
A Project/Dissertation ETE Report

on
Mask Recognition Technology Using AI/ML

Submitted in partial fulfillment of the

requirement for the award of the degree

of

B.Tech. (CSE)

Under The Supervision
of the Name of

Supervisor Dr. Vipin
Rai

Designation:
Associate Professor

Submitted By
Ayush Bhatt

18SCSE1010177
Ankur Bhatnagar
18SCSE1010240

SCHOOL OF COMPUTING SCIENCE AND ENGINEERING
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

GALGOTIAS UNIVERSITY, GREATER NOIDA
INDIA

December,2021

SCHOOL OF COMPUTING SCIENCE AND
ENGINEERING

GALGOTIAS UNIVERSITY, GREATER
NOIDA

CANDIDATE’S DECLARATION

I/We hereby certify that the work which is being presented in the project, entitled “

Mask Recognition Technology Using AI/ML ” in partial fulfillment of the

requirements for the award of the BACHELOR OF TECHNOLOGY IN

COMPUTER SCIENCE AND ENGINEERING submitted in the School of

Computing Science and Engineering of Galgotias University, Greater Noida, is an

original work carried out during the period of JULY-2021 to DECEMBER-2021,

under the supervision of Dr.Vipin Rai, Associate Professor, Department of

Computer Science and Engineering of School of Computing Science and

Engineering , Galgotias University, Greater Noida

The matter presented in the project has not been submitted by me/us for the award

of any other degree of this or any other places.

18SCSE1010177 - AYUSH BHATT

18SCSE1010240 - ANKUR BHATNAGAR

This is to certify that the above statement made by the candidates is correct to the

best of my knowledge.

Supervisor
(Dr.Vipin Rai, Associate Professor)

I

CERTIFICATE

The Final Thesis/Project/ Dissertation Viva-Voce examination of 18SCSE1010177 - Ayush Bhatt

,18SCSE1010240- Ankur Bhatnagar has been held on _

and his/her work is recommended for the award of BACHELOR OF TECHNOLOGY

IN COMPUTER SCIENCE AND ENGINEERING .

Signature of Examiner(s) Signature of Supervisor(s)

Signature of Project Coordinator Signature of Dean

Date:

Place:

II

Abstract

COVID-19 pandemic has rapidly affected our day-to-day life disrupting world trade and

movements. Wearing a protective face mask has become a new normal. In the near future, many

public service providers will ask the customers to wear masks correctly to avail of their services.

Therefore, face mask detection has become a crucial task to help global society. This paper

presents a simplified approach to achieve this purpose using some basic Machine Learning

packages like TensorFlow, Keras, OpenCV . The proposed method detects the face from the

image correctly and then identifies if it has a mask on it or not. As a surveillance task performer, it

can also detect a face along with a mask in motion. The method attains accuracy up to 95.77% and

94.58% respectively on two different datasets. We explore optimized values of parameters using

the Sequential Convolutional Neural Network model to detect the presence of masks correctly

without causing over-fitting.

In this work, a deep learning-based approach for detecting masks over faces in public places to

curtail the community spread of Coronavirus is presented. The proposed technique efficiently

handles occlusions in dense situations by making use of an ensemble of single and two-stage

detectors at the pre-processing level. The ensemble approach not only helps in achieving high

accuracy but also improves detection speed considerably. Furthermore, the application of transfer

learning on pre-trained models with extensive experimentation over an unbiased dataset resulted in

a highly robust and low-cost system. The identity detection of faces, violating the mask norms

further, increases the utility of the system for public benefits.

Finally, the work opens interesting future directions for researchers. Firstly, the proposed technique

can be integrated into any high-resolution video surveillance devices and not limited to mask

detection only. Secondly, the model can be extended to detect facial landmarks with a facemask for

biometric purposes.

III

Table of Content

Title Page No.

Candidate’s Declaration I

Acknowledgement II

Abstract III

List of figures VI

Chapter 1 Introduction 1

1.1 Introduction

Chapter 2 Literature Survey 2-3

Chapter 3 Tools Used 4-6

Chapter 4 Project Methodology 7-8

Chapter 5 Project Structure 9-34

5.1 Implementing our COVID-19 face 10-17

mask detector training script with

Keras and TensorFlow

5.2 Training the COVID-19 face mask 18-19

detector with Keras/TensorFlow

5.3 Implementing our COVID-19 face 20-23

mask detector for images with

OpenCV

5.4 COVID-19 face mask detection in 24-27

images with OpenCV

5.5 Implementing our COVID-19 face 28-34

mask detector in real-time video

streams with OpenCV

Chapter 6 Suggestions for Improvement 35-36

Chapter 7 UML & User Flow Diagram 37

Chapter 8 Future Scope 38

Chapter 9 Conclusion 39

Chapter 10 Proof of Submission 40

Chapter 11 References 41-42

List Of Figures

S.No Description Page no.

1 COVID-19 face mask detector training
accuracy/loss curves demonstrate high
accuracy and little signs of overfitting on the
data. We’re now ready to apply our
knowledge of computer vision and deep
learning using Python, OpenCV, and
TensorFlow/Keras to perform face mask
detection

19

2 Is this man wearing a COVID-19/Coronavirus
face mask in public? Yes, he is and our
computer vision and deep learning method
using Python, OpenCV, and
TensorFlow/Keras has made it possible to
detect the presence of the mask automatically

24

3 Uh oh. I’m not wearing a COVID-19 face
mask in this picture. Using Python, OpenCV,
and TensorFlow/Keras, our system has
correctly detected “No Mask” for my face

25

4 What is going on in this result? Why is the
lady in the foreground not detected as wearing
a COVID-19 face mask? Has our COVID-19
face mask detector built with computer vision
and deep learning using Python, OpenCV, and
TensorFlow/Keras failed us?

26

VI

Chapter-1 Introduction

According to the World Health Organization (WHO) official Status Report - 205, coronavirus 2019

(COVID-19) has infected more than 20 million people worldwide causing more than 0.7 million

deaths. People with COVID-19 had a number of reported symptoms - ranging from mild to severe

illness. Respiratory problems such as shortness of breath or difficulty breathing are one of them.

Adults with pneumonia may be more prone to COVID-19 complications as they appear to be at

higher risk. Other common human coronaviruses that infect humans worldwide are 229E, HKU1,

OC43, and NL63. Prior to the demise of humans, viruses such as the 2019-nCoV, SARS-CoV, and

MERS-CoV infect animals and turn them into human coronaviruses. People with respiratory

problems can expose anyone (close to them) to a contagious bead. Circumcision of an infected person

can cause transmission of communication as droplets carrying the virus may reach its immediate

vicinity.

To prevent certain respiratory infections, including COVID-19, wearing a clinical mask is very

necessary. The public should be aware that you must wear a mask to control the source or dislike

COVID-19. Points that may be of interest to the use of masks are to reduce the risk of injury from a

dangerous person during the "pre-symptomatic period" and to discriminate against sophisticated

people who wear a mask to prevent the spread of the virus. The WHO emphasizes the prioritization

of medical masks and respirators for health care Associates. Therefore, the discovery of a face mask

has become an important activity in today's world society.

Finding a face mask involves finding the location of the face and finding out if it has a mask on it or

not. The problem is with the acquisition of a common object to determine the categories of objects.

Phase identification is associated with the division of a particular business group namely Face. It has

many applications, such as automatic driving, education, surveillance, and more . This paper

introduces a simplified way to achieve the above goal using basic Machine Learning (ML) packages

such as TensorFlow, Keras, OpenCV and Scikit-Learn.

1

Chapter-2 Literature Survey

1: MAMATA S. KALAS, REAL TIME FACE DETECTION AND TRACKING USING

OPENCV, International Journal of Soft Computing and Artificial Intelligence, ISSN:

2321-404X, Volume-2, Issue-1, May- 2014

Haar- like feature: Haar-like wavelets are binary rectangular representations of 2D waves. A common

visual representation is by black (for value minus one) and white (for value plus one) rectangles. The

square above the 0-1- interval shows the corresponding Haar-like wavelet in common black-white

representation. The rectangular masks used for visual object detection are rectangles tessellated by

black and white smaller rectangles. Those masks are designed in correlation to visual recognition

tasks to be solved, and known as a Haar-like feature each call, a distribution of weights is updated

that indicates the importance of examples in the data set for the classification. On each round, the

weights of each incorrectly classified example are increased, and the weights of each correctly

classified example are decreased, so the new classifier focuses on the examples which have so far

eluded correct classification.

2:Walid Hariri, Efficient Masked Face Recognition Method during the COVID-19 Pandemic,

pp.1-7, July 2020

Pre-processing and cropping filter: The images of the dataset are already cropped around the face, so

there is no need for a face detection stage to localize the face from each image. To do so, we detect 68

facial landmarks using Dlib-ml open- source library. According to the eyes location, we apply a 2D

rotation to make them horizontal. The next step is to apply a cropping filter in order to extract only

the non- masked region. To do so, we firstly normalize all face images into 240 x 240 pixels. Next,

we use the partition into blocks. The principle of this technique is to divide the image into 100

fixed-size square blocks (24 x 24 pixels in our case). Then we extract only the blocks including the

non-masked region (blocks from number 1 to 50). Finally, we eliminate the rest of the numbers of the

blocks.

2

3:Vinitha.V1, Valentina.V2, COVID-19 FACEMASK DETECTION WITH DEEP LEARNING

AND COMPUTER VISION, International Research Journal of Engineering and Technology

(IRJET), Volume: 07, pp.1-6, Aug 2020.

The proposed system focuses on how to identify the person on an image/video stream wearing a face

mask with the help of computer vision and deep learning algorithms by using the OpenCV, Tensor

flow, Keras and PyTorch libraries. The majority of the images were augmented by OpenCV. The set

of images were already labeled mask and no mask.

The images that were present were of different sizes and resolutions, probably extracted from

different sources or from machines (cameras) of different resolutions.

4: S. Ghosh, N. Das and M. Nasipuri, "Reshaping inputs for convolutional neural network:

Some common and uncommon methods", Pattern Recognition, vol. 93, pp. 79-94, 2019.

convolutional neural network (CNNs) in computer vision comes with a strict constraint regarding the

size of the input image. The prevalent practice reconfigures the images before fitting them into the

network to surmount the inhibition.

Here the main challenge of the task is to detect the face from the image correctly and then identify if

it has a mask on it or not. In order to perform surveillance tasks, the proposed method should also

detect a face along with a mask in motion.

3

Tools Used
A. TensorFlow

TensorFlow, an interface for expressing machine learning algorithms, is utilized for implementing

ML systems into fabrication over a bunch of areas of computer science, including sentiment analysis,

voice recognition, geographic information extraction, computer vision, text summarization,

information retrieval, computational drug discovery and flaw detection to pursue research . In the

proposed model, the whole Sequential CNN architecture (consists of several layers) uses TensorFlow

at backend. It is also used to reshape the data (image) in the data processing.

B. Keras

Keras gives fundamental reflections and building units for creation and transportation of ML

arrangements with high iteration velocity. It takes full advantage of the scalability and cross-platform

capabilities of TensorFlow. The core data structures of Keras are layers and models . All the layers

used in the CNN model are implemented using Keras. Along with the conversion of the class vector

to the binary class matrix in data processing, it helps to compile the overall model.

C. OpenCV

OpenCV (Open Source Computer Vision Library), an open-source computer vision and ML software

library, is utilized to differentiate and recognize faces, recognize objects, group movements in

recordings, trace progressive modules, follow eye gesture, track camera actions, expel red eyes from

pictures taken utilizing flash, find comparative pictures from an image database, perceive landscape

and set up markers to overlay it with increased reality and so forth . The proposed method makes use

of these features of OpenCV in resizing and color conversion of data images.

4

DataSet

Two data sets were used to check the current method. Dataset 1 has 1376 photos with 690 photos of

people wearing face masks and another 686 photos of people without wearing face masks. Figure 1

usually consists of the shape of the front face and one face without a mask.

Fig 1

Dataset 2 from Kaggle contains 853 images and its contents are highlighted with or without a mask.

On the figure 2 Other face masks are head turns, tilt and tilt with multiple faces on the frame and

different types of masks with different colors as well.

5

Fig 2

6

Project Methodology

In order to train a custom face mask detector, we need to break our project into two distinct phases,

each with its own respective sub-steps (as shown by Figure 1 below):

● Training: Here we’ll focus on loading our face mask detection dataset from disk, training a

model (using Keras/TensorFlow) on this dataset, and then serializing the face mask detector to

disk

● Deployment: Once the face mask detector is trained, we can then move on to loading the mask

detector, performing face detection, and then classifying each face as with_mask or

without_mask

7

We’ll review each of these phases and associated subsets in detail in the remainder of this tutorial, but

in the meantime, let’s take a look at the dataset we’ll be using to train our COVID-19 face mask

recogniser.

Our dataset consists of 1,376 images belonging to two classes:

● with_mask: 690 images

● without_mask: 686 images

Our goal is to train a custom deep learning model to detect whether a person is or is not wearing a

mask.

8

Project Structure

The dataset/ directory contains the data described in the “Our COVID-19 face mask detection

dataset” section.

Three image examples/ are provided so that you can test the static image face mask detector.

We’ll be reviewing three Python scripts in this:

train_mask_detector.py: Accepts our input dataset and fine-tunes MobileNetV2 upon it to create our

mask_detector.model. A training history plot.png containing accuracy/loss curves is also produced

detect_mask_image.py: Performs face mask detection in static images detect_mask_video.py: Using

your webcam, this script applies face mask detection to every frame in the stream

9

In the next two sections, we will train our face mask detector.

Implementing our COVID-19 face mask detector training script with Keras

and TensorFlow

Now that we’ve reviewed our face mask dataset, let’s learn how we can use Keras and TensorFlow to

train a classifier to automatically detect whether a person is wearing a mask or not.

To accomplish this task, we’ll be fine-tuning the MobileNet V2 architecture, a highly efficient

architecture that can be applied to embedded devices with limited computational capacity (ex.,

Raspberry Pi, Google Coral, NVIDIA Jetson Nano, etc.).

Deploying our face mask detector to embedded devices could reduce the cost of manufacturing such

face mask detection systems, hence why we choose to use this architecture.

10

Our set of tensorflow.keras imports allow for:

● Data augmentation

● Loading the MobilNetV2 classifier (we will fine-tune this model with pre-trained ImageNet

weights)

● Building a new fully-connected (FC) head

● Pre-processing

● Loading image data

We’ll use scikit-learn (sklearn) for binarizing class labels, segmenting our dataset, and printing a

classification report.

My imutils paths implementation will help us to find and list images in our dataset. And we’ll use

matplotlib to plot our training curves.

Our command line arguments include:

--dataset: The path to the input dataset of faces and and faces with masks

--plot: The path to your output training history plot, which will be generated using matplotlib

--model: The path to the resulting serialized face mask classification model

11

I like to define my deep learning hyperparameters in one place:

Here, I’ve specified hyperparameter constants including my initial learning rate, number of training

epochs, and batch size. Later, we will be applying a learning rate decay schedule, which is why we’ve

named the learning rate variable INIT_LR.

At this point, we’re ready to load and pre-process our training data:

12

In this block, we are:

● Grabbing all of the imagePaths in the dataset (Line 44)

● Initializing data and labels lists (Lines 45 and 46)

● Looping over the imagePaths and loading + pre-processing images (Lines 49-60).

Pre-processing steps include resizing to 224×224 pixels, conversion to array format, and

scaling the pixel intensities in the input image to the range [-1, 1] (via the preprocess_input

convenience function)

● Appending the pre-processed image and associated label to the data and labels lists,

respectively (Lines 59 and 60)

● Ensuring our training data is in NumPy array format (Lines 63 and 64)

The above lines of code assume that your entire dataset is small enough to fit into memory. If your

dataset is larger than the memory you have available, I suggest using HDF5

Our data preparation work isn’t done yet. Next, we’ll encode our labels, partition our dataset, and

prepare for data augmentation:

13

Lines 67-69 one-hot encode our class labels, meaning that our data will be in the following format:

As you can see, each element of our labels array consists of an array in which only one index is “hot”

(i.e., 1).

Using scikit-learn’s convenience method, Lines 73 and 74 segment our data into 80% training and the

remaining 20% for testing.

During training, we’ll be applying on-the-fly mutations to our images in an effort to improve

generalization. This is known as data augmentation, where the random rotation, zoom, shear, shift,

and flip parameters are established on Lines 77-84. We’ll use the aug object at training time.

But first, we need to prepare MobileNetV2 for fine-tuning:

14

Fine-tuning setup is a three-step process:

● Load MobileNet with pre-trained ImageNet weights, leaving off head of network (Lines 88

and 89)

● Construct a new FC head, and append it to the base in place of the old head (Lines 93-102)

● Freeze the base layers of the network (Lines 106 and 107). The weights of these base layers

will not be updated during the process of backpropagation, whereas the head layer weights

will be tuned.

Fine-tuning is a strategy I nearly always recommend to establish a baseline model while saving

considerable time.

With our data prepared and model architecture in place for fine-tuning, we’re now ready to compile

and train our face mask detector network:

15

Lines 111-113 compile our model with the Adam optimizer, a learning rate decay schedule, and

binary cross-entropy. If you’re building from this training script with > 2 classes, be sure to use

categorical cross-entropy.

Face mask training is launched via Lines 117-122. Notice how our data augmentation object (aug)

will be providing batches of mutated image data.

Once training is complete, we’ll evaluate the resulting model on the test set:

Here, Lines 126-130 make predictions on the test set, grabbing the highest probability class label

indices. Then, we print a classification report in the terminal for inspection.

Line 138 serializes our face mask classification model to disk.

16

Our last step is to plot our accuracy and loss curves:

17

Training the COVID-19 face mask detector with Keras/TensorFlow

We are now ready to train our face mask detector using Keras, TensorFlow, and Deep Learning.

From there, open up a terminal, and execute the following command:

18

Fig. COVID-19 face mask detector training accuracy/loss curves demonstrate high accuracy and little
signs of overfitting on the data. We’re now ready to apply our knowledge of computer vision and deep
learning using Python, OpenCV, and TensorFlow/Keras to perform face mask detection.

As you can see, we are obtaining ~99% accuracy on our test set.

Looking at Figure 10, we can see there are little signs of overfitting, with the validation loss lower

than the training loss.

Given these results, we are hopeful that our model will generalize well to images outside our training

and testing set.

19

Implementing our COVID-19 face mask detector for images with OpenCV

Now that our face mask detector is trained, let’s learn how we can:

● Load an input image from disk

● Detect faces in the image

● Apply our face mask detector to classify the face as either with_mask or without_mask

Open up the detect_mask_image.py file in your directory structure, and let’s get started:

Our driver script requires three TensorFlow/Keras imports to (1) load our MaskNet model and (2)

pre-process the input image.

OpenCV is required for display and image manipulations.

The next step is to parse command line arguments:

20

Our four command line arguments include:
● --image: The path to the input image containing faces for inference

● --face: The path to the face detector model directory (we need to localize faces prior to

classifying them)

● --model: The path to the face mask detector model that we trained earlier in this tutorial

● --confidence: An optional probability threshold can be set to override 50% to filter weak face

detections

Next, we’ll load both our face detector and face mask classifier models:

With our deep learning models now in memory, our next step is to load and pre-process an input

image:

21

Upon loading our --image from disk (Line 37), we make a copy and grab frame dimensions for future
scaling and display purposes (Lines 38 and 39).

Pre-processing is handled by OpenCV’s blobFromImage function (Lines 42 and 43). As shown in the

parameters, we resize to 300×300 pixels and perform mean subtraction.

Lines 47 and 48 then perform face detection to localize where in the image all faces are.

Once we know where each face is predicted to be, we’ll ensure they meet the --confidence threshold

before we extract the faceROIs:

Here, we loop over our detections and extract the confidence to measure against the --confidence

threshold (Lines 51-58).

We then compute the bounding box value for a particular face and ensure that the box falls within the

boundaries of the image (Lines 61-67).

Next, we’ll run the face ROI through our MaskNet model:

22

In this block, we:

● Extract the face ROI via NumPy slicing (Line 71)

● Pre-process the ROI the same way we did during training (Lines 72-76)

● Perform mask detection to predict with_mask or without_mask (Line 80)

From here, we will annotate and display the result!

First, we determine the class label based on probabilities returned by the mask detector model (Line

84) and assign an associated color for the annotation (Line 85). The color will be “green” for

with_mask and “red” for without_mask.

We then draw the label text (including class and probability), as well as a bounding box rectangle for

the face, using OpenCV drawing functions (Lines 92-94).

Once all detections have been processed, Lines 97 and 98 display the output image.

23

COVID-19 face mask detection in images with OpenCV

From there, open up a terminal, and execute the following command:

Fig Is this man wearing a COVID-19/Coronavirus face mask in public? Yes, he is and our
computer vision and deep learning method using Python, OpenCV, and TensorFlow/Keras has
made it possible to detect the presence of the mask automatically.

24

As you can see, our face mask detector correctly labeled this image as Mask.

Let’s try another image, this one of a person not wearing a face mask:

Fig. Uh oh. I’m not wearing a COVID-19 face mask in this picture. Using Python, OpenCV, and
TensorFlow/Keras, our system has correctly detected “No Mask” for my face.

25

Our face mask detector has correctly predicted No Mask.

Let’s try one final image:

Fig. What is going on in this result? Why is the lady in the foreground not detected as wearing a
COVID-19 face mask? Has our COVID-19 face mask detector built with computer vision and
deep learning using Python, OpenCV, and TensorFlow/Keras failed us?

What happened here?

Why is it that we were able to detect the faces of the two gentlemen in the background and correctly

classify mask/no mask for them, but we could not detect the woman in the foreground?

26

The gist is that we’re too reliant on our two-stage process.

Keep in mind that in order to classify whether or not a person is wearing in mask, we first need to

perform face detection — if a face is not found (which is what happened in this image), then the mask

detector cannot be applied!

The reason we cannot detect the face in the foreground is because:

It’s too obscured by the mask

The dataset used to train the face detector did not contain example images of people wearing face

masks

Therefore, if a large portion of the face is occluded, our face detector will likely fail to detect the face.

27

Implementing our COVID-19 face mask detector in real-time video streams
with OpenCV

At this point, we know we can apply face mask detection to static images — but what about real-time

video streams?

Is our COVID-19 face mask detector capable of running in real-time?

Let’s find out.

Open up the detect_mask_video.py file in your directory structure, and insert the following code:

The algorithm for this script is the same, but it is pieced together in such a way to allow for

processing every frame of your webcam stream.

Thus, the only difference when it comes to imports is that we need a VideoStream class and time.

Both of these will help us to work with the stream. We’ll also take advantage of imutils for its

aspect-aware resizing method.

Our face detection/mask prediction logic for this script is in the detect_and_predict_mask function:

28

By defining this convenience function here, our frame processing loop will be a little easier to read

later.

This function detects faces and then applies our face mask classifier to each face ROI. Such a

function consolidates our code — it could even be moved to a separate Python file if you so choose.

Our detect_and_predict_mask function accepts three parameters:

● frame: A frame from our stream

● faceNet: The model used to detect where in the image faces are

● maskNet: Our COVID-19 face mask classifier model

● Inside, we construct a blob, detect faces, and initialize lists, two of which the function is set to

return. These lists include our faces (i.e., ROIs), locs (the face locations), and preds (the list of

mask/no mask predictions).

From here, we’ll loop over the face detections:

29

Inside the loop, we filter out weak detections (Lines 34-38) and extract bounding boxes while

ensuring bounding box coordinates do not fall outside the bounds of the image (Lines 41-47).

Next, we’ll add face ROIs to two of our corresponding lists:

After extracting face ROIs and pre-processing (Lines 51-56), we append the the face ROIs and

bounding boxes to their respective lists.

We’re now ready to run our faces through our mask predictor:

30

The logic here is built for speed. First we ensure at least one face was detected (Line 63) — if not,

we’ll return empty preds.

with Line 67 to convert faces into a 32-bit floating point NumPy array. Additionally, Line 61 from the

previous block has been removed (formerly, it added an unnecessary batch dimension). The

combination of these two changes now fixes a bug that was preventing multiple preds to be returned

from inference. With the fix, multiple faces in a single image are properly recognized as having a

mask or not having a mask.

Secondly, we are performing inference on our entire batch of faces in the frame so that our pipeline is

faster (Line 68). It wouldn’t make sense to write another loop to make predictions on each face

individually due to the overhead (especially if you are using a GPU that requires a lot of overhead

communication on your system bus). It is more efficient to perform predictions in batches.

Line 72 returns our face bounding box locations and corresponding mask/not mask predictions to the

caller.

Next, we’ll define our command line arguments:

31

Our command line arguments include:

● --face: The path to the face detector directory

● --model: The path to our trained face mask classifier

● --confidence: The minimum probability threshold to filter weak face detections

With our imports, convenience function, and command line args ready to go, we just have a few

initializations to handle before we loop over frames:

Here we have initialized our:

● Face detector

● COVID-19 face mask detector

● Webcam video stream

Let’s proceed to loop over frames in the stream:

We begin looping over frames on Line 103. Inside, we grab a frame from the stream and resize it

32

(Lines 106 and 107).

From there, we put our convenience utility to use; Line 111 detects and predicts whether people are

wearing their masks or not.

Let’s post-process (i.e., annotate) the COVID-19 face mask detection results:

Inside our loop over the prediction results (beginning on Line 115), we:

● Unpack a face bounding box and mask/not mask prediction (Lines 117 and 118)

● Determine the label and color (Lines 122-126)

● Annotate the label and face bounding box (Lines 130-132)

Finally, we display the results and perform cleanup:

33

After the frame is displayed, we capture key presses. If the user presses q (quit), we break out of the

loop and perform housekeeping.

Great job implementing your real-time face mask detector with Python, OpenCV, and deep learning

with TensorFlow/Keras!

To create our face mask detector, we trained a two-class model of people wearing masks and people

not wearing masks.

We fine-tuned MobileNetV2 on our mask/no mask dataset and obtained a classifier that is ~99%

accurate.

We then took this face mask classifier and applied it to both images and real-time video streams by:

● Detecting faces in images/video

● Extracting each individual face

● Applying our face mask classifier

Our face mask detector is accurate, and since we used the MobileNetV2 architecture, it’s also

computationally efficient, making it easier to deploy the model to embedded systems (Raspberry Pi,

Google Coral, Jetson, Nano, etc.).

34

Suggestions for improvement

As you can see from the results sections above, our face mask detector is working quite well despite:

Having limited training data

The with_mask class being artificially generated (see the “How was our face mask dataset created?”

section above).

To improve our face mask detection model further, you should gather actual images (rather than

artificially generated images) of people wearing masks.

While our artificial dataset worked well in this case, there’s no substitute for the real thing.

Secondly, you should also gather images of faces that may “confuse” our classifier into thinking the

person is wearing a mask when in fact they are not — potential examples include shirts wrapped

around faces, bandana over the mouth, etc.

All of these are examples of something that could be confused as a face mask by our face mask

detector.Finally, you should consider training a dedicated two-class object detector rather than a

simple image classifier.

Our current method of detecting whether a person is wearing a mask or not is a two-step process:

Step #1: Perform face detection

Step #2: Apply our face mask detector to each face

The problem with this approach is that a face mask, by definition, obscures part of the face. If enough

of the face is obscured, the face cannot be detected, and therefore, the face mask detector will not be

35

applied.

To circumvent that issue, you should train a two-class object detector that consists of a with_mask

class and without_mask class.

Combining an object detector with a dedicated with_mask class will allow improvement of the model

in two respects.

First, the object detector will be able to naturally detect people wearing masks that otherwise would

have been impossible for the face detector to detect due to too much of the face being obscured.

Secondly, this approach reduces our computer vision pipeline to a single step — rather than applying

face detection and then our face mask detector model, all we need to do is apply the object detector to

give us bounding boxes for people both with_mask and without_mask in a single forward pass of the

network.

Not only is such a method more computationally efficient, it’s also more “elegant” and end-to-end.

36

UML Diagram:

UserFlow Diagram

37

Future Scope

The model proposed is presently in phase I of operation and what we have shown is a direct

application of it. However in future, following enhancements/ improvements can be superimposed to

facilitate the ease of use and simplicity. These are described below:- Phase-I: Current version uses

Laptop with relevant software installed As such, the requirement of such a loaded laptop with a

camera is a must for execution of the software. Therefore the laptop should be installed at the point of

inspection itself and some skilled operator should be present to type and execute the relevant

commands. Phase-II: Replacement of laptop with a compact model with camera attached for video

capture The plan is to replace the laptop with a workable model/ device such as Raspberry Pi which

needs to be installed at the site of inspection/ site. Raspberry Pi models are compact in size. This will

reduce installation complexities by 90%. This device/ model will be attached to a laptop only for

execution of commands with help of LAN cable. As such commands can be run by a remote operator

also and the requirement of laptop present at the site is negated. Phase-III: Removal of laptop for all

purposes. Execution only with help of model There will not be any constraint of the laptop for

executing any command to run the model either at the site or at any remote location. The device

which is comparable to the size of a credit card with attached camera and loaded with necessary

algorithms/code would meet the requirements. There would not be any obligation of trained/ semi

trained individuals to run the commands. A normal sentry/ operator should be able to operate the

model

38

CONCLUSION

Various methods and techniques for the detection and recognition of face masks are reviewed in this

paper. In comparison, features like Haar are features of digital images used to visualize an object.

They got their name because of their exact resemblance to the Haar waves and were used on a

real-time face detector. The main advantage of a feature like Haar over many other features is its

speed of calculation. Adaboost may be less prone to overloading than most learning algorithms. The

worst feature of the flexible upgrade is its sensitivity to noisy data and external objects. In real world

situations people may be covered by other things, such as face masks. This makes the facial

recognition process a very challenging task. A method based on in-depth learning and

quantitative-based approaches achieves high recognition performance. MobileNetV2 is a very

efficient tool for object acquisition and segmentation. MobileNetV2 offers a highly efficient

mobile-based model that can be used as the basis for many visual acuity tasks. To our best

knowledge, this work deals with the problem of face recognition covered with masks and different

methods during the COVID19 epidemic. We must point out that this research is not limited to this

epidemic as many people are aware of it, take care of their health and wear masks to protect

themselves from pollution and reduce the spread of germs.

39

Proof of Submission

40

References:

1. Ariyanto, Mochammad & Haryanto, Ismoyo & Setiawan, Joga & Muna,Munadi &
Radityo, M.. (2019). Real-Time Image Processing Method Using Raspberry Pi for a Car
Model. 46-51.

2. V. K. Bhanse and M. D. Jaybhaye,(2018) "Face Detection and TrackingUsing Image
Processing on Raspberry Pi," 2018 International Conferenceon Inventive Research in
Computing Applications (ICIRCA),Coimbatore, India, pp. 1099-1103.

3. A. Das, M. Wasif Ansari and R. Basak, (2020) "Covid-19 Face MaskDetection Using
TensorFlow, Keras and OpenCV," 2020 IEEE 17th IndiaCouncil International Conference
(INDICON), New Delhi, India, pp. 1-5.

4. M. S. Islam, E. Haque Moon, M. A. Shaikat and M. Jahangir Alam,(2020) "A Novel
Approach to Detect Face Mask using CNN," 2020 3rdInternational Conference on Intelligent
Sustainable Systems (ICISS),Thoothukudi, India, pp. 800-806.

5. Joseph Redmon, S. D. (2016) “You Only Look Once(YOLO) Unified,Real Time Object
Detection” IEEE.

6. A. Lodh, U. Saxena, A. khan, A. Motwani, L. Shakkeera and V. Y.Sharmasth, (2020)
"Prototype for Integration of Face Mask Detection andPerson Identification Model –
COVID-19," 2020 4th InternationalConference on Electronics, Communication and
Aerospace Technology(ICECA), Coimbatore, India, pp. 1361-1367.

7. Luigi Atzori, Antonio iera and Giacomo Morabito. (2010) ‘The Internetof Things: A
Survey’, Journal of Computer Networks Vol.54,No.15,pp.2787-2805.

8. Lu Tan and Neng Wang. (2010) ‘Future internet: The Internet of Things’,IEEE Xplore
Proc., 3rd IEEE Int.Conf. Adv. Comp. Theory. Engg.(ICACTE), pp:1-9.

9. J. Marot and S. Bourennane, (2017)"Raspberry Pi for image processing education,"25th
European Signal Processing Conference (EUSIPCO),Kos, Greece, 2017, pp. 2364-2366.40

10.S. A. Sanjaya and S. Adi Rakhmawan, (2020) "Face Mask DetectionUsing MobileNetV2
in The Era of COVID-19 Pandemic," 2020International Conference on Data Analytics for
Business and Industry:Way Towards a Sustainable Economy (ICDABI), Sakheer, Bahrain,
pp.1-5.

41

11.Senthilkumar.R and Gnanamurthy.R.K. (2016) ‘A Comparative Study of2D PCA Face
Recognition Method with Other Statistically Based FaceRecognition Methods’, Journal of the
Institution of Engineers India SeriesB (Springer Journal), Vol.97, pp.425-430.

12.Senthilkumar.R and Gnanamurthy.R.K. (2017) 'Performance Improvement in classification
rate of appearance based statistical face recognition methods using SVM classifier”, the IEEE
InternationalConference on Advanced Computing and Communication Systems(ICACCS),
6-7 January 2017, pp. 286-292. 46

13. Senthilkumar.R and Gnanamurthy.R.K. (2018) ‘HANFIS: A New Fast And Robust
Approach for Face Recognition and Facial ImageClassification’, Advances in Intelligent
Systems and Computing SmartInnovations in Communication and Computational Sciences,
Chapter 8,pp:81-99.

14.S. Susanto, F. A. Putra, R. Analia and I. K. L. N. Suci Ningtyas, (2020)"The Face Mask
Detection For Preventing the Spread of COVID-19 atPoliteknik Negeri Batam," 2020 3rd
International Conference on AppliedEngineering (ICAE), Batam, Indonesia, pp. 1-5.

15. S. S. Walam, S. P. Teli, B. S. Thakur, R. R. Nevarekar and S. M. Patil,(2018) "Object
Detection and Separation Using Raspberry PI," 2018Second International Conference on
Inventive Communication andComputational Technologies (ICICCT), Coimbatore, India, pp.
214-217.

16. Yair Meidan, Michael Bohadana, Asaf Shabatai, Juan David Guarnizoand NilsOle
Tippenhauer and Yuval Elovici. (2017) ‘ProfilloT: a machine learning approach for IoT
device identification of network traffic analysis’, proc.Sym. App. Comp., SAC, pp: 506-509.

17.G. Yang et al.,(2020) "Face Mask Recognition System with YOLO V5 Based on Image
Recognition," 2020 IEEE 6th International Conferenceon Computer and Communications
(ICCC), Chengdu, China, pp.1398-1404.

42

