
1

A Project Report

on

GROUP CHAT APPLICATION USING MERN STACK

Submitted in partial fulfillment of the

requirement for the award of the degree

of

B.Tech- Computer Science & Engineering

Under The Supervision

of Mr. V Arul

Assistant Professor

 Department of Computer Scienece and Engineering

Submitted By

Muskan (18021011632)

 Samarth Nanda (18021011704)

SCHOOL OF COMPUTING SCIENCE AND ENGINEERING

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

GALGOTIAS UNIVERSITY, GREATER NOIDA

INDIA

DECEMBER-2021

2

SCHOOL OF COMPUTING SCIENCE AND
ENGINEERING, GALGOTIAS UNIVERSITY,
GREATER NOIDA

CANDIDATE’S DECLARATION

We hereby certify that the work which is being presented in the thesis/project/dissertation,

entitled “GROUP CHAT APPLICATION USING MERN STACK” in partial fulfillment of

the requirements for the award of the Btech submitted in the School of Computing Science and

Engineering of Galgotias University, Greater Noida, is an original work carried out during the

period of JULY-2021 to DECEMBER-2021, under the supervision of Mr. V. ARUL,

Assistant Professor, Department of Computer Science and Engineering of School of

Computing Science and Engineering , Galgotias University, Greater Noida

The matter presented in the project has not been submitted by us for the award of any other

degree of this or any other places.

 Muskan 18SCSE1010401

 Samarth Nanda 18SCSE1010476

This is to certify that the above statement made by the candidates is correct to the best of my

knowledge.

 Supervisor Name

 Designation

3

 CERTIFICATE

The Final Project examination of Muskan 18SCSE1010401, Samarth Nanda

18SCSE1010476. has been held on December-2021 and the work is recommended for the

award of BACHELOR OF TECHNOLOGY IN COMPUTER SCIENCE AND

ENGINEERING.

Signature of Examiner(s) Signature of Supervisor(s)

Signature of Project Coordinator Signature of Dean

Date: 17 December, 2021

Place: Greater Noida

4

ACKNOWLEDGEMENT

We would like to acknowledge the great efforts and precious time given by our project

guide Mr. V Arul Assistant Professor in Department of Computer Science and Engineering,

School of Computing Science and Engineering , Galgotias University, Greater Noida .We were

able to complete our job thanks to great advice and criticism. We'd also want to thank our

parents for their constant support and care. Last but not least, without our team, we would

not have been able to build this project and learn so much in the process.

5

TITLE Page no.

Candidate Declaration 2

Certificate 3

Acknowledgements 4

Abstract 7

Acronyms 8

Chapter – 1 Introduction

1.1 Introduction about the project

1.2 Aim

1.3 Ideation

1.4 Features

1.5 System Requirement

9-13

9

10

10

12

13

Chapter – 2 Literature Survey

 2.1 Competitive Analysis

 2.2 Communication Protocols

14-17

14

15

Chapter – 3 Requirements & Tools of Project

 3.1 Hardware Requirements

 3.2 Languages and Libraries

 3.3 Software Requirements

18-20

18

18

20

Chapter – 4 Project Overview

 4.1 Project Methodology

 4.2 Technology

21-28

21

22

22

6

 4.2.1 Back End

 4.2.2 Front End

 4.2.3 Version Control

26

28

Chapter – 5 Working and Functionality of project

 5.1 Databases and Models

 5.1.1 Users

 5.1.2 Rooms

 5.1.3 Chats

 5.1.4 Messages

 5.2 Flow Chart

 5.3 Project code snippets

29-40

29

30

31

32

33

36

40

Chapter – 6 Result and Discussion 41

Chapter – 7 Conclusion and Future Scope

 7.1 Conclusion

 7.2 Future Scope

42-43

42

43

Reference 44

7

ABSTRACT

This dissertation describes the process of the development of a chat application for

developers, from a mere idea to a working cloud service. We have built a real time platform

that makes it easy to have a group conversation between a projects’ members, share code

and stay up to date with their latest repository updates. It has given him a better

understanding of ExpressJS and WebSocket, React.JS, NoSQL databases (MongoDB),

REST JSON APIs with Node, and more. Web chat is a system that allows users to

communicate in real-time using easily accessible web interfaces. It is a type of Internet online

chat distinguished by its simplicity and accessibility to users who do not wish to take the

time to install and learn to use specialized chat software which help to meet with unknown

people and explore them and know the different different culture at your own comfort this

also help to reduce stress and keep people mind clam and this will help to improve work

efficiency of any person now a days in fast moving and modern culture no one have free

time to talk with their relative. This application will help reduce the distance in the world by

getting closer through this platform we have built

8

ACRONYMS

B.Tech. Bachelor of Technology

RTC Real – Time Communication

WebRTC Web Browser Real Time Communication

HTML Hype Text Markup Language

HTTPS Hyper Text Transfer Protocol

CSS Cascading Style Sheet

TURN Traversal Using Relays around NAT

P2P Peer-to-Peer

CPU Central Processing Unit

GUI Graphical User Interface

9

 CHAPTER- 1

 Introduction

1.1 Introduction About the Project

This project is to create a chat application with a server and users to enable the users to

chat with each other’s To develop an instant messaging solution to enable users to

seamlessly communicate with each other. The project should be very easy to use enabling

even an o vice person to use it. This project can play an important role in organizational

field where employees can connect through LAN. The main purpose of this project is to

provide group chatting functionality through network.

Chatting is a method of using technology to bring people and ideas together despite of

the geographical barriers. The technology has been available for years but the acceptance

was quite recent. Our project is an example of a chat server. It is made up of two

applications-the client application, which runs on the user's web browser and server

application, runs on any hosting servers on the network. To start chatting client should

get connected to server where they can do private and group chat. Security measures were

taken during the last one The MERN stack which consists of Mongo DB, Express.js,

Node.js, and React.js is a popular stack for building full-stack web-based applications

because of its simplicity and ease of use. In recent years, with the explosive popularity

and the growing maturity of the JavaScript ecosystem, the MERN stack has been the go

to stack for a large number of web applications. This stack is also highly popular among

newcomers to the JS field because of how easy it is to get started with this stack. This

repository consists of a Chat Application built with the MERN stack .I built this sometime

back when I was trying to learn the stack and I have left therefor anyone new to the stack

so that they can use this repo as a guide. This is a full-stack chat application that can be

up and running with just a few steps. Its frontend is built with Material UI running on top

of React. The backend is built with Express.js and Node.js. Real-time message

broadcasting is developed using Socket.IO.

10

1.2 Aim

The aim of this project is to build a functional real-time messaging application for

developers by using modern web technologies. Unlike most chat applications available

in the market, this one will focus on developers and will attempt to boost their

productivity. Although we are not expecting it to have a plethora of utilities due to the

limited time frame, sharing code and watching a repository will be our core features. It

will be fully open-source. Everyone will be able to dig into the code to read what is going

on behind the scenes, or even contribute to the source code. So it was within our intentions

to write clean, scalable code following the most popular patterns and conventions for each

of the languages and relevant libraries.

1.3 Ideation

This dissertation describes the process of the development of a chat application for

developers, from a mere idea to a working cloud service. We have built a real time

platform that makes it easy to have a group conversation between a projects’ members,

share code and stay up to date with their latest repository updates.

Chatting is a method of using technology to bring people and ideas together despite of

the geographical barriers. The technology has been available for years but the acceptance

was quite recent. Our project is an example of a chat server. It is made up of two

applications-the client application, which runs on the user's web browser and server

application, runs on any hosting servers on the network. To start chatting client should

get connected to server where they can do private and group chat. Security measures were

taken during the last one The MERN stack which consists of Mongo DB, Express.js,

Node.js, and React.js is a popular stack for building full-stack web-based applications

because of its simplicity and ease of use[1]. In recent years, with the explosive popularity

and the growing maturity of the JavaScript ecosystem, the MERN stack has been the go

to stack for a large number of web applications. This stack is also highly popular among

newcomers to the JS field because of how easy it is to get started with this stack. This

repository consists of a Chat Application built with the MERN stack .I built this sometime

11

back when I was trying to learn the stack and I have left therefor anyone new to the stack

so that they can use this repo as a guide. This is a full-stack chat application that can be

up and running with just a few steps. Its frontend is built with Material UI running on top

of React. The backend is built with Express.js and Node.js. Real-time message

broadcasting is developed using Socket.IO[2].

This application provides users with the following features of Authentication using JWT

Tokens. A Global Chat which can be used by anyone using the application to broadcast

messages to everyone else. A Private Chat functionality where users can chat with other

users privately. Real-time updates to the user list, conversation list, and conversation

messages Chatting is a method of using technology to bring people and ideas together

despite of the geographical barriers. The technology has been available for years but the

acceptance was quite recent.

Our project is an example of a chat server. It is made up of two applications- the client

application, which runs on the user's web browser and server application, runs on any

hosting servers on the network. To start chatting client should get connected to server

where they can do private and group chat. Security measures were taken during the last one.

12

1.4 Features

Before getting into any specific chat features that our application should/could have, we

will list the basic ones that most chat services offer us nowadays, regardless of their type:

• Instant messaging

• Notifications

• Message sender (username)

• Group chats

• Join Multiple rooms

• Connect to different groups

• Keep your chat Backup

• Chats Encrypted End to End

• List of online members

• Video calls

• Group meeting

• Emojis & animated emoticons

13

1.5 System Requirements

Now, this method is intended in such the way that it takes fewer resources to figure out work

correctly. That is the minimum needs that we’d like to require care of:-

 The system wants a minimum of two GB of ram to run all the options.

 It wants a minimum 1.3 GHz processor to run smoothly.

 Rest is all up to the user’s usage can take care of hardware.

 For security opposing anti-virus is suggested.

 RAM: At least 256 MB of RAM. The amount of RAM needed depends on the

number of concurrent client connections, and whether the server and multiplexor are

deployed on the same host.

 Disk Space: Approximately 300 MB required for Instant Messaging Server

software.

 Processor: Minimum 1.3 gigahertz (GHz) x86- or x64-bit dual core processor with

SSE2 instruction set and recommended 3.3 gigahertz (GHz) or faster 64-bit dual core

processor with SSE2 instruction set.

 Memory: Minimum 2-GB RAM and recommended 4-GB RAM or more

The system is made correctly, and all the testing is done as per the requirements. So, the rest

of the things depend on the user, and no one can harm the data or the software if the proper

care is done.

14

CHAPTER-2

Literature Survey

2.1 Competitive Analysis

Competitive Analysis Prior to getting started with the application development, we did some

research on the current messaging platforms out there. We were looking forward to building a

unique experience, rather than an exact clone of an existing chat platform. We already knew of

the existence of several messaging applications, and a few chat applications that suited

developers. However, never before had we done an in-depth analysis of their tools to find out

whether they were good enough for developers. Soon, we realized that none of the sites were

heading in our direction. Some of them were missing features which we considered crucial and

others had opportunities for further enhancements. Contrary to what many people think, having

a few platforms around is not a necessarily a bad thing. We were able to get ideas of what to

build and how and determine which technologies and strategies to use based on their experience.

Often, this was as simple as checking their blogs[3]. Companies like Slack regularly post

development updates (such as performance reviews, technology comparisons, and scalability

posts). Other times, we had to dig into the web to find out the different options we had and pick

out the one which we considered to be the most appropriate.

2.2 Communication Protocols

For most web applications, communication protocols are not a subject of discussion. AJAX

through HTTP is the way to go since it is reliable and widely supported. However, that is not

our case. We need, albeit not in every single situation, an extremely fast communication method

to send/receive messages in real time. For messaging, there are a few communication protocols

available for the web. The most popular ones are AJAX, WebSockets, and WebRTC. AJAX is

a slow approach. Not only because of the headers that have to be sent in every request, but also,

and more important, because there is no way to get notified of new messages in a chat room.

15

By using AJAX, we would have to request/pull new messages from the server every few

seconds, which would result in new messages to take up to a few seconds to appear on the

screen, not to say the numerous redundant requests that this would generate. WebSockets are a

better approach. WebSockets connections can take up to few seconds to establish, but thanks to

the full-duplex communication channel, messages can be exchanged swiftly (averaging few

milliseconds delay per message). Also, both client and server can get notified of new requests

through the same communication channel, which means that unlike AJAX, the client does not

have to send the server a petition to retrieve new messages but rather wait for the server to send

them.

Lets discuss all communication protocols for web:-

2.2.1 AJAX

Asynchronous JavaScript and XML, while not a technology in itself, is a term coined in 2005

by Jesse James Garrett, that describes a "new" approach to using a number of existing

technologies together, including HTML or XHTML, CSS, JavaScript, DOM, XML, XSLT,

and most importantly the XML Http Request object. When these technologies are combined in

the Ajax model, web applications are able to make quick, incremental updates to the user

interface without reloading the entire browser page. This makes the application faster and more

responsive to user actions.

Although X in Ajax stands for XML, JSON is preferred over XML nowadays because of its

many advantages such as being a part of JavaScript, thus being lighter in size. Both JSON and

XML are used for packaging information in the Ajax model. The Fetch API provides an

interface for fetching resources. It will seem familiar to anyone who has

used XMLHTTPRequest, but this API provides a more powerful and flexible feature set.

Server-sent events Traditionally, a web page has to send a request to the server to receive new

data; that is, the page requests data from the server. With server-sent events, it's possible for a

server to send new data to a web page at any time, by pushing messages to the web page. These

incoming messages can be treated as Events + data inside the web page. See also: Using server-

sent events.

16

2.2.2 WebSocket

The WebSocket API is an advanced technology that makes it possible to open a two-way

interactive communication session between the user's browser and a server. With this API, you

can send messages to a server and receive event-driven responses without having to poll the

server for a reply.

The primary interface for connecting to a WebSocket server and then sending and receiving data

on the connection. The event sent by the WebSocket object when a message is received from the

server. Either a single protocol string or an array of protocol strings. These strings are used to

indicate sub-protocols, so that a single server can implement multiple WebSocket sub-protocols

(for example, you might want one server to be able to handle different types of interactions

depending on the specified protocol). If you don't specify a protocol string, an empty string is

assumed.

The constructor will throw a Security Error if the destination doesn't allow access. This may

happen if you attempt to use an insecure connection (most user agents now require a secure link

for all WebSocket connections unless they're on the same device or possibly on the same

network). WebSockets is an event-driven API; when messages are received, a message event is

sent to the WebSocket object[5]. To handle it, add an event listener for the message event, or

use the on message event handler. To begin listening for incoming data, you can do something

like this.

2.2.3 WebRTC

WebRTC or Web Real Time Communications allows the establishment of real time audio and

video communications between users’ browsers. The creation of the communication link is

mediated by a web server with WebRTC capabilities. The link itself can be peer-to-peer

between the browsers. WebRTC does not depend on a standardised signalling infrastructure,

but rather leverages the web JavaScript environment and standardised browser APIs. This

allows for implementations that range from a simple audio communication between two people

17

up to a videoconference with multiple participants, out of the box as part of a normal browser.

WebRTC thus has at least three actors involved: a web server and two browsers. The mediation

of the usable communication channels is negotiated between these based on a complex set of

specifications that are detailed in the WebRTC overview below. Not only is there a complex

combination of specifications, but the work is also distributed between the IETF doing the

protocol stack and W3C creating the browser APIs[6]. Still WebRTC remains a part of the Web,

thus all the vulnerabilities described in the Web Security Guide still apply. But the complexity

and the fact that the communication is real time also bring new aspects and vulnerabilities. This

case study dives deeper into the vulnerabilities to which user and server assets are exposed by

their use of WebRTC. This is not limited to the three actors mentioned, but these may also

behave in unexpected ways. Chapter 2 describes the relevant assets, and based on the list of

assets, the surface of exposure and the assets targeted and the list of possible malicious actors

becomes much clearer. This exposes some of the underlying issues otherwise hidden by the

complexity of the combination of WebRTC specifications. The fact that real time

communication is involved immediately raises the issue around permissions and timing of

access. For communication between two users, the browser needs access to speaker and

microphone. This means the browser can potentially be remotely turned into a device to capture

all the sounds in a location. It is known that native applications on mobile phones have issues

around permissions and how fine grained they ought to be, whereas how coarse they actually

are. For WebRTC the issue is the same. This case study assesses the implications and gives

hints on potential security problems in current implementations. A central issue in WebRTC

that was discussed widely in the Working Groups but has not yielded satisfactory results is

identity management[7]. Am I really sure I am talking to the right person? On the Web, the

trusted telephone operator is not always there. The case study looks into user authentication and

naming and raises issues around credentials and keying. The case study then goes on with an

analysis of a classic cross site scripting attack in a WebRTC scenario. What happens when an

attacker can inject arbitrary JavaScript code into the running WebRTC application or even

manages to upload a malicious WebRTC application to a server that delivers it to the browser?

The evaluation of exposure is used to describe a landscape of possible attacks.

18

 CHAPTER – 3

 Requirements & Tools of Project

3.1 Hardware Requirements

RAM: At least 256 MB of RAM. The amount of RAM needed depends on the number of

concurrent client connections, and whether the server and multiplexor are deployed on the

same host.

Disk Space: Approximately 300 MB required for Instant Messaging Server software.

Processor: Minimun 1.9 gigahertz (GHz) x86- or x64-bit dual core processor with SSE2

instruction set and recommended 3.3 gigahertz (GHz) or faster 64-bit dual core processor

with SSE2 instruction set.

Memory: Minimum 2-GB RAM and recommended 4-GB RAM or more

3.2 Languages and Libraries

Html

HTML (Hypertext Markup Language) is the code that is used to structure a web page and

its content. For example, content could be structured within a set of paragraphs, a list of

bulleted points, or using images and data tables

CSS :

CSS (Cascading Style Sheets) is used to style and layout web pages — for example, to alter

the font, color, size, and spacing of your content, split it into multiple columns, or add

19

animations and other decorative features.

JavaScript:

JavaScript is a text-based programming language used both on the client- side and server-

side that allows you to make web pages interactive. Where HTML and CSS are languages

that give structure and style to web pages, JavaScript gives web pages interactive elements

that engage a user.

ReactJS:

ReactJS is one of the most popular JavaScript front-end libraries which has a strong

foundation and a large community .It is a declarative, efficient, and flexible JavaScript

library for building reusable UI components. The main objective of ReactJS is to develop

User Interfaces (UI) that improves the speed of the apps. It uses virtual DOM (JavaScript

object), which improves the performance of the app.

NodeJS:

Node.js is an open source server environment. These allows you to run JavaScript on the

server. It is primarily used for non-blocking, event-driven servers, due to its single-

threaded nature. It's used for traditional web sites and back-end API services, but was

designed with real-time, push-based architectures in mind.

Mongo DB:

MongoDB is an open source NoSQL database management program. NoSQL is used as an

alternative to traditional relational databases. NoSQL databases are quite useful for working

with large sets of distributed data. MongoDB is a tool that can manage document-

oriented information, store or retrieve information.

20

3.3 Software Requirement

VS Code:

Visual Studio Code is a streamlined code editor with support for development

operations like debugging, task running, and version control. It aims to provide just the

tools a developer needs for a quick code-build-debug cycle and leaves more complex

workflows to fuller featured IDEs, such as Visual Studio IDE.

Postman:

Postman is an application used for API testing. It is an HTTP client that tests HTTP

requests, utilizing a graphical user interface, through which we obtain different types of

responses that need to be subsequently validated.

Robo3t:

Robo3T (formerly Robo-3T mongo) is a popular desktop graphical user interface (GUI) for

your MongoDB hosting deployments that allows you to interact with your data through

visual indicators instead of a text-based interface.

21

CHAPTER – 4

Project Overview

4.1 Project Methodology

Agile is a set of techniques to manage software development projects. It consists in:

• Being able to respond to changes and new requirements quickly.

• Teamwork, even with the client.

• Building operating software over extensive documentation.

• Individuals and their interaction over tools.

We believed it was a perfect fit for our project since we did not know most requirements

beforehand. By using the Agile, we were able to focus only on the features which had the most

priority at the time.

4.1.1 Use Cases and Scenarios

User stories are one of the primary development artifacts when working with Agile

methodology. A user story is a very high-level definition of a requirement, containing just

enough information so that the developers can produce a reasonable estimate of the effort to

implement it. Gathered from stakeholders (people, groups or organizations who are interested

in the project), they show us what we have to work in. Since we were working with Agile, this

list did not have to be complete before we started working on the project, but it was desirable

to have at least a few items to start with so that we could establish proper feature priorities. At

the commencement of every sprint, we analyzed all user stories, estimated the value they added

to the project and the amount of time they would take us doing each of them, and sorted them

by descending order — placing the user stories which had the most added value and the least

22

time cost at the top. The value was quite subjective. We gave the highest priority to features

which we believed they were essential to the platform (such as instant text messages) or were

very related to the chat’s topic — coding. We gave them a score from 1-10. Time cost was an

estimation of how much we thought an individual story was going to take to implement. The

measurement was done in days, considering each working day to be as long as 4 hours. We then

translated this value as follows:

• 1-2 days: 1

• 3-4 days: 2

• 5-6 days: 3

• 7-9 days: 4

• 10+ days: 5

To sort both the product backlog and sprint backlog lists, we relied on a third number, the

priority, which was simply the result of the value minus the time cost. Nonetheless, in some

cases, we had to make exceptions due to user stories dependencies. For example, sign in and

sign up features had to be implemented the first, since we needed user information to properly

identify the room owner or the message sender.

4.2 Technology

The architecture of the application consists of the back end and the front end, both of them

having their own set dependencies (libraries and frameworks). The front end is the presentation

layer that the end user sees when they enter the site. The back end provides all the data and part

of the logic and it is running behind the scenes.

4.2.1 Back End

The "back end" refers to the logic and data layers running on the server side. In our case, the

back end makes sure that the data introduced through the client application (the front end), is

valid. Since the front end can be avoided or easily manipulated (the source code is available to

23

the end user) we have to make sure that all the requests we receive are first verified by the

server: the requested URI is supported, the user has the appropriate permissions, the parameters

are valid, etc.

If the request data is valid, we do often proceed to execute some logic accompanied by one or

more database accesses.

API

Our application is all about I/O. We were looking forward a programming environment which

was able to handle lots of requests per second, rather than one which was proficient at handling

CPU-intensive tasks. At the moment it seemed like the choice was between PHP, Python, Java,

Go or Node.js. These languages have plenty of web development documentation available, and

they have been widely tested by many already. The trendiest choice in 2016 was Node.js, which

was exceptional for handling I/O requests through asynchronous processing in a single thread.

So we went for Node.js not only because of the performance but also because of how fast it was

to implement stuff with it, contrary to other languages such as Java which are way more verbose.

For web development, we would then use Express, which makes use of the powerfulness of

Node.js to make web content even faster to implement. A feasible alternative to Node.js would

be Go, which is becoming popular nowadays due to somewhat faster I/O than Node.js with its

Go subroutines, and unquestionably better performance when doing intensive calculations[4]

(though we were not particularly looking for the last one). Nonetheless, Go meant slower

development speed. It lacked libraries as it was not as mature as Node.js and the cumbersome

management of JSON made it not very ideal for our application (since the JavaScript client

would use JSON all the time). We are writing Node.js with the latest ECMAScript ES6 and

ES2017 standard supported features. The development was started with ES6, but we also used

a few features originally from ES2017 as soon as Node.js turned to v7. ES6/ES2017 standards

differ from the classic Vanilla JavaScript in that they have a few more language features and

utilities out of the box which makes code easier to read, faster to write and reduce the need to

make use of external libraries to do the most common operations. For example, Promises over

callbacks or classes over functions, even though they are just syntactical sugar. A few

remarkable frameworks/libraries we are using on the development of the application are:

24

Express

A Node.js framework which makes web development fast. It abstracts most of the complexity

behind the web server and acts as an HTTP route handler. It can also render views (a sort of

HTML templates with variables) but are using the front end application for this instead. By

using Express, we are able to focus on the logic behind every request rather than on the request

itself.

Mongoose

A MongoDB high-level library. By using objects as database models, which will later end up

being the data inside our collections, it handles inserts, updates, and deletes, as well as the

validation for each of its fields.

Passport

An authentication library build specifically for Node.js. By using the different login modules

(one module per provider), it hides all the complexity behind OAuth, OAuth2, and OpenID.

Passport commits to notifying the developer in the same way regardless of the authentication

method they have chosen. We are using Passport to handle GitHub and Google authentication,

as well as the local one (email + password).

Sinon

An extensive testing library that has a set of useful utilities: spies, stubs, and mocks. Throughout

our tests, we often feel the need to know whether a certain function has been called, has been

called with the right parameters, or even to fake external incoming data to ensure that we are

testing solely what we want to test.

Socket.io

A JavaScript library which handles WebSocket connections. It abstracts most of the complexity

behind WebSockets, and it also provides fallback methods which work without any special

configuration. Socket.io takes care of the real time updates in our application, such as sending

or receiving messages.

25

Data storage

We believe that NoSQL is the future. Hence, we did not hesitate to choose to use NoSQL

storages only. Why choosing NoSQL databases over the traditional SQL ones?

• They are more flexible: you can access nested data without having to perform any join.

• They are faster[6]: nested data is stored in the same place and can be consulted without

any additional query.

• They scale better[7] when distributing the data over different nodes.

• There are many types of NoSQL databases which fit for different kinds of work, such as

Key-Value for sessions or Document-based for complex data.

At first, we were going to go with MongoDB only, but later we realized that it would be a good

idea to have Redis as well to map session keys with user identifiers.

MongoDB is a schemeless document-oriented database. It gives us the possibility to store

complex data effortlessly and retrieve it straight away, without any additional query. Although

the data is always stored on disk, it is very fast and highly scalable.

We are using MongoDB to store any persistent data, such as user details and preferences, rooms

information and chat messages. You can find more details about the MongoDB document

modeling on the implementation chapter.

Redis is a key-value data structure, which uses memory storage to perform searches by a given

key very quickly. Queries are performed faster than in MongoDB but there is also a higher risk

of losing data, and it cannot process complex values (such as nested documents).

Although Redis performs better than MongoDB, we cannot rely on it for critical data. For this

reason, we are only using it to store user sessions, which in the case of loss, would only mean

that the user would have to re-login to keep using our platform. Nonetheless, we expect to

performance gains to be noticeable when the site is at its peak capacity because the session data

is something we are are looking up in every single request to the API.

26

4.2.2 Front End

Having separated the server-side from the client side, a SPA (Single-Page Application) was an

outstanding choice. SPAs dynamically fetch data from the API as the user is browsing the site,

avoiding to refresh the whole page whenever the user has filled in a form or navigated to another

part of the site. The UX boost a SPA can get over a traditional website is very significant. It is

true that it often takes longer to load for the first time, due to having to download a bigger

JavaScript file chunk, but once loaded the delay between operations is minimal which leads to

a more fluid User experience, and less bandwidth use in most cases.

Implementing a scalable Single-Page Application by using Vanilla JavaScript only would take

an enormous amount of time, since it has none of the high-level utilities that make it simple to

develop one of this kind, such as a high-level HTML renderer that allows you to build elements

on the fly, storage or router. Hence, it made sense to choose an actively maintained and

documented framework/library to start with.

At the time, the decision was between Angular, React and Vue.

Both Angular and React were being maintained by powerful corporations, Google and

Facebook respectively, so we had a brief look at their documentation and developers’ reviews

before taking our final choice. Eventually, we chose React.

React is a very powerful library with an enormous ecosystem (you can find many utilities that

were meant to be used with React). It is featured due to its fast performance and small memory

consumption, which is especially useful when targeting mobile devices. Moreover, there is a

plethora of documentation on its official site and around the Internet. The library main features

are: Tree Structure A React page always starts with a single root component (tree node)

rendered in a pre-existing HTML element on the page.

27

Babel

A few users coming to our site might be using old browser versions, which have little to no

support to ES6/ES2017 features. To make sure all browsers can understand our code we make

use of Babel, which transpires our modern JavaScript code into JavaScript code that most

browsers can understand.

Redux

An in-memory storage for JavaScript. It saves application states, which in other terms are the

different data that our application uses over the time.

A storage like Redux avoids having to transfer data up and down the React tree, since Redux

stores it all in one place which can be accessed anytime.

It is also modular, which makes it ideal for our application since it helps towards scalability.

That does not mean that it makes properties and functions we explained earlier become

redundant. We should still use these for simple or very specific interactions with components.

Nonetheless, Redux simplifies things when working especially with global variables, such as

the currently authenticated user.

Redux was initially built for React, so it works hand to hand with it. The storage can be easily

connected to React components, which will have access to any of the stored data and also be

able to dispatch new actions to add/update the data in it.

28

4.2.3 Version Control

A version control system can be useful to developers, even when working alone. It enables us to go back

in time to figure out what broke a certain utility, work on different features at the time and revert/merge

them into the original source code with no difficulty, watch how the project evolved over the time, and

so on.

We chose Git. Not only because it is the most popular and widely used version control system, but also

because part of our project was the integration with GitHub, and GitHub works with Git.

For the same reason as above, we chose GitHub to be our remote source code repository. Currently, it

is a public space where developers can come and have a look at the source code that is powering the

chat application, report bugs they encounter or even contribute by submitting pull requests.

29

CHAPTER -5

Working and Functionality of project

This chapter details the most relevant parts of the application development, decisions taken and

algorithms.

We have divided this chapter into three sections: databases (design), features (the most

important ones) and a brief overview on how we tested our features.

5.1 Databases and Models

 A key defining aspect of any database-dependent application is its database structure. The

database design can vary depending on many different factors, such as the number of reads over

writes or the values that the user is likely to request the most. That is because as full stack

developers we want the database to have the best performance, which can often be achieved by

focusing the optimizations on the most common actions.

We concentrated on the MongoDB database, which is the most complex data storage and the

one which stores the most data.

Our MongoDB data structure limits to mapping sessions to user identifiers, both of type text.

That is how a web request works: Node.js queries MongoDB by using the user session identifier

to determine whether the user is signed and their account identifier. If an account identifier is

found, Node.js queries MongoDB to find out the rest of the user information. The MongoDB

database stores everything else: users’ information, rooms, chats, and messages. 32

Implementation of a chat application for developers Our final database design ended up having

four different collections: users, rooms, chats, and messages. Although MongoDB is schema-

less, by using the Mongoose library on Node.js, we were also able to define a flexible schema

for each of the collections. A schema constrains the contents of a collection to a known format,

saving us from validating the structure of the data before or after it has been put in into the

database.

30

5.1.1 Users

To start, we needed somewhere to store our users. Since we were expecting a significant number

of entries, an individual collection for the users’ themselves was the most appropriate. What we

mean by that is that it was best for the users’ collection to solely store the information that made

reference to their authentication and personal data. Their rooms, chats, and messages should be

stored somewhere else. Given that we were expecting a lot of rooms, chats, and messages per

user, we refrained from even making references to them in this collection. We are querying

these other collections directly. Schema fields:

• _id: identifier.

• username: friendly identifier.

• email: email address.

• password: encrypted password.

• passwordResetToken: token to reset their password.

• passwordResetExpires: expiration date of the password reset token.

• GitHub: GitHub’s profile id.

• google: Google’s profile id.

• tokens: list of linked services tokens.

– kind: service name (i.e., GitHub)

– accessToken: access token given by the service.

• profile: personal details

Users’ collection is indexed by _id, username, email, github, and google fields. These cover

most searches, which is what is being done the most often: users are being looked up many

times whereas they barely change during their lifetime.

31

For example, we are searching the associated user through the _id field on every request, but

we only set the _id on their creation. Moreover, we are referring to the email, github, and google

identifiers every time a user logs in through each respective method, yet most times these

identifiers are only set once during the user’s lifespan.

Although we did not specify, some of the schema fields are required, whereas others can be left

undefined. All these specifications, including each of the fields’ validation, were given to

Mongoose, either in the form of configuration or functions.

5.1.2 Rooms

Given that we were not going to store rooms as nested data inside the users’ collection, mainly

because we were looking forward to referring to them directly, we created an independent

collection for them. In addition, we were expecting many rooms, probably even more than

users. Hence it was not a not a good idea to nest them under any other document. Schema fields:

• _id: identifier.

• title.

• slug: room URL identifier.

• description.

• owner: _id of the owner user.

• isPrivate: whether the room is private or public.

• members: array of user _id who are members of that room.

• updatedAt: modification date.

• createdAt: creation date.

Notice that once again we are not storing any of the chats inside it, not even the reference.

Although some would argue that it would not be a bad idea, in this case, we preferred storing

them on an individual collection given that we were expecting many due to the ability to fork

32

chats.

Other chat applications which set a limit of 10-20 chats per room, should consider either

embedding the whole chat object inside their room or at least store a reference to them.

On the other hand, we are storing a reference to the members of a room. That is because we are

not expecting more than few hundred users per room and they are also not a clear entity by

themselves and the disk space these references take does not look like to be a problem.

When designing MongoDB collections, we always have to keep in mind that the maximum size

per document is 4MB (16MB in the latest versions).

The other field which we are also storing by reference is the owner of the room. The reason

why we are not embedding the user, in this case, is not because of the size, but rather because

the user profile data might frequently be updated which would mean having to update all rooms

he owns, apart from the corresponding User.

We are indexing Rooms by _id, slug, owner, and members.

At first, we thought _id and slug would suffice since they cover the most common searches:

users referring to a chat through its identifier or entering through a direct URL (in which case

the lookup would be done by the URL slug).

However, later we realized that users might often want to look up chats which they either own

or are members of, which is the reason why we created two additional indexes to cover the

owner and members.

5.1.3 Chats

As we stated earlier, our chats were going to be in individual collections. There might be rooms

in which their members have few chats, but others might have hundreds (even if that leads to

having a few inactive ones).

Once again, we had to think whether it was worth embedding or referring messages inside the

Chats collection or keeping them isolated in another one.

 In this case, it was evident. We were expecting thousands of messages in any Chat, which

would rapidly go over the 16MB that any MongoDB document can hold, even if only storing

33

references.

Thus, messages had to be saved in a different collection. Schema fields:

• _id: identifier.

• room: identifier of the room it belongs to.

• title.

• description.

• github: GitHub repository name, taken into consideration when creating GitHub specific

chats.

• firstMessageAt: date of the first message sent. It is used to determine whether the user

has already retrieved all messages of a chat.

• lastMessageAt: date of the last message sent.

• updatedAt: modification date.

• createdAt: creation date.

We are indexing Chats by _id, and room. _id is used everytime someone wants to enter a

specific chat, whereas the room one makes it quicker to search the chats inside a Room.

5.1.4 Messages

We were expecting thousands of messages per month, so the right way to store them, according

to the MongoDB official documentation, is in an individual collection. In a production

environment on which we were expecting even millions of them, we might have to consider

sharding the data to avoid bottlenecks, which is a topic which we have briefly covered in the

Evaluation chapter.

This case is similar to the Rooms or Chats ones, but this time it is taken to the extreme, "One-

to-Squillions".

34

We were no longer just expecting to store thousands in the long-term run, but we were expecting

to store thousands at a fast growing pace.

We can summarize our Messages needs as follow:

1. Ability to store hundreds of messages per hour.

2. Ability to retrieve thousands of messages per hour

3. Ability to retrieve messages in chronological order (most recent first).

Notice that we are expecting to read more than to save. That is because a few chat peers are

likely to retrieve recent messages more than once, and while a message is only stored once,

several members are likely to read it numerous times. Thus, we wanted to design a collection

schema which favored reads over writes.

Moreover, we would never want to retrieve all messages at once. Not only it would be

impossible for the user to read them all, but also we would not be able to handle the load if we

did that for Chats having many messages.

Schema fields:

• _id: identifier.

• chat: identifier of the chat it belongs to.

• owner: sender (User) identifier.

• content: text.

• type: content type.

– language: code language, if the message type is code.

– highlight: lines to highlight, if the message type is code.

– chat: reference to the parent Chat, if the message is a fork.

• deletedAt: deletion date. Content will be removed on deletion, but their peers will be

aware that the User sent a message at that time.

35

• updatedAt: modification date.

• createdAt: creation date.

As simple as it seems, this structure has been proved to work out for up to 1,000,000 concurrent

connections.

We have indexed messages by _id and chat + createdAt. The first one helps when looking for

a specific message, whereas the second composed index works out well when looking for past

messages. We have composed the date with the chat to filter only the messages which belong

to a particular chat since we will never be interested in mixed chat messages.

36

5.2 Flow Chart

Initially the user will be on the home page where he / she will receive the option for the

Login or the Register page. After the user credentials are verified, the user will be redirected

to the Room dashboard, where users can create or join chat rooms and use all the chat

features provide. There is also an option for the user to logout which ill redirect them to the

Home page.

37

5.3 Project code snippets

38

Code for Login.js

Code for Chat.js

39

Code for index.js

Output

40

41

 CHAPTER-6

 Results and Discussion

The Group Chat application creates a platform for users to communicate to one

another. Chat apps are dynamic tools that allow workers to engage with one another,

share meaningful ideas, work through company problems and better plan for your

business's future. They often offer task management features, chat features, video

calling services, and other communication and productivity management tools.

The goal of these communication tools should be to simplify things, not make them

more complicated.

42

CHAPTER -7

 Conclusion And Future Scope

7.1 Conclusion

There is always a room for improvements in any apps. Right now, we are just dealing with

text communication. There are several chat apps which serve similar purpose as this

project, but these apps were rather difficult to use and provide confusing interfaces. A

positive first impression is essential in human relationship as well as in human computer

interaction.

7.2 Future Scope

Although the application itself works well, much was learned during its development.

For this reason, we wrote a list of possible improvements/changes, some of which are easy

to execute, others might require rewriting a significant amount of the current source code.

Apart from that, the Ideal application was too ambitious, which resulted in many features

not being able to be implemented during the course of the project.

Express to Hapi

Express works well for small projects, it is easy to set up and you can have an API working

within minutes. However, it is very minimalistic. As the project gets bigger, you are forced

to write much middleware code yourself, which does not only take time but it can lead to

security risks if not properly tested. Hapi is a more modern Node.js framework, with

security in mind and designed to handle big loads. Hapi by itself can handle things such as

input validation, server-side caching, cookieparsing or logging. Although moving to Hapi

is not a requirement, we believe it is a wise move since it would ease a lot of future work.

Move the whole API to an MVCS architecture

Back when we started our back end, we had models, simple controllers, and JSON

43

responses as our views. Nonetheless, as the application grew, a few controllers logic 88

Implementation of a chat application for developers code got huge and repetitive.

In some cases, we even needed to share logic between different application topics (i.e.

authentication and chat rooms).

In order to fix this, we started by abstracting controllers into separate functions, but the

separation of concerns was not clear. We had controllers, and controller "helpers".

This project hopes to develop a chat service Web app with high quality user interface.

In future we may be extended to include feature such as:

• File Transfer

• Voice Message

• Audio Call

• Group Call

• Video Call

• Event Managing

Remaining features

The model platform, described in the "Features" section, had plenty of features. Many of them

remain undone:

• Notifications

• Status

• Room roles

• File sharing

• Voice and videocalls

• Public API

• etc.

 While our application already provides the basics to programmers who want to talk and share

code themselves, having more of these model features done would probably attract the attention

of more of them.

44

REFERENCES

1. Ammar H. Ali, Ali Makki Sagheer (2017). Design of a secure android chatting

application using end to end encryption, Journal of software engineering & intelligent

systems.

2. Ms. Swara Pampatwar. Vinisha Kalyani, Prachi Shamdasani, Urja Ramwani (2020).

Multi-layered Data Encryption/Decryption Chatting Application, Annals of R. S. C.

3. Ben Feher, Lior Sidi, Asaf Shabtai, Rami Puzis (2016). The Security of WebRTC,

arXiv,

4. Kwok-Fai Ng, Man-Yan Ching, Yang Liu, Tao Cai, Li Li, Wu Chou (2014). A P2P-

MCU Approach to Multi-Party Video Conference, International Journal of Future

Computer and Communication.

5. Mohamed, M. A., Muhammed, A. & Man, M. (2015). A Secure Chat Application

Based on Pure Peer-to-Peer Architecture. Journal of Computer Science, 11(5), 723-729.

6. J. Rosenberg and H. Schulzrinne. An Offer/Answer Model with Session Description

Protocol (SDP). RFC 3264 (Proposed Standard), June 2002. Updated by RFC 6157.

7. P. Saint-Andre. Extensible Messaging and Presence Protocol (XMPP): Address

Format. RFC 6122 (Proposed Standard), March 2011.

8. P. Saint-Andre. Extensible Messaging and Presence Protocol (XMPP): Core. RFC 6120

(Proposed Standard), March 2011.

	GROUP CHAT APPLICATION USING MERN STACK
	SCHOOL OF COMPUTING SCIENCE AND ENGINEERING DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING GALGOTIAS UNIVERSITY, GREATER NOIDA
	CANDIDATE’S DECLARATION
	ABSTRACT
	This dissertation describes the process of the development of a chat application for developers, from a mere idea to a working cloud service. We have built a real time platform that makes it easy to have a group conversation between a projects’ member...
	ACRONYMS
	CHAPTER- 1
	Introduction
	1.5 System Requirements
	Now, this method is intended in such the way that it takes fewer resources to figure out work correctly. That is the minimum needs that we’d like to require care of:-
	 The system wants a minimum of two GB of ram to run all the options.
	 It wants a minimum 1.3 GHz processor to run smoothly.
	 Rest is all up to the user’s usage can take care of hardware.
	 For security opposing anti-virus is suggested.
	The system is made correctly, and all the testing is done as per the requirements. So, the rest of the things depend on the user, and no one can harm the data or the software if the proper care is done.
	3.1 Hardware Requirements
	NodeJS:
	Mongo DB:
	VS Code:
	Postman:
	Robo3t:

	5.3 Project code snippets
	Code for Login.js
	Code for Chat.js
	Code for index.js
	Output
	CHAPTER-6
	Results and Discussion
	The Group Chat application creates a platform for users to communicate to one another. Chat apps are dynamic tools that allow workers to engage with one another, share meaningful ideas, work through company problems and better plan for your business'...
	The goal of these communication tools should be to simplify things, not make them more complicated.
	CHAPTER -7
	Conclusion And Future Scope
	REFERENCES

