A Project Report 0N

DECENTRALIZED CROWDFUNDING
Submitted in partial fulfillment of the

requirement for the award of the degree of

B-TECH-CSE

a GALGOTIAS
UNIVERSITY

(Established under Galgotias University Uttar Pradesh Act No. 14 of 2011)

Under The Supervision of
Name of Supervisor :

V.Arul Sir

Submitted By

ABHISHEK RAY-18SCSE1010372
SANKET KUMAR PANDEY -
18SCSE1010616

SCHOOL OF COMPUTING SCIENCE AND ENGINEERING
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
GALGOTIAS UNIVERSITY, GREATER NOIDA
INDIA
DECEMBER-2021

Abstract

In today's world, block chain-based systems are in demand across various
industries, because of its secure, trusted, and decentralized network as well
as for being more efficient than the traditional methods. However, the
traditional ways these days are facing a lot of issues andchallenges because
of the complex and less secure network. Block chain network integration
overcomes the problems faced by traditional methods across industries.
The Block chain integrated network provides benefits such as increased
security, increased transparency, increased efficiency and decreased
chances of fraud. Although the block chain-based systems provide various
benefits, due to lack of knowledge about this technology, the
implementation rate is low. In this work, we have highlighted the
distinction between the traditional crowd funding Platform as well as block
chain network-based crowd funding platform and the benefits of
implementing block chain network in other sectors. This work highlights
the issues and challenges faced by the industries, as mentioned earlier, by
using the traditional methods as well as the solutions to the problems
provided by the block chain network-based systems to those industries.
This work helps the people to understand the benefits of block chain
network-based systems in their respective industries as well as execute it to
improve the transparency, efficiency, and security of the system altogether.

Introduction

Crowdfunding could be a methodology of raising capital through the
collective effort of friends, family, customers, and individual investors.
This approach faucets into the collective efforts of an outsized pool of
individuals— primarily on-line via social media and crowdfunding
platforms—and leverages their networks for bigger reach and exposure.
Crowdfunding is actually the other of the thought approaches to business
finance. historically, if you wish to lift capital to begin a business or launch
a brand new product, you'd have to be compelled to clean up your business
arrange, marketing research, and prototypes, so look your plan around to a
restricted pool or moneyed people or establishments. These funding
sources enclosed banks, angel investors, and working capital corporations,
very limiting your choices to a number of key players. you'll think about
this fundraising approach as a funnel, with you and your pitch at the wide
finish and your audience of investors at the closed finish. Fail to purpose
that funnel at the proper capitalist or firm at the proper time, and that’s it
slow and cash lost. Crowdfunding platforms, on the opposite hand, flip that
funnel on-end. By supplying you with, the bourgeois, one platform to
create, showcase, and share your pitch resources, this approach
dramatically streamlines the normal model. historically, you’d pay months
separation through your personal network, vetting potential investors, and
defray your own time and cash to induce before them. With crowdfunding,
it’s a lot easier for you to induce your chance before a lot of interested
parties and provides them a lot of ways to assist grow your business, from
finance thousands in exchange for equity to contributory $20 in exchange.

Literature Survey

The conventional method used by crowdfunding websites has a major
drawback. It does not allow a contributor to have any control over the
money they have contributed. This results in frauds and scams. The
proposed method addresses this problem and provides contributors with
control over the money they have contributed. Log of all the transactions
happening in the network is called a ledger. Blockchain maintains a global
ledger and each node in the network has a copy of this global ledger called
the private ledger. Since every node has a copy of ledger so no node can
perform malicious activity. Interaction of global and private ledger in
Blockchain is depicted in file. Ethereum is an implementation of
blockchain and extends its functionality using smart contracts. Smart
contracts can be used to implement logic in blockchain secured
environments. Thus using blockchain and smart contracts, a new system
has been designed to solve the problem faced by existing crowdfunding
websites. It is a decentralized network whereas the traditional method uses
a centralized approach. Decentralized approach eliminated the chances of a
single point of failure. Thus the proposed system is robust. In the
convention The signed data file can then be verified using the public key of
the sender which is easily available and thus the authenticity of the data
file is maintained. The digital signature ensures that the data is being sent
by that particular person only and the person also cannot deny that

Methodology

Traditional Crowdfunding Concept Most ancient business funding takes
one in all 3 forms: self funding, bank funding, or working capital. The
problem is that for many folks, self-funding is implausibly restricted. Bank
funding needs having AN existing business with sensible revenues and
income. And venture fund capital nearly invariably needs a product or
service that has mass attractiveness. This makes ancient funding terribly
restricted and laborious to induce for newer businesses. It will inhibit
growth even for products and services with immense potential.
Crowdfunding permits businesses with very nice product and repair ideas
to lift funds from regular folks in tiny investment amounts. Once it works,
it will very offer your business an enormous boost. firms like Kickstarter,
Indiegogo, and Crowdfunder were among the earliest to create it well-
liked. One drawback is that even with crowdfunding, the model remains
very inefficient. In step with Kickstarter, seventy eight of campaigns that
raise 2 hundredth of their goal ultimately become absolutely funded,
whereas Martinmas of comes end having ne'er received any funding the
least bit. This brings United States of America to however blockchain is
dynamical the crowdfunding landscape

Problem Statement

Centralized Croudfunding Has Many Downsides Although the concept of
Croudfunding offers many opportunities on paper, one can't ignore the
drawbacks either. The fast way of raising money and different take on
pitching or business has helped many companies become successful . More
importantly , crowd funding can help generate community feedback before
launching products or new ideas. While all of those advantages are

positive, one has to consider the drawbacks of traditional crowdfunding
too. The first hurdle to overcome is raising money successfully.

Tools and Technology

« FRONT-END
v React-js
v’ Javascript

v" Sematic-Ul(For css , color button ,card , navigation , etc)
v" next-js for server side routing

« BACK-END

v SmartContract (On Ethereum e.g. solidity

UML Diagram

Campaign

Public:

manager: address

approvers: mapping(address=>bool)
approversCount: uint
minimumContribution: uint
requests: Request[]

Public:

<<payable>> contribute()
<<modifier>> restricted()
constructor(minimum: uint, CampaignCreator: address)
createRequest(description: string, value: uint, recipient: address)
approveRequest(index: uint)
finalizeRequest(index: uint)

getSummary(): (uint, uint, uint, uint, address)
getRequestCount(): uint

T

<<struct=>
Request

CampaignFactory
Public:
deployedCampaigns: address[]
Public:

createCampaign(minimum: uint)
getDeployedCampaigns(): address[]

description: string

value: uint

recipient: address

complete: bool

approvalCount: uint

approvals: mapping(address=>bool)

Implementation of the project:-

pragma solidity ~0.4.25;

contract CampaignFactory{

address[] public deployedCampaigns;

function createCampaign(uint minimum)public{

address newCampaign=new Campaign(minimum,msg.sender);
deployedCampaigns.push(newCampaign);

}

function getDeployedCampaigns()public view returns(address[]){
return deployedCampaigns;

}
}

/Inot voting means no vote

contract Campaign{

address public manager;
mapping(address=>bool)public approvers;
uint public approversCount;

uint public minimumContribution;
modifier restricted(){
require(msg.sender==manager);

}

struct Request{

string description;

uint value;

address recipient;

bool complete;

uint approvalCount;

[lapprovalCount only count number of yes votes
mapping(address=>bool) approvals;

}

Request [] public requests;

constructor(uint minimum,address CampaignCreator) public{
manager=CampaignCreator;
minimumContribution=minimum;

}

function contribute() public payable{

require (msg.value >= minimumcContribution);
approvers[msg.sender]=true;

approversCount++;

}

function createRequest(string description,uint value,address recipient)
public restricted

{

Request memory newRequest=Request({
description:description,

value:value,

recipient:recipient,

complete:false,

approvalCount:0

;
/IRequest(description,value,recipient,false);
requests.push(newRequest);

}

function approveRequest(uint index) public
{

Request storage request=requests[index];
require(approvers[msg.sender]);
require(!request.approvalsmsg.sender}]);
request.approvals[msg.sender]=true;
request.approvalCount++;

}

function finalizeRequest(uint index) public restricted

Request storage request=requests[index];
require(request.approvalCount>(approversCount/2));
require(!request.complete);

request.complete=true;

/luint etherValue = request.value/(1 ether);

/luint ether_to_wei=request.value*(1 ether);
request.recipient.transfer(request.value);

}

function getSummary() public view returns(uint,uint,uint,uint,address){
return(

minimumContribution,

address(this).balance,

requests.length,

approversCount,

manager

);

}

function getRequestCount() public view returns(uint){
return requests.length;

}
}

For testing our project we have unit test as

Campaign.test.js

/lhere test may be related to ethereum side and other might be related to web appplication
side!!

const assert = require(‘assert’);

const ganache = require(*ganache-cli‘);

const Web3=require(‘web3");

const web3=new Web3(ganache.provider());

const compiledFactory=require(’../ethereum/build/CampaignFactory.json’);
const compiledCampaign=require(’../ethereum/build/Campaign.json’);

let accounts;

/[factory=> refrence to the deployed instance of the factory that we gonna make
let factory;

let campaign;

let campaignAddress;

beforeEach(async()=>{

//mostly we need instance of a Campaign

/Iso rather we use factory inside of every it() block to create seperate instance of a Campaign we
use Campaign

accounts=await web3.eth.getAccounts();
factory=await new web3.eth.Contract(JSON.parse(compiledFactory.interface))
.deploy({data:compiledFactory.bytecode})
.send({from:accounts[0],gas:1000000});
await factory.methods.createCampaign(10).send({
from:accounts[0],
gas:1000000
D;
/lit is es2016 syntax
// const addresses= await factory.methods.getDeployedCampaigns().call();
/I campaignAddress=addresses[0];
/luse es5 syntax
[campaignAddress]=await factory.methods.getDeployedCampaigns().call();
/[create actual instance of campaign
/lwe use Web3 for instruct that will acess to address at campaignAddress

campaign=await
new web3.eth.Contract(JSON.parse(compiledCampaign.interface),campaignAddress);

D;

describe(*Campaigns',()=>{

it("deploys a factory and a campaign’,()=>{
assert.ok(factory.options.address);
assert.ok(campaign.options.address);

D;

/[test campaign has manager of address mark as account[0],because we
/luse account[0] to create instance of a campaignAddress
/Imeans manager os this campaign have account[0]
/Icaller=> person who call createCampaign() method
it(*'marks caller as the campaign manager',async()=>{
const campaign_manager=await campaign.methods.manager().call();
assert.equal(campaign_manager,accounts[0]);

D;

it("Allows people to contribute money and mark them as approver’,async()=>{

await campaign.methods.contribute().send({value:200,from:accounts[1]});
const is_Contributor=await campaign.methods.approvers(accounts[1]).call();
/lis_Contributor=false;

[lassert(is_Contributor);

assert(is_Contributor);

D;

it("Requires a minimum contribution’,async()=>{

try {
await campaign.methods.contribute().send({value:100,from:accounts[1]});

/Iwe use assert(false) because yeh wali line(campaign.methods.contribute()
//.send({value:10,from:accounts[1]});) chalne ke baad hum seedha catch block ke
/landar aa jayenege and agar test fail hua it means try block ke andar hi the
assert(false);
}
catch (error) {
assert(error);

}

D;

it("'only manager has the ability to make a payment request’,async()=>{

await
campaign.methods.createRequest(**batteries’,100,accounts[1]).send({from:accounts[0],gas: 1000
000});

const request=await campaign.methods.requests(0).call();
assert.equal('batteries’,request.description);

D;

/Inow contribute,createRequest,approveRequest,finalizeRequest
it('process requests’,async()=>{

await campaign.methods.contribute().send({
from:accounts[0],
value:web3.utils.toWei('10','ether?")

D;

await campaign.methods

.createRequest("A',5,accounts[1])

send({from:accounts[0],
gas:1000000});

await campaign.methods.approveRequest(0).send({from:accounts[0],gas:1000000});
await campaign.methods.finalizeRequest(0).send({from:accounts[0],gas:1000000});

/Ibalance is a string that represent the ammounts of money that account has in wei
let balance=await web3.eth.getBalance(accounts[1]);
/Inow balance is in ether
balance=web3.utils.fromWei(balance, ether");
//balance have sting value just in float type
balance=parseFloat(balance);
/lin real all ganache accounts have 100 ether and we transfer 5 ether to finalize
//so we use 99.+5>104
assert(balance>104);
;
;

This is how we route our pages -

*server.js *

//We have to tell next js to use that routes file

//so purpose of server.js file is to manaually start up our next application
/land specifically tell it to use the routes that we defined inside routes.js file
const {createServer}=require(‘http");

const next = require(‘next’)

const routes = require(*./routes")

/Inew instance of next application is app

//dev=> development

/Ihere dev specifies whether we are running our server in a production or a development mode

const app = next({dev: process.env.NODE_ENYV !=="production'})
const handler = routes.getRequestHandler(app);

app.prepare().then(()=>{

createServer(handler).listen(3000,(err)=>{
if(err) throw err;
console.log("Ready on localhost:3000");

)
D;

and here how we add routes :
*routes.js *

const routes = require(*next-routes)();

/lit will return the function so we use parenthesis ()

/l routes.add("...","...")

/Iwe will set different dynamic routes that we nedd inside of our application
routes

.add(‘/campaigns/new’,'/campaigns/new")
.add(‘/campaigns/:address’,'/campaigns/show")
.add(‘/campaigns/:address/requests’,’/campaigns/requests/index")
.add(‘/campaigns/:address/requests/new’,'/campaigns/requests/new");
module.exports=routes;

This is how we deploy contract Factory -

const HdWalletProvider=require(‘truffle-hdwallet-provider");
const Web3=require(‘web3');
const compiledFactory=require(’../ethereum/build/CampaignFactory.json’);
const provider=new HdWalletProvider(
‘jeans toast bone embody tortoise trophy often amazing split into robust fortune’,

‘https://rinkeby.infura.io/v3/45662a3729fa43678d13b210e60dee48"
);
const web3=new Web3(provider);
const deploy=async()=>{

const accounts=await web3.eth.getAccounts();

console.log("Attempting to deploy from account’,accounts[0]);

const factory=await new web3.eth.Contract(JSON.parse(compiledFactory.interface))

.deploy({data:'0x"+compiledFactory.bytecode})

.send({from:accounts|[0],

gas:1000000
b;

console.log(**Contract deployed to "*+factory.options.address);

}

deploy();
provider.engine.stop();

This is how we connect to the web3 :

import Web3 from "web3";

/lour code 1st get executed on the next server

/lwindow is global variable that is availabe only browser

/lwindow is not availabe on node js (whisch is where our server is currently running)

//so we don't acess window right now and it show error that => window is not defined
//mostly peope don't use metamask ,so how to cope up with these currentProvider(metamask)

//we directly link nest js to ethereum network and do some initial calls and we goind to do some
data fetching

//before we produce HTML Document to send user browser,it doesn’'t matter whether or not
user installed metamask

//it doesn't matter or not they even have acess to ethereum network because we have already
fetch that data and

//[send them HTML document with all information already contained inside of it

/Iby using next js which directly connect to ethereum network so they have to don't care about
metamask and rinkeby and any other network

/I const provider=window.web3.currentProvider;
Il const web3=new Web3(provider);

Il export default web3;
/this file exexute two times => 1. one time on the next js server to initially render our application
/12. second time inside the browser

/Inow we remove this error

let web3;
/Ito check our code is inside our browser (and metamask is availabe) or not use typeof window
//if yes then it(typeof window) return object otherwise it return undefinded
/lto check metamask installed(or injected web3) use => window.web3
if (typeof window == ""undefined" && typeof window.web3 == ""undefined") {
/Iwe are inside the browser and metamask is running
web3 = new Web3(window.web3.currentProvider);
}else {
/[we are on the server OR user is not running metamask

/l here we use infura api provider to making our own provider that is aceesing the network
through URL

const provider = new Web3.providers.HttpProvider(
""https://rinkeby.infura.io/v3/45662a3729fa43678d13b210e60dee48™

);
web3 = new Web3(provider);
}

export default web3;

For getting contract factory artifacts and bytecode we have to run this :

/Iwe always recompile our code(as in lottery.sol file) it takes time (4-7 sec)
/lto save that time ,we compile our code at one time ,and write output to the new
/[file and then acess that compile version
const path = require("'path"’);
const solc = require(*'solc™);
[[fs-extra improved version of require('fs') module
const fs = require(*'fs-extra');
const buildPath = path.resolve(__dirname, "build™);
//delete all files which is under build folder
fs.removeSync(buildPath);
const campaignPath = path.resolve(__dirname, *"contracts*, **Campaign.sol");
const source = fs.readFileSync(campaignPath, ""utf-8");
const output = solc.compile(source, 1).contracts;
//here output object contain two seperate object => 1. campaign compile 2. campaign_factory
compile
fs.ensureDirSync(buildPath);
for (let contract in output) {

fs.outputJsonSync(

path.resolve(buildPath, contract.replace(*':", """") + "".json""),
output[contract]

);

}

Here is our main front end component :

1. header.js

import React from 'react’;

import {Menu} from ‘semantic-ui-react’;

import {Link} from '../routes’;

/if we use both Link tag and Menu.ltem tag simultaneously then styles of these
/ltwo components clashed with each other so rather usin <Menu.ltem> tag we going
/lto use only < Link> tag

/lwe know that Link tag will create automatic anchor tag(<a>)

//Link tag is a generic wrapper component that doesn't add any Html of it's own
/lit's wraps its children with a click event handler ,so anyone clicks on any of it's
/[children it automatically navigate the user around the page

export default () =>{
return (
<Menu style={{marginTop:'30px'}}>
<Link route=""/"">
<h3> RayCampaign</h3>
</Link>

<Menu.Menu position="right'>

<Link route="/"">

<h3>All Campaigns</h3>
</Link>

<Link route=""/campaigns/new"">

<h3> + </h3>

</Link>

</Menu.Menu>

</Menu>
);
}
2. layout.js

import React from 'react’;

import {Container} from 'semantic-ui-react’;
import Header from *./header.js’;
import Head from 'next/head’;
export default (props)=>{
return (
<Container>
<Head>

<link rel=""stylesheet" href=""//cdn.jsdelivr.net/npm/semantic-ui@2.4.2/dist/semantic.min.css""
/>

</Head>
<Header/>
{props.children}

</Container>

p

w -

. RequestRow.js

import React ,{Component} from "react’;
import {Table,Button} from ‘semantic-ui-react’;
import web3 from '../ethereum/web3";
import Campaign from *../ethereum/Campaign’;
import {Router} from '../routes’;
class RequestRow extends Component{
state={
loadingl:false,
loading2:false
}
onApprove=async()=>{
this.setState({loadingl:true});
const campaign=Campaign(this.props.address);
const accounts=await web3.eth.getAccounts();
try{
await campaign.methods.approveRequest(this.props.id).send({from:accounts[0]});}
catch(error){

}
this.setState({loadingl:false});

Router.replace(’/campaigns/${this.props.address}/requests’);

}

onFinalize=async()=>{

this.setState({loading2:true});
const campaign=Campaign(this.props.address);
const accounts=await web3.eth.getAccounts();

try{
await campaign.methods.finalizeRequest(this.props.id).send({from:accounts[0]});

}

catch(error){

}
this.setState({loading2:false});

Router.replace(’/campaigns/${this.props.address}/requests’);
}
render(){
const{Row,Cell}=Table;
const{id,request,approversCount}=this.props;
const readyTOFinalize=request.approvalCount>approversCount/2;
return (
<Row disabled={request.complete} positive={ready TOFinalize && !request.complete}>
<Cell>{id+1}</Cell>
<Cell>{request.description}</Cell>
<Cell>{web3.utils.fromWei(request.value,‘ether’)} </Cell>
<Cell>{request.recipient}</Cell>
<Cell>{request.approvalCount}/{approversCount}</Cell>

<Cell><Button disabled={request.complete} loading={this.state.loadingl} color=""green"
basic onClick={this.onApprove}>Approve</Button></Cell>

<Cell><Button disabled={request.complete} loading={this.state.loading2} color=""teal""
basic onClick={this.onFinalize}>Finalize</Button></Cell>

</Row>);
}
}

export default RequestRow;

4. *ContributeForm.js *

import React,{Component} from ‘react’;

import {Form,Input,Message,Button,lcon} from ‘semantic-ui-react’;
import Campaign from *../ethereum/Campaign’;

import web3 from *../ethereum/web3’;

import {Router} from *../routes’;

class ContributeForm extends Component {

state={
value:",
loading:false,
errorMessage:"’,
transaction_status_message_for_notched:",
message:"

onSubmit= async(event)=>{

event.preventDefault();

if(this.state.value<web3.utils.fromWei(this.props.minimumcContribution,’ether”)){
window.alert(*'Please give minimum contribution as given');
return ;

}

const campaign=Campaign(this.props.address);

this.setState({loading:true,transaction_status_message for_notched:'Waiting on transaction

success...".errorMessage:"'})

try {
const accounts=await web3.eth.getAccounts();
console.log(web3.eth.getBalance(accounts[0]));

await
campaign.methods.contribute().send({from:accounts[0],value:web3.utils.toWei(this.state.value,’
ether")});

this.setState({message:"You suceessfully contibute to this campaign'});
//To Refresh the page we use Router.replaceRoute() method
Router.replaceRoute("/campaigns/${this.props.address}’);

}

catch (error) {

this.setState({message:'Transaction failed’,errorMessage:"Hey your metamask is not allow to
complete the transaction !"+error.message});

}

this.setState({loading:false,value:',message:"'});
}
render(){
return(
<Form onSubmit={this.onSubmit} error={!'this.state.errorMessage}>
<Form.Input
min=""0""
step=""any"’
type=""number""
pattern=""[0-9]""
label=<h3>Ammount to Contibute</h3>
style={{width:"*150px"'}}
placeholder=""Ammount in ether"
value={this.state.value}
onChange={(event)=>this.setState({value:event.target.value})}
/>
<Button loading={this.state.loading} primary>Contribute</Button>
<h2>{this.state.message}</h2>

<Message error style={{width:'520px'}} header="0Oops!""
content={this.state.errorMessage}/>

<Message icon hidden={'this.state.loading} positive>
<lcon name="circle notched"' loading />

<Message.Content>{this.state.transaction_status_message_for_notched}</Message.Content>
</Message>
</Form>
);
}

}

export default ContributeForm;

For pages:
pages/index.js

import React, {Component} from ‘react’;

import { Card ,Button} from *semantic-ui-react’;

import factory from *../ethereum/factory’;

import Layout from *../components/layout’;

import {Link} from '../routes’;

/limport 'semantic-ui-css/semantic.min.css';

/Ibut next does not support css module ,so we don't use this above module
class Campaignindex extends Component{

/lin any traditional react app or ptoject async componentDidMount() it is 100% appropiate
but we using next js

/Inext js introduce one little extra requirement around data loading

/[The server side rendering attempt to render our Component on the server and take that all
Html and send it to the browser

/land we getting data in server side by this line (const campaigns=await
factory.methods.getDeployedCampaigns().call())

/Inext doesn't execute componentDidMount method ,so when our application is beign rendered
by next on server

/lasync componentDidMount() not run so we use getlnitialProps()
static async getInitialProps(){
const campaigns=await factory.methods.getDeployedCampaigns().call();
Il return {campaigns:campaigns};
return {campaigns};
}
/lgetinitialProps return an object and that object is going to be provided to our component as
props
/land use that in our component this.props.campaigns

renderCampaigns(){
/[function(address) == (addres)=> ==(or we have single argument so) address=>
/I const items=this.props.campaigns.map(address=>{
Il return{
/I header:address,
/I description:View Campaign,
/[fluid:true
I3
I3);

I OR

const items=this.props.campaigns.map(address=>{
return{
header:address,
description:(
//I<Link route={'/campaigns/*+address}>
<Link route={"/campaigns/${address} }>
<a>View Campaign
</Link>
),
fluid:true
h
;

return <Card.Group items={items}/>;

}

/Iwe have to write km se km chota jsx otherwise it will some error (in render() method)
render(){

return (
<Layout>
<div>
<h2>0pen Campaigns</h2>
<Link route="'/campaigns/new"">
<a>
<Button
floated="right"
content=""Create Campaign"
icon=""plus circle"
primary
labelPosition="right'
/>

</Link>
{this.renderCampaigns()}

</div>
</Layout>

);

/lwe use<a> to create or show a new tab only

/llpage always except that file exports a react Component
export default Campaignindex;

/lcomponent is reder both on the server and once everything looads up it's executed on the client
side as well

/to test server side rendering by disabling javascript execution inside our browser
pages/campaigns/new.js

Import React,{Component} from 'react’;

import Layout from ../../components/layout’;

import {Button,Form,Input,Message,Icon} from ‘semantic-ui-react’;

import factory from '../../ethereum/factory’;

import web3 from *../../ethereum/web3";

import {Router} from '../../routes";

/ILink object is a react components that allow us to render <a> into our react
/I components and navigate arround the application

//Router object allow us to programatically redirect people from one page to another
CampaignNew

/linside our application
class CampaignNew extends Component{
state={
minimumContribution:"',
errorMessage:"’,
loading:false,

realMessage:"
5
/lwhenever we do form submittal in the browser ,the browser is going to

/lattempt automatically submit the form to back end server and this thing we do not want to
have

/to stop this we use = preventDefault()
onSubmit=async (event)=>{
this.setState({loading:true,errorMessage:",realMessage:"'});

event.preventDefault();

try

{
const accounts=await web3.eth.getAccounts();
await factory.methods.createCampaign(this.state.minimumContribution)
send({

from:accounts[0]
b;
this.setState({realMessage:"You suceessfully created the campaign'});
Router.pushRoute('/");
}

catch(error)

{

this.setState({errorMessage:'Hey your metamask is not allow to complete the transaction'});

}

/[After succeesfully exit this function we have to stop that loading
this.setState({loading:false});
}
render(){
return (
<Layout>
<Message
info
header="Hint'

content="Hey!!' This contract is developed on the ethereum blockchain so ,it only support
decimal value’

style={{width:'620px'}}
>
</Message >
<Form onSubmit={this.onSubmit} error={!!this.state.errorMessage}>
<h2>Create a Campaign</h2>
<Form.Input
min=""1""
type=""number"
pattern=""[0-9]"
floating="true'
label="Minimum Contribution’
style={{width:""150px""}}
placeholder="Ammount in wei"'

value={this.state.minimumContribution}
onChange={(event)=>this.setState({minimumContribution:event.target.value})}
/>

<Button loading={this.state.loading} primary type="submit’ >Create </Button>
<h2>{this.state.realMessage}</h2>

<Message style={{width:"'500px™*}}error header=""Oops !I'* content
={this.state.errorMessage}/>

</Form>
</Layout>

);
}
}

export default CampaignNew;

pages/campaigns/show.js
import React,{Component} from ‘react’;
import Layout from '../../components/layout’;
import Campaign from *../../ethereum/Campaign’;
import {Card,Grid,Button} from ‘semantic-ui-react’;
import web3 from "../../ethereum/web3";
import ContributeForm from '../../components/ContributeForm?’;
import {Link} from "../../routes’;
class CampaignShow extends Component{
/lprops.query.something ! Here smething is routes that we add in route.js file
static async getlnitialProps(props){
/lconsole.log(**address of campaign where it is deploy'*+props.query.address);
const campaign=Campaign(props.query.address);
const summary=await campaign.methods.getSummary().call();
/[summary is Result object

return {
address:props.query.address,
minimumContribution:summary['0'],
campaignBalance:summary|['1'],

requestsCount:summary['2'],
approversCount:summary|[‘3'],
manager:summary['4’]

|

renderCards(){

const
{campaignBalance,manager,minimumcContribution,approversCount,requestsCount}=this.props

const items=[
{
header:manager,
meta:'Address of manager ',

description:'This manager created this campaign and able to create and finalize request to
withdraw money",

style:{overflowWrap:'break-word'}

h
{

header:minimumcContribution,
meta:'Minimum Contribution (in Wei) for this Campaign ',

description:'Pledge to give minimum '+minimumContribution+"' wei to make this
campaign successfull and become approver’,

h
{

header:requestsCount,
meta:'Number of request’,

description:'A request tries to withdraw money from the contract . Request must be
approved by approvers',

h
{

header:web3.utils.fromWei(campaignBalance,'ether"),
meta:'Campaign balance(in ether)’,

description:'this campaign has funded ‘+web3.utils.fromWei(campaignBalance,'ether") +'
ether till now and manager allow to spent all money left *,

h
{

header:approversCount,
meta:'Number of approvers ',
description:'Number of people who have already donated to this campaign'

h

I;
return <Card.Group items={items}/>;

}

render(){
return (
<Layout>
<h2>Campaign Details</h2>
<Grid>
<Grid.Row>
<Grid.Column width={10}>
{this.renderCards()}
</Grid.Column>
<Grid.Column width={6}>

<ContributeForm address={this.props.address}
minimumContribution={this.props.minimumContribution}/>

</Grid.Column>
</Grid.Row>

<Grid.Row>
<Grid.Column>
<Link route={"/campaigns/${this.props.address}/requests }>
<a>
<Button primary floated=""left"" >View Requests</Button>

</Link>
</Grid.Column>
</Grid.Row>
</Grid>
</Layout>
);
}
}

export default CampaignShow;

pages/campaigns/requests/index.js

import React, { Component } from "'react';

import Layout from *../../../components/layout™;

import { Button, Table, Divider, Message } from "'semantic-ui-react';

import { Link } from **../../../[routes";

Import Campaign from *'../../../ethereum/Campaign'";

import RequestRow from "../../../[components/RequestRow"";

//In solidity we do not return array of struct

class Requestindex extends Component {

static async getlnitialProps(props) {

const { address } = props.query;
const campaign = Campaign(address);
const requestCount = await campaign.methods.getRequestCount().call();
const approversCount = await campaign.methods.approversCount().call();
/lwe will iterate or loop up to requestCount in All promise
/Inot one by one

/lgetRequestsCount returns a number inside a string, but the Array constructor
Il expects to be passed a number, not a string. To fix this, we can use the parselnt
const requests = await Promise.all(
Array(parselnt(requestCount))
fill()
.map((element, index) => {
return campaign.methods.requests(index).call();

)
);
return { address, requests, requestCount, approversCount };
}
renderRow() {
return this.props.requests.map((request, index) => {
return (
<RequestRow
id={index}

key={index}

request={request}

address={this.props.address}

approversCount={this.props.approversCount}
/>

b;
}
render() {

const { Header, Row, HeaderCell, Body } = Table;
return (
<Layout>
<Message
info
header=""Information alert™
content=""You only finalize the request when you get more than 50% vote "
style={{ width: ""620px™ }}
/>
<h2>Pending Requests</h2>
<Link route={"/campaigns/${this.props.address}/requests/new }>
<a>
<Button floated=""right"" primary style={{ marginBottom: 30 }}>
{""}
Add Request
</Button>

</Link>
<Table>
<Header>
<Row>
<HeaderCell>ID</HeaderCell>
<HeaderCell>Description</HeaderCell>
<HeaderCell>Ammount(in ether)</HeaderCell>
<HeaderCell>Recipient</HeaderCell>
<HeaderCell>Approval</HeaderCell>
<HeaderCell>Approve</HeaderCell>
<HeaderCell>Finalize</HeaderCell>
</Row>
</Header>
<Body>{this.renderRow()}</Body>

</Table>
<h3>Found {this.props.requestCount} request .</h3>
</Layout>
);
}
}

export default Requestindex;

pages/campaigns/requests/new. s

import React,{Component} from ‘react’;
import Layout from *../../../components/layout’;
import {Form,Button,Message,Input, TextArea,lcon} from 'semantic-ui-react’;
import Campaign from *../../../ethereum/Campaign’;
import web3 from *../../../ethereum/web3’;
import {Link,Router} from '../../../routes’;
class RequestNew extends Component{
state={
description:*,
ammount_transfer:",
recipient:",
loading:false,
errorMessage:"’,
message:"'
}
onSubmit=async(event)=>{
event.preventDefault();
this.setState({loading:true,errorMessage:**,message:*'});

const campaign=Campaign(this.props.address);
const {description,ammount_transfer,recipient}=this.state;

try {
const accounts=await web3.eth.getAccounts();

await
campaign.methods.createRequest(description,web3.utils.toWei(ammount_transfer,'ether"),recip
ient).send({from:accounts[0]});

this.setState({message:"You sucessfully create the request'});
Router.pushRoute("/campaigns/${this.props.address}/requests/’);
}

catch (error) {

this.setState({errorMessage:'Hey your metamask is not allow to complete the transaction !
+error.message})

}
this.setState({loading:false});

}
static async getInitialProps(props){
const {address}=props.query;
return {address};
}
render(){
return (
<Layout>
<Form onSubmit={this.onSubmit} error={!'this.state.errorMessage}>
<Link route={"/campaigns/${this.props.address}/requests }>
<a><h3>Back</h3>
</Link>
<h1>Create a request</h1>
<Form.TextArea

label="Description’

placeholder=""what this request for ?"'
value={this.state.description}
onChange={event=>this.setState({description:event.target.value})}
/>

<Form.Input
label=""Recipient Account"

placeholder=""Address of recipient who got money"
value={this.state.recipient}

onChange={event=>this.setState({recipient.event.target.value})}
/>
<Form.Input

pattern=""[0-9]"
type=""number"*
step=""any""
label=""Ammount transfer (in ether)""
style={{width:"'250px""}}
placeholder="Ammount in ether *
value={this.state.ammount_transfer}
onChange={event=>this.setState({ammount_transfer:event.target.value})}
/>
<Button loading={this.state.loading} floated=""left"* primary>Add request</Button>

<h2>{this.state.message}</h2>
<Message error header=""0Oops! ""content={this.state.errorMessage} />

</Form>
</Layout>
);
}
}

export default RequestNew;

/Ihere test may be related to ethereum side and other might be related to web appplication
side!!

const assert = require(‘assert’);

const ganache = require(‘ganache-cli‘);

const Web3=require(‘web3');

const web3=new Web3(ganache.provider());

const compiledFactory=require('../ethereum/build/CampaignFactory.json");
const compiledCampaign=require(’../ethereum/build/Campaign.json’);

let accounts;

/[factory=> refrence to the deployed instance of the factory that we gonna make
let factory;

let campaign;

let campaignAddress;

beforeEach(async()=>{
//mostly we need instance of a Campaign

/Iso rather we use factory inside of every it() block to create seperate instance of a Campaign we
use Campaign

accounts=await web3.eth.getAccounts();
factory=await new web3.eth.Contract(JSON.parse(compiledFactory.interface))
.deploy({data:compiledFactory.bytecode})
.send({from:accounts[0],gas:1000000});
await factory.methods.createCampaign(10).send({
from:accounts[0],
0as:1000000
b;
/it is es2016 syntax
Il const addresses= await factory.methods.getDeployedCampaigns().call();
/I campaignAddress=addresses[0];
/luse es5 syntax
[campaignAddress]=await factory.methods.getDeployedCampaigns().call();
/[create actual instance of campaign
/lwe use Web3 for instruct that will acess to address at campaignAddress

campaign=await new
web3.eth.Contract(JSON.parse(compiledCampaign.interface),campaignAddress);

D;

describe(*Campaigns’,()=>{

it("deploys a factory and a campaign',()=>{
assert.ok(factory.options.address);
assert.ok(campaign.options.address);

D;

/ltest campaign has manager of address mark as account[0],because we
/luse account[0] to create instance of a campaignAddress
//means manager os this campaign have account[0]
/Icaller=> person who call createCampaign() method
it(*'marks caller as the campaign manager',async()=>{
const campaign_manager=await campaign.methods.manager().call();
assert.equal(campaign_manager,accounts[0]);

D;

it("Allows people to contribute money and mark them as approver*,async()=>{

await campaign.methods.contribute().send({value:200,from:accounts[1]});
const is_Contributor=await campaign.methods.approvers(accounts[1]).call();
/lis_Contributor=false;

/lassert(is_Contributor);

assert(is_Contributor);

D;

it("Requires a minimum contribution®,async()=>{

try {
await campaign.methods.contribute().send({value:100,from:accounts[1]});

/Iwe use assert(false) because yeh wali line(campaign.methods.contribute()
//.send({value:10,from:accounts[1]});) chalne ke baad hum seedha catch block ke
/landar aa jayenege and agar test fail hua it means try block ke andar hi the
assert(false);
}
catch (error) {
assert(error);

}
D;

it("only manager has the ability to make a payment request’,async()=>{

await
campaign.methods.createRequest(*'batteries',100,accounts[1]).send({from:accounts[0],gas:1000
000});

const request=await campaign.methods.requests(0).call();
assert.equal(‘batteries’,request.description);

D;

/Inow contribute,createRequest,approveRequest,finalizeRequest
it("process requests’,async()=>{

await campaign.methods.contribute().send({
from:accounts[0],
value:web3.utils.toWei(*10','ether")

D;

await campaign.methods

.createRequest("A',5,accounts[1])

.send({from:accounts|[0],
gas:1000000});

await campaign.methods.approveRequest(0).send({from:accounts[0],gas:1000000});
await campaign.methods.finalizeRequest(0).send({from:accounts[0],gas:1000000});

/Ibalance is a string that represent the ammounts of money that account has in wei
let balance=await web3.eth.getBalance(accounts[1]);
/Inow balance is in ether
balance=web3.utils.fromWei(balance,'ether");
/Ibalance have sting value just in float type
balance=parseFloat(balance);
/lin real all ganache accounts have 100 ether and we transfer 5 ether to finalize
//so we use 99.+5>104
assert(balance>104);
D;
;

Screenshots

e 5 MetaMask Notification

@ localhost:3000/campaigns/new X

Rinkeby Test Network

3 C 0 localhost

Account | 2907..8016
i Apps ™ Gmal » Youlube @ Google Ethereum (EIH) Blo. LithiumFinance/Lith. Ole 1o USD Chart.. @ VisorFinance price. ' Account] -> . 02907801
https//locolhost:3000
RayCampaign AllC
. 40
Hint
Hey!!This contract is developed on the ethereum blockehain so it only support decimal value DETAILS
Create a Campaign il
localhost
Minimum Contribution suggested gos fee
100000000000
Mox fee:
Total 0.000625 0,000825 ETH
Amount + gas fee Max omount: 0.000625 ETH
Re‘m‘l

e localhost:3000/campaigns/(x6C: X | 4

C 0 localhost) 7 heH . :

o Apps M Gmal v YouTube @ Google , Ethereum (ETH) Blo.. LithiumFinance/Lith... ° Visor to USD Chart.. @ Visor.Finance price... E Reading list

RayCampaign AllCampaigns +

Back

Create arequest

Description

Recipient Account

Ammount transfer (In ether)

n A Type here to search Yy » ihtrain A 0 [

e localhost:3000/campaigns/X6C. X

C 0 O locahos X EY B

E Reading list

o Apps M Gmal v YouTube @boogk' s Ethereum (ETH) Blo... LithiumFinance/Lith... o Visor to USD Chart.. @ Visor.Finance price...

RayCampaign AllCampaigns +

Campaign Details

OXDAA435abbF8260D3158C1 100 Ammount o Contlbute
7407COF928371E¢c9

thisc

draw money approve

3 1.01299820002

Arequest tries to withdraw money from

tract. Request must be approved

Number of people who have

donated to this campaign

View Requests

. , 1108 AM
n P Type here to search &® 29°C Lightain A ™ NG

@ localhost3000 X 4

€9 C 0 Ol N 0qqai GO0l

i Apps M Gmal % Youlube @ Google Ethereum (ETH) Blo.. Lthiumemance/Lith.. ° Visorto USD Chart.. @ VisorFinance price... [ﬂ Reading st

RayCampalgn All Campalgns ~ +
Open Campaigns

Ox6CcC85250C6DF5TAGT24(DfTaAISEBF36cCI3ESS CresteCampaign ~ ©

0x570cf8B77eecFCA320ba81adh2EB249D793D 91

View Campaign

Oxd6a7DO3DEO5a94etebeC56ch993d954fdBecB

Oxbe3697Ch5dC1dF6A78h0196224h8611ad83AS53

View Campaign

(x303D4164484b9455¢BCI63f95E7dDaC0d7DD3296

View Campaigr

Oxde397eFbb64C5e6261f2cD52747440E07A977Thd

Ox2bSE1D9580578607306b05319091776C90177AB

1108 AM

n P Type here to search it @ 29°C Lightain A~ M 8 & 7 0) o6 o [

0 localhost3000/campaigns/d6C- X 4

C 0 O locahs f B SN NEY B

i Apps M Gmal v Youlube @ Google , Ethereum (ETH) Blo.. LithiumFmnance/Lith... o Visor to USD Chart.. @ Visor.Finance price... E} Reeading hist

RayCampalgn All Campaigns ~ +

Back

Create arequest

Description

Recipient Account

Ammount transfer (In ether)

n P Type here to search = & 30°C Lightrain A 11 [[]

e localhost:3000/campaigns/ix6C: X 4

s C 0

i Apps M Gmal » YouTube @(:ooglc

localhost

 Ethereum (ETH) Blo..

RayCampaign

Information alert

You only finalize the request when you get

Pending Requests

D Description Ammount(in ether)

1 BuyBattery casing 0.0001

7 a 0000000000001
3 buylaptops 1
Found 3 request.

n P Type here to search

LithiumFinance/Lith... ° Visor to USD CharL.. @ Visor.Finance price...

Recipient

OxF12cCr4F6baA23A688E827C0296A1A86175D1c86

OxF12cCH4F 6baA23A68BE 82 /C0O296A1AB6175D1c86

OxF12cCfAF6baA23A68BEB27C0296A1A86175D1c86

Approval

08

/8

XEY E

[Reading st

AllCampaigns +

Approve Finalize

@ 30°C Lightrain A ™ [

@ localhost3000 X +

€900 O locahost B g 0] qi &6 L} "

i Apps M Gmal v Youlube @ Google Ethereum (ETH) Blo.. LthiumFinance/Lith... ° Visor to USD Charl.. @ VisorFinance price... [Reading st

RayCampaign All Campalgns ~ +
Open Campaigns
0x6CcC65250C8DF57AG724Df7aA9SEBF36cCI3ESE CreateCanpaign ~ ©

view Lampaign

0x570cf8B77eecFCA320baB1a3h2EB249D793D99a1

View Campaign

(xd6a7DO3DE05a94e1ebeC5Foch993d9549f48eeB

view Lampalgr

Oxbe3697Ch5dC1dF6AT8H0196224b8611adB3A5f53

View Campaign

0x503D4164484b9435¢BCI63f95E7dDaC0d7DD3296

view Lampaigr

Oxdc397eFbb64C5e6261f2cD52747440E07ATTThd

View Campaigr

0x2b5E1D9580578607306b05319091776C90177A¢B
n P Type here to search 0O H M ﬂ) 9 Y wf @ 2°C lightain A m

e localhost:3000/campaigns/6C: X 4

C 0 O localhost " B 0 2§ KR B

i Apps 1 Gmal » Youlube @ Google , Ethereum (ETH) Blo... LithiumFmnance/Lith... ° Visor to USD Chart.. @ Visor.Finance price... E Reading hst

RayCampaign AllCampalgns +

Campaign Details

OXDAAJA35abbFB260D3158C 100 Ammount to Contlbute
T4a07COF9283T1ERE)

Pledge to give minimum 100 wei to make

this campaign successtull and become Contribute

approver

3 1.01299820002

ether till now and manager allow to spent

allmoney left

Number of peaple who have already

donated to this campaign

View Requests

I . 1B
Type here to search ® 29°C Lightrain A M Q) NG
yp 9

20-09-2021

% MetaMask Notification

@ localhost3000/campaigns/new X | @

Rinkeby Test Network

€ cC o localhost

Account | 2907..8016
i Apps 1 Gmal » Youlube @buogk' Ethereum (ETH) Blo... LithiumFnance/Lith... oVIM)I toUSD Charl.. @ VisorFinance price... ’ hecount | -> ' 0x2907..8016

http:/localhost:3000

RayCampaign AllC

é
Hint Y O

Hey!! This contract is developed on the ethereum blockehain so it only support decimal value DETAILS

Create aCampaign o

localhost
Minimum Contribution suggested gas fee
100000000000
Max fee:
Total 0.000825 0,000825 ETH
Amount + gas fee Max amount: 0.000€25 ETH

e

n P Type here to search g) & 29°C Light rain

Conclusion

We can conclude that the implementation of blockchain can
improve many drawbacks that area unit gift within the ancient
crowdfunding platforms. This includes, increased security,
increased potency, fraud protection

In gist, we are able to say we've got achieved the
subsequent things:

Decentralization

Fraud interference victimisation e-Voting

