter and low resolution, with different degrees of modifications on R-CNN. The review starts on generic object detection pipelines which provide base architectures for other related tasks.

Then, three other common tasks, namely salient object detection, face detection and pedestrian detection, are also briefly reviewed. Finally, we propose several promising future directions to gain a thorough understanding of the object detection landscape.

This review is also meaningful for the developments in neural networks and related learning systems, which provides valuable insights and guidelines for future progress. colour detection is the process of detecting the name of any color. Simple isn't it? Well, for humans this is an extremely easy task but for computers, it is not straightforward.

Human eyes and brains work together to translate light into color. Light receptors that are present in our eyes transmit the signal to the brain. Our brain then recognizes the color.

Since childhood, we have mapped certain lights with their color names. We will be using the somewhat same strategy to detect color names.

Problem Formulation

"It is said that a problem well defined is a problem half solved."

So here we are talking about a very common disease we come across nowadays "Color Blindness".

This is a genetic disease and cannot be easily cured. In this disease the person suffering with it cannot differentiate between colors. So with the help of technology .

we can help the person suffering from Color Blindness without physically operating or doing anything to the person's eyes. Now let us formulate it.

- ➤ Import the modules necessary in solving the problem.
- \blacktriangleright Take the image path of which you want to find the colors in.
- \blacktriangleright Read the csv file in the hex code of colors is stored.
- Now calculate the minimum distance from all the color and get the most matching color using the get_color_name function.
- Make a function to get the x, y coordinates of the click point of mouse.
- Display image on the window with a pointer to select any point on image.

➤ Display the color name of the point along with the R, G, B values

Dataset of colors

Colors are made up of 3 primary colors; red, green, and blue. In computers, we define each color value within a range of 0 to 255. So in how many ways we can define a color? The answer is 256*256*256 = 16,581,375.

There are approximately 16.5 million different ways to represent a color. In our dataset, we need to map each color's values with their corresponding names. But don't worry, we don't need to map all the values.

We will be using a dataset that contains RGB values with their corresponding names. The CSV file for our dataset has been taken from this link:

□ 5·♂·∓									colors - Ex	cel					NIKHIL	PANDEY -18	SCSE1010216	NP 0	5 –	٥	х
File Home Insert Page Layo	out Formu	ılas Data	Review	View H	elp <table-cell></table-cell>	Tell me v	vhat you	want to do												R₄ Shi	are
B I L B I L B I L B I L				= »·			ter +	General	▼ 00. 0.⊕ 0.€ 00.	Condition Formattin	al Format a g - Table -	Normal IS Good	_	Bad Neutral	* •	Insert De	elete Format	∑ AutoS ↓ Fill + ♦ Clear •		Find & Find & er • Select •	
Clipboard 🕫	Font		rs.	Ali	gnment		5	Numbe	ar 12			Sty	les			c	ells		Editing		~
A1 • : × ✓ f	air fo	rce blue r	af																		~
													1	1	1						
A B C	D	E		G	н	1	J	K	L	M	N	0	Р	Q	R	S	T	U	V	W	^
1 air_force_Air Force E #5d8aa8	93	138	168																		
2 air_force_Air Force E #00308f	0	48	143																		
3 air_superic Air Superic #72a0c1	114	160	193																		
4 alabama_cAlabama C #a32638	163	38	56																		
5 alice_blue Alice Blue #f0f8ff	240	248	255																		
6 alizarin_cr Alizarin Cri #e32636	227	38	54																		
7 alloy_oran Alloy Oran #c46210	196	98	16																		
8 almond Almond #efdecd	239	222	205																		
9 amaranth Amaranth #e52b50	229	43	80																		
10 amber Amber #ffbf00	255	191	0																		
11 amber_sa Amber (Sa #ff7e00	255	126	0																		
12 american_American I #ff033e	255	3	62																		
13 amethyst Amethyst #96c	153	102	204																		
14 android_gr Android Gr #a4c639	164	198	57																		
15 anti_flash_Anti-Flash #f2f3f4	242	243	244																		
16 antique_bi Antique Br #cd9575	205	149	117																		
17 antique_fL Antique Fu #915c83	145	92	131																		
18 antique_rL Antique RL #841b2d	132	27	45																		
19 antique_w Antique W #faebd7	250	235	215																		
20 ao_english Ao (English #008000	0	128	0																		
21 apple_gree Apple Gree #8db600	141	182	0																		
22 apricot Apricot #fbceb1	251	206	177																		
23 aqua Aqua #Off	0	255	255																		
24 aquamarin Aquamarir #7fffd4	127	255	212																		
25 army_gree Army Gree #4b5320	75	83	32																		
26 arsenic Arsenic #3b444b	59	68	75																		
27 arylide_ye Arylide Yel #e9d66b	233	214	107																		
28 ash_grey Ash Grey #b2beb5	178	190	181																		
29 asparagus Asparagus #87a96b	135	169	107																		
colors (+)												•									Þ
																	E	- 11		+	100%
									_				_		_	_		D	ENIC ()9:53 _г	
📕 🖓 O 🛱 📮		9	N 🧃	u 🚺	P.		<u>-</u>									(2) ^ 🖬 🤅	8 UN 🛠	ENG 12-1	10-2020 ^L	~

File Home Insert Page Layo	ut Formul	las Data	a Review	View	Help	Q Tell me	e what you y	vant to do	colors - Ex	cel					NIKHIL	PANDEY -18	SCSE1010216		₽ −	ि २. sr	ha
Calibri		• A .	A = =		b - ab c≁	Wrap Text Merge & Ce		General		Formattin	nal Format a g - Table -	Normal as Good		Bad Neutral	4 7	Insert De	lete Format	∑ AutoS ↓ Fill ↓ ♦ Clear			k
ι - i × √ β		rce blue r										- 17									
A B C	D	E		G	н	1.1	J	К	L	м	N	0	Р	Q	R	S	Т	U	v	w	
vivid aubu Vivid Aubu #922724	146	39	36	0			,	ĸ		IVI	IN IN	0		Q	K	5		0	v	**	Ŧ
vivid_burg Vivid Burg #9f1d35	159	29	53																		
vivid_ceris Vivid Ceris #da1d81	218	29	129																		
vivid tang Vivid Tang #ffa089	255	160	137																		
vivid viole Vivid Viole #9f00ff	159	0	255																		
warm blac Warm Blac #004242	0	66	66																		
waterspou Waterspot #a4f4f9	164	244	249																		
wenge Wenge #645452	100	84	82																		
wheat Wheat #f5deb3	245	222	179																		
white White #fff	255	255	255																		
white_smc White Smc #f5f5f5	245	245	245																		
wild blue Wild Blue `#a2add0	162	173	208																		
wild_straw Wild Straw #ff43a4	255	67	164																		
wild_straw wild Straw #14584	252	108	133																		
wine Wine #722f37	114	47	55																		
wine_dreg Wine Dreg #673147	103	49	71																		
3 wisteria Wisteria #c9a0dc	201	160	220																		
wood bro Wood Bro #c19a6b	193	154	107																		
xanadu Xanadu #738678	115	134	107																		
yale_blue Yale Blue #0f4d92	115	77	146																		
yellow Yellow #ff0	255	255	0																		
yellow gre Yellow-Gre #9acd32	154	205	50																		
yellow mi Yellow (Mi #efcc00	239	203	0																		
) yellow_nc: Yellow (Nc #ffd300	255	211	0																		
yellow_nc:Yellow Ora#ffae42	255	174	66																		
yellow_orr Yellow (Pre#ffef00	255	239	00																		
yellow_prefellow (Ry #fefe33	255	255	51																		
zaffre Zaffre #0014a8	0	20	168																		
5 zinnwaldit Zinnwaldit #2c1608	44	22	8																		
colors (+)		~~										4		1						_	
(+)																					

The above dataset contains 865 colors along with their R, G, B values we will be using this dataset only to get the colors for the mouse clicks.

Calculating Distance

Now as we have already shown in the screenshot that we have the R, G, B values of the colors that we have attached in the dataset.

Explanation of Code:

• **Camera Settings:** In order to perform runtime operations, the device's web-camera is used. To capture a video, we need to create a VideoCapture object. Its argument can be either the device index or the name of a video file. The device index is just the number to specify which camera. Normally one camera

will be connected, so we simply pass 0. You can select the second camera by passing 1 and so on. After that, you can capture frame-by-frame. But in the end, don't forget to release the capture. Moreover, if anyone wants to apply this colour detection technique on any image it can be done with little modifications in the code which I'll discuss later.

Capturing frames: The infinite loop is used so that the web camera captures the frames in every instance and is open during the entire course of the program.
After capturing the live stream frame by frame we are converting each frame in BGR color space(the default one) to HSV color space. There are more than 150 color-space conversion methods available in OpenCV. But we will look into only two which are most widely used ones, BGR to Gray and BGR to HSV. For color conversion, we use the function cv2.cvtColor(input_image, flag) where flag determines the type of conversion. For BGR to HSV, we use the flag cv2.COLOR_BGR2HSV. Now we know how to convert BGR images to HSV, we can use this to extract a colored object. In HSV, it is more easier to represent a color than RGB color-space.

In specifying the range, we have specified the range of blue color. Whereas you can enter the range of any colour you wish.

• Masking technique: The mask is basically creating some specific region of the image following certain rules. Here we are creating a mask that comprises of an object in blue color. After that, I have used a bitwise_and on the input image and the threshold image so that only the blue coloured objects are

highlighted and stored in res. We then display the frame, res, and mask on 3 separate windows using imshow function.

• **Display the frame:** As imshow() is a function of HighGui it is required to call waitKey regularly, in order to process its event loop.

The function waitKey() waits for key event for a "delay" (here, 5 milliseconds). If you don't call waitKey, HighGui cannot process windows events like redraw, resizing, input event etc. So just call it, even with a 1ms delay.

• Summarizing the process:

- 1. Take each frame of the video.
- 2. Convert each frame from BGR to HSV color-space.
- 3. Threshold the HSV image for a range of blue color.

We need a function in the program that is going to return the color of the

point where the mouse is clicked. And as we know for getting the color

we need to get the distance and then compare it with the dataset.

Calculating the distance is done by the formulae given below :-

D= abs (Red-ithRedColor) + abs (Green-ithGreenColor) + abs (BlueithBlueColor)

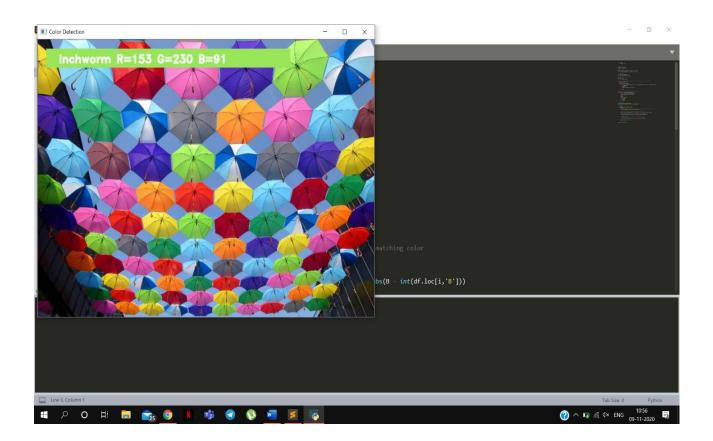
(ithRedColor, ithGreenColor, ithBlueColor are the colors R,G,B values from the dataset)

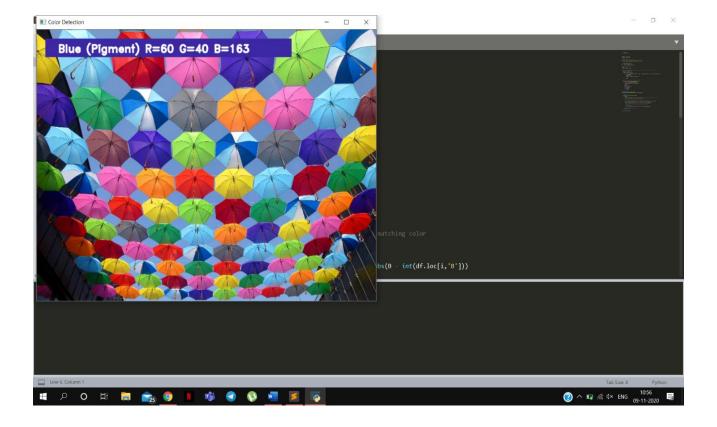
Required tools

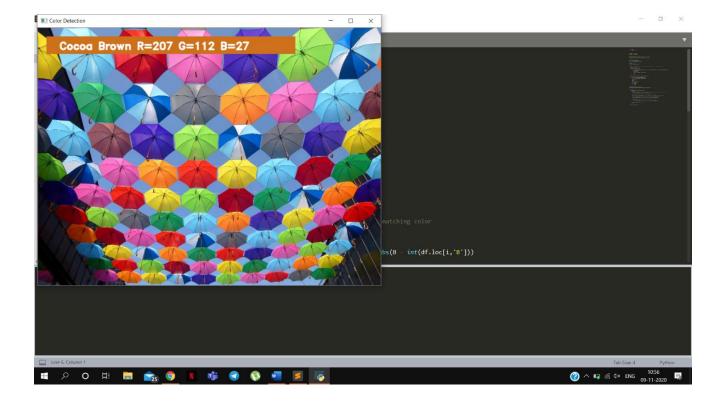
OpenCV:

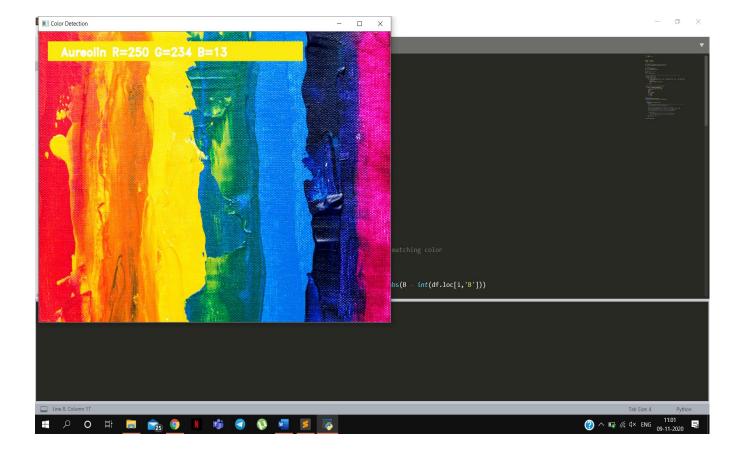
OpenCV (Open Source Computer Vision) library aims at real time Computer Vision. It is mainly used to do all the operations related to images.

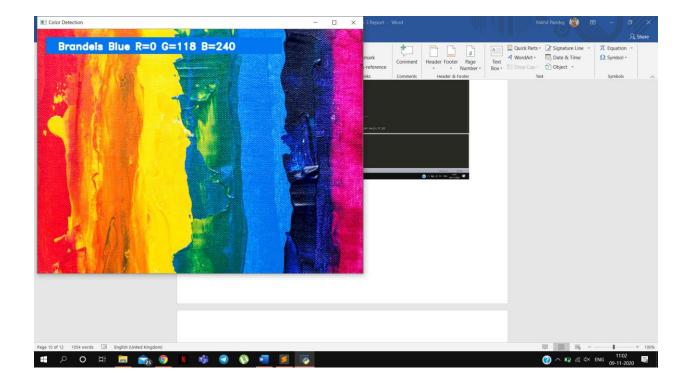
Pandas:

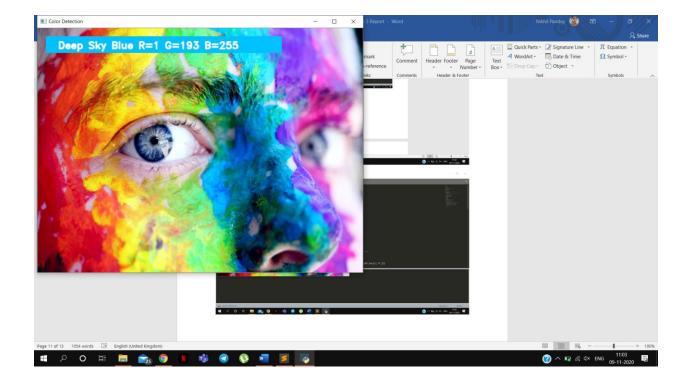

Pandas is Python Package which stands for Python and data analysis. This library helps in data manipulation and analysis.

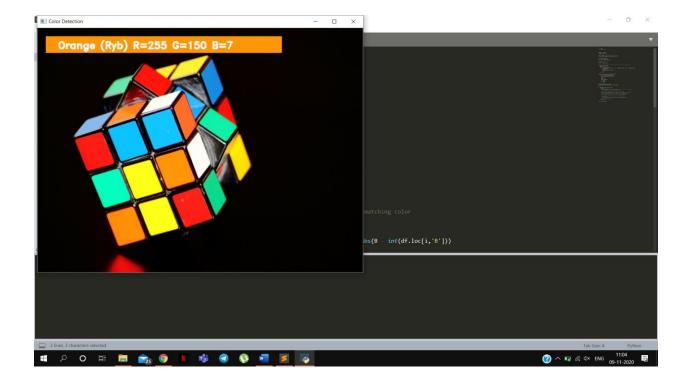

Image Processing:

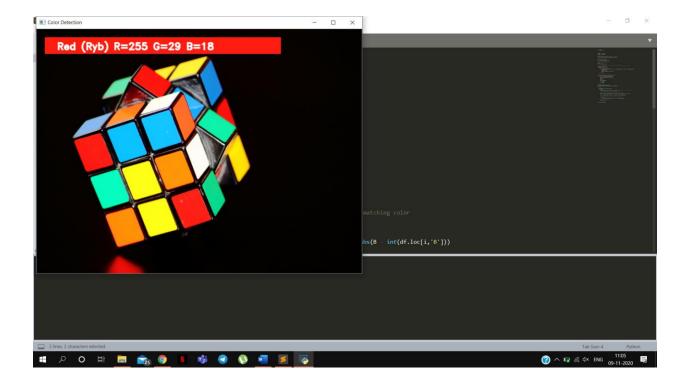

Image Processing technique is used to perform some certain operations on an image, in order to get an enhanced image as an output or to extract some useful information from the image.


It acts as a type signal processing in which input is an image and output may be an image or characteristics/features associated with that image (we have used it for resizing the image).


Output







Feasibility Analysis

Technical Feasibility:

The software is offline and totally based on python so it doesn't requires any kind of internet and there can't be any issue regarding component not working correctly.

It is compatible for Windows, Linux and Mac.

Resource and Time feasibility:

Resources that are required for the project,

- Programming Device
- Programming Tool (freely available)
- Programming individuals

So this project has the following required resource.

References

Color Blindness

https://www.sciencedirect.com/science/article/abs/pii/S003335069

8005903

Pandas documentation

https://pandas.pydata.org/docs/

> OpenCv Documentation

https://opencv.org/