
Project Report

on

BLOGGING WEBAPPLICATION DEVELOPMENT USING DJANGO

Submitted in partial fulfillment of the

requirement for the award of the degree of

Master of Computer Applications

UnderTheSupervisionof
Dr. A. Suresh Kumar

Submitted By

Shivam Yadav
18SCSE1010243
Group No : BT4050

SCHOOL OF COMPUTING SCIENCE AND ENGINEERING DEPARTMENT OF COMPUTER
SCIENCE AND ENGINEERING

GALGOTIAS UNIVERSITY, GREATER NOIDA
INDIA

Dec, 2021

SCHOOL OF COMPUTING SCIENCE AND ENGINEERING
GALGOTIAS UNIVERSITY, GREATER NOIDA

CANDIDATE’S DECLARATION

I/We hereby certify that the work which is being presented in the thesis/project/dissertation, entitled “BLOGGING

WEBAPPLICATION DEVELOPMENT USING DJANGO” in partial fulfillment of the requirements for the award of the

B.Tech submitted in the School of Computing Science and Engineering of Galgotias University, Greater Noida, is an

original work carried out during the period of month, Year to Month and Year, under the supervision of Name…

Designation, Department of Computer Science and Engineering/Computer Application and Information and Science, of

School of Computing Science and Engineering , Galgotias University, Greater Noida

The matter presented in the thesis/project/dissertation has not been submitted by me/us for the award of any

other degree of this or any other places.

Shivam Yadav(18SCSE1010243)

This is to certify that the above statement made by the candidates is correct to the

best of my knowledge.

Dr. A. Suresh Kumar

CERTIFICATE

The Final Thesis/Project/ Dissertation Viva-Voce examination of Shivam Yadav(18SCSE1010243) has been held on 9th of

Dec,2021 and his/her work is recommended for the award of B Tech.

Shivam Yadav Dr. A. Suresh Kumar

Signature of Examiner(s) Signature of Supervisor(s)

Signature of Project Coordinator Signature of Dean

Date: November, 2013
Place: Greater Noida

Contents

Title Page No.
Candidates Declaration I
Abstract II

Chapter 1 Introduction 1
1.1 Introduction 2
1.2 Pre-Requirements 3

Chapter 2 Project Design 5-7

Chapter 3 Functionality/Working of Project 8-13

Chapter 4 Results and Discussion 14

Chapter 5 Conclusion 15
Reference 16

ABSTRACT
Blogging has become such a mania that a new
blog is being created every second of ever
minute of every hour. A blog is your best bet for
a voice among the online crowd. Blog contain
the information of various things related to
technology , education , news , international ,
business , sports , entertainment and ongoing
college activities . The main aim of this project
is to provide a platform to users to post blogs
related to fashion , food , adventure and design.
The term blogging and blog is a latest buzz
word in the modern society as more people
started reading and writing blogs online. There
is constant increase in the number of people
turned in the blogs way and it is a good medium
for every body to write and publish their
opinions online. Every day people from all over
the world are waiting for the celebrities blogs
and want to reply their comments for that.

Challenge is to prepare a blogging platform for
mobiles and a website to support and publish
those blogs online and in application. As
number of people using the mobiles increasing,
it will be much easier for people to read, write
and post comments using mobiles.

Challenge is to develop, integrate and deploy
different technological components to make an
easy blogging on mobiles and on website.

INTRODUCTION
Building a Blog application with Django that
allows users to create, edit, and delete posts.
The homepage will list all blog posts, and there
will be a dedicated detail page for each
individual post. Django is capable of making
more advanced stuff but making a blog is an
excellent first step to get a good grasp over the
framework. The purpose of this is to get a
general idea about the working of Django.

Frameworks are built to support the
construction of web applications based on a

single programming language, there are many
web frameworks written purely on Python,
despite the competition Django has emerged as
the most powerful and loved frameworks of all
time.

Web frameworks like Django speed up the
development process with all the necessary
features baked in. Frameworks automate the
most common tasks such as database
administration, user management, and routing
which increases the productivity of developers.

Pre-Requirements
Django is an open-source web framework,
written in Python, that follows the
model-view-template architectural pattern. So
Python is needed to be installed in your
machine. Unfortunately, there was a significant
update to Python several years ago that created
a big split between Python versions namely
Python 2 the legacy version and Python 3 the
version in active development.

Since Python 3 is the current version in active
development and addressed as the future of
Python, Django rolled out a significant update,
and now all the releases after Django 2.0 are
only compatible with Python 3.x.

Creating And
Activating A Virtual
Environment
While building python projects, it’s a good
practice to work in virtual environments to keep
your project, and it’s dependency isolated on
your machine.

cd Desktop

virtualenv django

cd django

Scripts\activate.bat

Now you should see (django) prefixed in your
terminal, which indicates that the virtual
environment is successfully activated.

Setting Up The
Project
In your workspace create a directory
called mysite and navigate into it.

cd Desktop

mkdir mysite

cd mysite

Now run the following command in your shell
to create a Django project.

This will generate a project structure with
several directories and python scripts.

mysite

__init__.py

settings.py

urls.py

wsgi.py

manage.py

Next, we need the create a Django application
called blog. A Django application exists to
perform a particular task. You need to create
specific applications that are responsible for
providing your site desired functionalities.

Navigate into the outer directory
where manage.py script exists and run the
below command.

cd mysite

python manage.py startapp blog

These will create an app named blog in our
project.

db.sqlite3

mysite

__init__.py

settings.py

urls.py

wsgi.py

manage.py

Blog

__init__.py

admin.py

apps.py

migrations

__init__.pymodels<s
pan class="hljs-selector-class">.py

tests.py

views.py

Now we need to inform Django that a new
application has been created, open
your settings.py file and scroll to the installed
apps section, which should have some already
installed apps.

INSTALLED_APPS = [

'django.contrib.admin'</spa
n>,

'django.contrib.auth'
,

'django.contrib.contenttypes'
,

'django.contrib.sessions'</sp
an>,

'django.contrib.messages'</s
pan>,

'django.contrib.staticfiles'</
span>,

]

Now add the newly created app blog at the
bottom and save it.

INSTALLED_APPS = [

'django.contrib.admin'</spa
n>,

'django.contrib.auth'
,

'django.contrib.contenttypes'
,

'django.contrib.sessions'</sp
an>,

'django.contrib.messages'</s
pan>,

'django.contrib.staticfiles'</
span>,

'blog'

]

Next, make migrations.

python manage.py migrate

This will apply all the unapplied migrations on
the SQLite database which comes along with
the Django installation.

Let’s test our configurations by running
the Django’s built-in development server.

python manage.py runserver

Open your browser and go to this
address http://127.0.0.1:8000/ if everything
went well you should see this page.

Database Models
Now we will define the data models for our
blog. A model is a Python class that
subclasses django.db.models.Model, in which
each attribute represents a database field. Using
this subclass functionality, we automatically
have access to everything
within django.db.models.Models and can add
additional fields and methods as desired. We
will have a Post model in our database to store
posts.

from django.db import modelsfrom
django.contrib.auth.models import User

STATUS = (

(0,"Draft"),

(1,"Publish")

)

class Post(models.Model):

title = models.CharField(max_length=200,
unique=True)

slug = models.SlugField(max_length=200,
unique=True)

author = models.ForeignKey(User,
on_delete=
models.CASCADE,related_name='blog_posts')

updated_on =
models.DateTimeField(auto_now= True)

content = models.TextField()

created_on =
models.DateTimeField(auto_now_add=True)

status =
models.IntegerField(choices=STATUS,
default=0)

class Meta:

ordering = ['-created_on']

def __str__(self):

return self.title

At the top, we’re importing the
class models and then creating a subclass
of models.Model Like any typical blog, each
blog post will have a title, slug, author name,
and the timestamp or date when the article was
published or last updated.

Notice how we declared a tuple for STATUS of
a post to keep draft and published posts
separated when we render them out with
templates.

The Meta class inside the model contains
metadata. We tell Django to sort results in
the created_on field in descending order by
default when we query the database. We specify
descending order using the negative prefix. By
doing so, posts published recently will appear
first.

The __str__() method is the default
human-readable representation of the object.
Django will use it in many places, such as the
administration site.

Now that our new database model is created we
need to create a new migration record for it and
migrate the change into our database.

(django) $ python manage.py makemigrations

(django) $ python manage.py migrate

Now we are done with the database.

https://djangocentral.com/classes-in-python/
https://docs.djangoproject.com/en/2.1/topics/db/models/

Creating An
Administration Site
We will create an admin panel to create and
manage Posts. Fortunately, Django comes with
an inbuilt admin interface for such tasks.

In order to use the Django admin first, we need
to create a superuser by running the following
command in the prompt.

python manage.py createsuperuser

You will be prompted to enter email, password,
and username. Note that for security concerns
Password won’t be visible.

Username (leave blank to use 'user'): admin

Email address: admin@gamil.com

Password:

Password (again):

Enter any details you can always change them
later. After that rerun the development server
and go to the
address http://127.0.0.1:8000/admin/

python manage.py runserver

You should see a login page, enter the details
you provided for the superuser.

After you log in you should see a basic admin
panel with Groups and Users models which
come from Django authentication framework
located in django.contrib.auth.

Adding Models To
The Administration
Site
Open the blog/admin.py file and register the
Post model there as follows.

from django.contrib import adminfrom .models
import Post

admin.site.register(Post)

Save the file and refresh the page you should
see the Posts model there.

Now let’s create our first blog post click on the
Add icon beside Post which will take you to
another page where you can create a post. Fill
the respective forms and create your first ever
post.

Once you are done with the Post save it now,
you will be redirected to the post list page with
a success message at the top.

the administration panel according to our
convenience. Open the admin.py file again and
replace it with the code below.

from django.contrib import adminfrom .models
import Post

class PostAdmin(admin.ModelAdmin):

list_display = ('title', 'slug',
'status','created_on')

list_filter = ("status",)

search_fields = ['title', 'content']

prepopulated_fields = {'slug': ('title',)}

admin.site.register(Post, PostAdmin)

This will make our admin dashboard more
efficient. Now if you visit the post list, you will
see more details about the Post.

The list_display attribute does what its name
suggests display the properties mentioned in the
tuple in the post list for each post.

If you notice at the right, there is a filter which
is filtering the post depending on their Status
this is done by the list_filter method.

And now we have a search bar at the top of the
list, which will search the database from
the search_fields attributes. The last
attribute prepopulated_fields populates the slug,
now if you create a post the slug will
automatically be filled based upon your title.

Now that our database model is complete we
need to create the necessary views, URLs, and
templates so we can display the information on
our web application.

Building Views
A Django view is just a Python function that
receives a web request and returns a web
response. We’re going to use class-based views
then map URLs for each view and create an
HTML templated for the data returned from the
views.

Open the blog/views.py file and start coding.

from django.views import genericfrom .models
import Post

class PostList(generic.ListView):

queryset =
Post.objects.filter(status=1).order_by('-created_
on')

template_name = 'index.html'

class PostDetail(generic.DetailView):

model = Post

template_name = 'post_detail.html'

The built-in ListViews which is a subclass of
generic class-based-views render a list with the
objects of the specified model we just need to
mention the template, similarly DetailView
provides a detailed view for a given object of
the model at the provided template.

Note that for PostList view we have applied a
filter so that only the post with status published
be shown at the front end of our blog. Also in
the same query, we have arranged all the posts
by their creation date. The (–) sign before
the created_on signifies the latest post would be
at the top and so on.

Adding URL patterns
for Views
We need to map the URL for the views we
made above. When a user makes a request for a
page on your web app, the Django controller
takes over to look for the corresponding view
via the urls.py file, and then return the HTML
response or a 404 not found error, if not found.

Create an urls.py file in your blog application
directory and add the following code.

from . import viewsfrom django.urls import
path

urlpatterns = [

path('', views.PostList.as_view(),
name='home'),

path('<slug:slug>/',
views.PostDetail.as_view(),
name='post_detail'),

]

https://djangocentral.com/functions-in-python/

We mapped general URL patterns for our views
using the path function. The first pattern takes
an empty string denoted by ' ' and returns the
result generated from the PostList view which is
essentially a list of posts for our homepage and
at last we have an optional parameter name
which is basically a name for the view which
will later be used in the templates.

Names are an optional parameter, but it is a
good practice to give unique and rememberable
names to views which makes our work easy
while designing templates and it helps keep
things organized as your number of URLs
grows.

Next, we have the generalized expression for
the PostDetail views which resolve the slug (a
string consisting of ASCII letters or numbers)
Django uses angle brackets < > to capture the
values from the URL and return the equivalent
post detail page.

Now we need to include these blog URLs to the
actual project for doing so open
the mysite/urls.py file.

from django.contrib import admin

urlpatterns = [

path('admin/', admin.site.urls),

]

Now first import the include function and then
add the path to the new urls.py file in the URL
patterns list.

from django.contrib import adminfrom
django.urls import path, include

urlpatterns = [

path('admin/', admin.site.urls),

path('', include('blog.urls')),

]

Now all the request will directly be handled by
the blog app.

Creating Templates
For The Views
We are done with the Models and Views now
we need to make templates to render the result
to our users. To use Django templates we need
to configure the template setting first.

Create directory templates in the base directory.
Now open the project’s settings.py file and just
below BASE_DIR add the route to the template
directory as follows.

TEMPLATES_DIRS =
os.path.join(BASE_DIR,'templates')

Now In settings.py scroll to
the,TEMPLATES which should look like this.

TEMPLATES = [

{

'BACKEND': 'django.template.backends.d
jango.DjangoTemplates',

'DIRS': [],

'APP_DIRS': True,

'OPTIONS': {

https://djangocentral.com/configuring-django-templates/

'context_processors':
[

'django.template.context_pr
ocessors.debug',

'django.template.context_pr
ocessors.request',

'django.contrib.auth.context
_processors.auth',

'django.contrib.messages.co
ntext_processors.messages',

],

},

},

]

Now add the newly
created TEMPLATE_DIRS in the DIRS.

TEMPLATES = [

{

'BACKEND': 'django.template.backends.d
jango.DjangoTemplates',

Add
'TEMPLATE_DIRS' here

'DIRS':
[TEMPLATE_DIRS],

'APP_DIRS': True,

'OPTIONS': {

'context_processors':
[

'django.template.context_pr
ocessors.debug',

'django.template.context_pr
ocessors.request',

'django.contrib.auth.context
_processors.auth',

'django.contrib.messages.co
ntext_processors.messages',

],

},

},

]

Now save and close the file we are done with
the configurations.

Django makes it possible to separate python and
HTML, the python goes in views and HTML
goes in templates. Django has a powerful
template language that allows you to specify
how data is displayed. It is based on template
tags, template variables, and template filters.

I’ll start off with a base.html file and
a index.html file that inherits from it. Then later
when we add templates for homepage and post

detail pages, they too can inherit
from base.html.

Let’s start with the base.html file which will
have common elements for the blog at any page
like the navbar and footer. Also, we are
using Bootstrap for the UI and Roboto font.

<!DOCTYPE html><html>

<head>

<title>Django Central</title>

<link
href="https://fonts.googleapis.com/css?family=
Roboto:400,700" rel="stylesheet">

<meta name="google"
content="notranslate" />

<meta name="viewport"
content="width=device-width, initial-scale=1"
/>

<link rel="stylesheet"
href="https://maxcdn.bootstrapcdn.com/bootstra
p/4.0.0/css/bootstrap.min.css"
integrity="sha384-Gn5384xqQ1aoWXA+058R
XPxPg6fy4IWvTNh0E263XmFcJlSAwiGgFA
W/dAiS6JXm"
crossorigin="anonymous" />

</head>

<body>

<style>

body {

font-family: "Roboto",
sans-serif;

font-size: 17px;

background-color: #fdfdfd;

}

.shadow {

box-shadow: 0 4px 2px -2px
rgba(0, 0, 0, 0.1);

}

.btn-danger {

color: #fff;

background-color: #f00000;

border-color: #dc281e;

}

.masthead {

background: #3398E1;

height: auto;

padding-bottom: 15px;

box-shadow: 0 16px 48px
#E3E7EB;

padding-top: 10px;

}

</style>

<!-- Navigation -->

<nav class="navbar navbar-expand-lg
navbar-light bg-light shadow" id="mainNav">

<div class="container-fluid">
<a class="navbar-brand" href="{% url
'home' %}">Django central
<button class="navbar-toggler
navbar-toggler-right" type="button"
data-toggle="collapse"

https://getbootstrap.com/

data-target="#navbarResponsive"
aria-controls="navbarResponsive"
aria-expanded="false" aria-label="Toggle
navigation">
</button>

<div class="collapse navbar-collapse"
id="navbarResponsive">

<ul class="navbar-nav ml-auto">

<li class="nav-item text-black">

<a class="nav-link text-black font-weight-bold"
href="#">About

<li class="nav-item text-black">

<a class="nav-link text-black font-weight-bold"
href="#">Policy

<li class="nav-item text-black">

<a class="nav-link text-black font-weight-bold"
href="#">Contact

</div>

</div></nav>

{% block content %}

<!-- Content Goes here -->

{% endblock content %}

<!-- Footer -->

<footer class="py-3 bg-grey">

<p class="m-0 text-dark
text-center ">Copyright © Django
Central</p>

</footer>

</body></html>

This is a regular HTML file except for the tags
inside curly braces { } these are called template
tags.

The {% url 'home' %} Returns an absolute path
reference, it generates a link to the home view
which is also the List view for posts.

The {% block content %} Defines a block that
can be overridden by child templates, this is
where the content from the other HTML file
will get injected.

Next, we will make a small sidebar widget
which will be inherited by all the pages across
the site. Notice sidebar is also being injected in
the base.html file this makes it globally
available for pages inheriting the base file.

{% block sidebar %}

<style>

.card{

box-shadow: 0 16px 48px
#E3E7EB;

}

</style>

<!-- Sidebar Widgets Column --><div
class="col-md-4 float-right "><div class="card
my-4">
<h5class="card-header">About Us</h5>

<div class="card-body">

<p class="card-text"> This awesome blog is
made on the top of our Favourite full stack
Framework 'Django', follow up the tutorial to
learn how we made it..!</p>

<ahref="https://djangocentral.com/building-a-bl
og-application-with-django"

class="btn btn-danger">Know more!

</div></div></div>

{% endblock sidebar %}

Next, create the index.html file of our blog
that’s the homepage.

{% extends "base.html" %}

{% block content %}<style>

body {

font-family: "Roboto", sans-serif;

font-size: 18px;

background-color: #fdfdfd;

}

.head_text {

color: white;

}

.card {

box-shadow: 0 16px 48px #E3E7EB;

}</style>

<header class="masthead">

<div class="overlay"></div>

<div class="container">

<div class="row">

<div class=" col-md-8 col-md-10 mx-auto">

<div class="site-heading">

<h3 class=" site-heading my-4 mt-3
text-white"> Welcome to my awesome Blog
</h3>

<p class="text-light">We Love Django As
much as you do..!

</p>

</div>

</div>

</div>

</div></header><div class="container">

<div class="row">

<!-- Blog Entries Column -->

<div class="col-md-8 mt-3 left">

{% for post in post_list %}

<div class="card mb-4">

<div class="card-body">

<h2
class="card-title">{{ post.title }}</h2>

<p class="card-text
text-muted h6">{{ post.author }} |
{{ post.created_on}} </p>

<pclass="card-text">{{post.content|slice:":200"
}}</p>

<a href="{% url 'post_detail' post.slug %}"
class="btn btn-primary">Read More →

</div>

</div>

{% endfor %}

</div>

{% block sidebar %} {% include
'sidebar.html' %} {% endblock sidebar %}

</div></div>

{%endblock%}

With the {% extends %} template tag, we tell
Django to inherit from the base.html template.
Then, we are filling the content blocks of the
base template with content.

Notice we are using for loop in HTML that’s
the power of Django templates it makes HTML
Dynamic. The loop is iterating through the posts
and displaying their title, date, author, and body,
including a link in the title to the canonical URL
of the post.

In the body of the post, we are also using
template filters to limit the words on the
excerpts to 200 characters. Template filters
allow you to modify variables for display and
look like {{ variable | filter }}.

Now run the server and
visit http://127.0.0.1:8000/ you will see the
homepage of our blog.

You might have noticed I have imported some
dummy content to fill the page you can do the
same using this lorem ipsum generator tools.

Now let’s make an HTML template for the
detailed view of our posts.

Next, Create a file post_detail.html and paste
the below HTML there.

{% extends 'base.html' %} {% block
content %}

<div class="container">

<div class="row">

<div class="col-md-8 card mb-4 mt-3
left top">

<div class="card-body">

<h1>{% block title %}
{{ object.title }} {% endblock title %}</h1>

<p class="
text-muted">{{ post.author }} |
{{ post.created_on }}</p>

<p class="card-text
">{{ object.content | safe }}</p>

</div>

</div>

{% block sidebar %} {% include
'sidebar.html' %} {% endblock sidebar %}

</div></div>

{% endblock content %}

At the top, we specify that this template inherits
from.base.html Then display the body from our
context object, which DetailView makes
accessible as an object.

Now visit the homepage and click on read more,
it should redirect you to the post detail page.

Conclusion
I have come to the end of this project. Thank
you for reading this far. This project is just the
tip of the iceberg considering the number of
things we could do with Django.

I have built a basic blog application from
scratch! Using the Django admin I can create,
edit, or delete the content and I used Django’s
class-based views, and at the end, I made
beautiful templates to render it out.

https://djangocentral.com/while-loops-in-python/

References
REFERENCES <>

DjangoGuidelines,

Availableat: https://developer.android.com/guide/practices/ui_guidelines/

IEEE.IEEEStd830-1998IEEERecommendedPracticeforSoftwareRequirements Specifications.

IEEEComputerSociety,1998.JavaandXMLByBrettMcLaughlin

Wikipedia,URL:http://www.wikipedia.org.

Answers.com, OnlineDictionary, Encyclopediaandmuchmore,

URL: https://www.answers.com

https://developer.android.com/guide/practices/ui_guidelines/

	CANDIDATE’S DECLARATION
	Creating And Activating A Virtual Environment
	Setting Up The Project
	Database Models
	Creating An Administration Site
	Adding Models To The Administration Site
	Building Views
	Adding URL patterns for Views
	Creating Templates For The Views

