A Project Report

on

FOOD CALORIE PREDICTION USING DEEP
LEARNING

Submitted in partial fulfillment of the
requirement for the award of the degree

of

Bachelor of Technology in Computer Science and Engineering

a GALGOTIAS
UNIVERSITY

(Established under Galgotias University Uttar Pradesh Act No. 14 of 2011)

Under The Supervision of
Dr. Prashant Johri
Assistant Professor

Department of Computer Science and Engineering

Submitted By

18SCSE1010128 — PRATYUSH SRIVASTAVA
18SCSE1010030 - ABHISHEK TIWARI

SCHOOL OF COMPUTING SCIENCE AND ENGINEERING
DEPARTMENT OF COMPUTER SCIENCE AND
ENGINEERING GALGOTIAS UNIVERSITY, GREATER NOIDA,
INDIA DECEMBER - 2021



SCHOOL OF COMPUTING SCIENCE AND
ENGINEERING
GALGOTIAS UNIVERSITY, GREATER NOIDA

CANDIDATE’S DECLARATION

I/We hereby certify that the work which is being presented in the project, entitled *
Food Calorie Prediction Using Deep Learning > in partial fulfillment of the
requirements for the award of the BACHELOR OF TECHNOLOGY IN
COMPUTER SCIENCE AND ENGINEERING submitted in the School of
Computing Science and Engineering of Galgotias University, Greater Noida, is an
original work carried out during the period of JULY-2021 to DECEMBER-2021,
under the supervision of Dr. Prashant Johri, Assistant Professor, Department of
Computer Science and Engineering of School of Computing Science and

Engineering , Galgotias University, Greater Noida

The matter presented in the project has not been submitted by me/us for the award

of any other degree of this or any other places.

18SCSE1010128 — PRATYUSH SRIVASTAVA
18SCSE1010030 — ABHISHEK TIWARI

This is to certify that the above statement made by the candidates is correct to the

best of my knowledge.

Supervisor

(Dr.Prashant Johri, Assistant Professor)



CERTIFICATE

The Final Thesis/Project/ Dissertation Viva-Voce examination of 18SCSE1010128
— PRATYUSH SRIVASTAVA, 18SCSE1010030 — ABHISHEK TIWARI has
been held on 18-12-2021 and his/her work is recommended for the award of
BACHELOR OF TECHNOLOGY IN COMPUTER SCIENCE AND

ENGINEERING.

Signature of Examiner(s) Signature of Supervisor(s)
Signature of Project Coordinator Signature of Dean
Date:

Place:



ABSTRACT

Food is the  one of the major need of any human body or We can
say that Food is the fuel of  human body & one of  the
basic necessities of human beings. Due to modern
life style dietary habits of human being have changed
which include consumption of ready mode, packaged &
fast food with the reduction of physical labour or
exercise carried out by human beings. This kind of
unbalanced diet is a high risks factor for diseases &
ailments such as obesity, cardiac problems & a host of other

diseases. Accurate methods to measure food and energy intake are crucial for
the battle against obesity. Providing users/patients with convenient and intelligent
solutions that help them measure their food intake and collect dietary information
are the most valuable insights toward long- term prevention and successful
treatment programs. In this paper, we propose an assistive calorie measurement
system to help patients and doctors succeed in their fight against diet-related
health conditions.

Our proposed system runs on smartphones, which allow the user to take a
picture of the food and measure the amount of calorie intake automatically. In
order to identify the food accurately in the system, we use deep convolutional
neural networks to classify 10000 high- resolution food images for system
training. Our results show that the accuracy of our method for food recognition

of single food portions is 99%. Our work is aimed at determination
or classification of food using image processing(MobileNet) inconjunction
with  other intelligent algorithms, with the ultimate aim of
determination/estimation of caorie intake our work acts as
basis of modern computer assisted, remote dietary
management systems. Our system comprises of segmentation of
food in the image, then extracting image parameters such
as area, major axis, minor axis convex area from
the segmented food area, & then using an already
trained artificial neural network to classify the food on
basis of these parameters. Multiple methods have been
combined using weighted averaging to achieve  food
segmentation, High detection accuracy is obtained by
combination of multiple image processing techniques with

leven barg marquard function flitting neural network.



Title

Table of Contents

Candidates Declaration
Acknowledgement

Abstract

List of Table
List of Figures

Acronyms
Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Page
No.
Introduction 1
1.1 REQUIREMENT OF HALL TICKET 2

1.2 DISADVANTAGE OF CURRENT SYSTEM3
1.3 MERITS OF PROPOSED SYSTEM

Literature Survey/Project Design 5
Functionality/Working of Project 9
Results and Discussion 11
Conclusion and Future Scope 41

5.1 Conclusion 41

5.2 Future Scope 42
Reference 43

Publication/Copyright/Product 45



INTRODUCTION

When people’s Body Mass Index (BMI) is over thirty (kg/m2), they're usually
thought-about to be corpulent. High BMI will increase the chance of diseases like
cardiopathy [1]. the most reason of fat is attributable to the imbalance between the
number of caloric intake (consumption) and energy output (expenditure). due to
disposition to record and track, lack of connected nutritionary info or alternative
reasons, patients typically expertise hassle in dominant the number of calories they
consume. There square measure countless projected strategies to estimate calories
supported laptop vision [2, 3, 4, 5], however once the authors’ analysis, the accuracy
of detection and volume estimation still ought to be improved. during this paper, the
most distinction from alternative similar approaches is that it needs associate input of
2 pictures, and also the use quicker R-CNN to sight the item and GrabCut algorithmic
rule to get every food’s contour. After that, the authors will estimate every food’s
volume and calories.

Human services sustenance and great practices indietary patterns pull
in individuals' consideration as of late. These days, innovation can
enable clients to monitor their sustenance utilization and increment
mindfulness in every day diet by observing nourishment propensities.
As of late, various research papers have exhibited that machine learning
strategies and PC vision procedures can help construct frameworks for
programmed acknowledgment of various nourishment and gauge the
measure of sustenance [1] - [5]

Accordingly, the purpose of this work is to improve the identification
process of fruit and vegetables performed by the self-service systems
in the retail market. More specifically, the improvement should consist
of a faster process and a more user friendly system. The purpose
of 1mplementing computer vision to the system is to narrow the
selection of possible objects and thus reduce the strain on the user.
Additionally, the wuse of computer vision in self-service systems can
simplify the process of identifying objects by moving the process
from a human to a computer. Theoretically, this could hasten the
process to identify products and minimize the amount of errors by
removing the human factor.

The work and this research paper is to elaborate one algorithm which is not
very heavy loaded and provide excellent accuracy as well.For achieving so We



are going to use the Concept of Transfer Learning and MobileNet . Transfer
Learning is a machine learning method where a model developed
for a task is reused as the starting point for a model on a
second task. .. Common examples of transfer learning 1in deep
learning. When to use transfer learning on your own predictive
modeling problems. Where as MobileNet-v2 is a convolutional neural
network that i1s 53 layers deep. You can load a pretrained version
of the network trained on more than a million images from the
ImageNet database [1]. The pretrained network can classify images
into 1000 object categories, such as keyboard, mouse, pencil, and
many animals.

Motivation:

Computer vision has been introduced to estimate calories from food images. But
current food image datasets don’t contain volume and mass records of foods, which
leads to an incomplete calorie estimation. Current obesity treatment techniques
require the patient to record all food intakes per day. In most of the cases,
unfortunately patients have troubles in estimating the amount of food intake because
of the self-denial of the problem, lack of nutritional information, the manual process
of writing down this information (which is tiresome and can be forgotten), and other
reasons.

Related work

As of late, it has been exhibited that visual acknowledgment and
machine learning strategies can be utilized to create frameworks that
keep tracks of human nourishment utilization. The real handiness of
these framework intensely relies wupon the capacity of perceiving
sustenance in unconstrained conditions. In this paper, we proposed
another dataset for the assessment of sustenance acknowledgment
calculations. The pictures have been obtained in a genuine -cafeteria
and delineate a genuine cafeteria plate with

sustenance masterminded in various ways. Every plate contains various
occurrences of nourishment classes. We gathered an arrangement of 1027
plate for an aggregate of 3616 nourishment occurrences having a place
with 73 sustenance classes. The plate pictures have been physically
sectioned utilizing precisely drawn polygonal limits. We structured a
reasonable programmed plate examination pipeline that takes a plate



picture as input, finds the areas of intrigue, and predicts the relating
nourishment class for every district. @~ We  assessed three distinctive
arrangement  techniques utilizing a few  visual descriptors. The best
execution has been gotten by utilizing CNNs-based features. The dataset,
and also the benchmark system, are made accessible to the examination
network. On account of the manner in which it has been commented
on, this database alongside the UNIMIB2015 can be utilized for
Sustenance  division, acknowledgment, and amount estimation.

The robotic fruit harvesting system is developed with the help of fruit detection
algorithm using multiple structures identical intensity, color, alignment and edge of
the fruit images. With the help of improved multiple feature based algorithm the
detecting effectiveness is attained up to 90% for various fruit items [1]. For the
exploration of the image FFB, the expansion of out-of-doors image inspection of oil
palm fruit fresh bunches (FFB) are essential. The software examination generates the
accurate prototypical and connection component amongst the light intensity in kin to
value of FFB from RGB element of image occupied . The on-line valuation of the
superiority of fruits the calculation of the effectiveness of these methods concerning
the next superiority facets hereby size, color, stem position and recognition of outer
flaws is offered . The main stages of the pipeline are segmentation of items from
background, feature extraction mainly based on color, and classification with
Gaussian Bayes classifier . An automatic spherical fruits recognition system in the
natural conditions facing difficult situations such as shadows, bright areas, occlusions
and overlapping fruit Convolutional neural Network achieved ample improved than
did outdated approaches By means of handcrafted features. Complete comment of
competent convolution kernels, we inveterate that color structures are vital to
nutrition image identification . Defined nutrition identification consuming a minor
dataset, which was proposed to be secondhand in a Smartphone based food
classification scheme . Which identifies unhealthy foods beginning cartridges of
eating and guess meal calories created on identifying diets Estimating the ideal
heaviness to trust diverse image features with MKL, they take attained the 61.34%
classification percentage for 50 types of diets through the cross-validation-based
assessment

State Of Work

The food classification, previous work was concentrated on basic machine learning
algorithms like Random Forest and SVM with hand-tailored features. These methods
are generally based on relative or spatial relationships of features. But these methods
come with computational cost at a large scale. Random forest came up with an



accuracy of 62% whereas SVM came up with an accuracy of 67% and our CNN
model built with TensorFlow gave an accuracy of 97% . Also, we show here how the
model behaves with hyper parameter tuning by changing parameters like the learning
rate and number of neurons in each hidden layer which govern how effectively a
model behaves. The working model if this tensor flow is divided into different layer.
That is sub category of L1 and L2 that will be helpful for optimizing the task.
Tensorflow’s Object detection API to detect multiple food items in each image and
then using mathematical calculations to find the calorie content of food classes
present in the image There are multiple flows of below approach such as Thumb,
Simple Food Images, and Size assessment. So we utilize thumb for the volume
expectation utilizing clients, the thumb is anything but a proficient way. Since other
than the enlisted client whoever utilizes this than the precision will drop. Just Works
on Simple Food Images, this methodology doesn't chip away at complex food
varieties like soup, sandwich and so forth it just deals with straightforward food
sources like apple, banana and so on . | utilized a dataset of inexpensive food pictures
dependent on the Pittsburgh Fast-Food Image Dataset. Mathworks image processing
toolbox is utilized for separating highlights . Absolute of 11,868 crude highlights
separated from RGB portrayal of the picture. Crude highlights decreased utilizing
Principal Component Analysis (PCA) and Information Gain (InfoGain) to 23
highlights . Utilizing these highlights and Sequential Minimal Optimization (SMO)
they arranged the food. Size expectation is finished by utilizing Random Forest in
grams. At long last, the calorie of the food is anticipated utilizing multilayer
perceptron. They investigate various sorts of portrayal of a picture, for example,
Averaged RGB, Gray Scale, BW 0.7 and BW 0.5 however they get the best outcomes
with RGB portrayal . For the size assessment, the ground truth estimation of the food
will be taken from its producer. On account of that this technique gives a low
precision on the food sources from different producers. White Background, they
utilized a white foundation for the food sources in this tasks dataset. Therefore, this
venture isn't effective for day by day. A dataset of 2978 pictures of 19 distinctive food
were taken. So | utilized Faster RCNN for object discovery . Each jumping box that
made by Faster R-CNN is arranged. Utilizing the GrabCut calculation for picture
division I separated food into 3 classes’ ellipsoid, segment and unpredictable .
Utilizing the coin as a kind of perspective point we can ascertain the volume of the
food relying upon its shape. Realizing the volume mass can be handily determined
utilizing the thickness of the food. With the mass is realized we can figure the calorie
of the food.



DATASETS AND METHODS

A. Datasets

For our paper, annotated images of the Indian meal were required. For this we
extracted custom dataset from images.google.com and labelled the images using
labellmg. Our custom dataset contains 500 annotated images of 6 classes and split 2/3
and 1/3 in train and validation dataset. 6 classes of the dataset being Bhaji(vegetable),
Dal(curry), Rice, Roti, Puri and Gulab Jamun.

A.1 CNN (custom dataset)

We performed binary classification on custom dataset of the Indian Roti which helped
us predict a given image to be a Roti or not. In this we used a total of 200 Roti and
non-roti images.

A.2 YOLO V2 (COCO dataset)

We used the COCO dataset to train the YOLO model first. It contains 80 object classes
such as person, laptop, apple, etc. With 35000 images in the dataset with train, valid,
test split in 1/2,1/4,1/4 respectively. Annotations being in XML and text format

A.3 YOLO V3 (custom dataset)

Our custom dataset contains 500 annotated images of 6 classes and split 2/3 and 1/3 in
train and validation dataset. 6 classes of the dataset being Sabji (vegetable), Dal (Indian
curry), Rice, Roti, Puri and Gulab Jamun.

B. Methods

The first step in our project is to register a plate and a reference object which will be a
1-rupee or 2-rupee or 5-rupee coin and by using OpenCV modules we will calculate
the dimensions of the plate that will be further used to give the calorie count of the
food item. For the food detection we are using YOLO (You Only Look Once) which is
a deep learning algorithm. The dataset will be labelled and trained according to the
YOLO format and after the food detection the counted. For all the items except for rice
we will be using standard calorie values and for rice we will calculate the area of it and
eventually we will get the calorie count through mathematical computations. The
formula for the area calculation that we are using is:

Fr=Sr* (Fp /Sp) where,

Fr: area of target food item.

Fp: the area of the registered plate.

Sp: the pixel count of the whole registered plate.

Sr: the pixel count of the region of the target food item.



After getting the calorie counts of each item the aggregated calorie count of the meal
will be presented to the user.

SOFTWARE AND HARDWARE REQUIREMENT

The CNN model is trained on the machine having 8GB (Gigabytes) of RAM and 2GB
of VRAM. In this system two programming languages are used namely, Python and
Java. The CNN framework consists of Darknet layers. CNN uses many Python
libraries wiz. NumPy, OpenCV, Pandas, etc. Whereas for the GPU or VRAM CUDA
drivers are used. CNN model is saved as collection of

various entities listing: a Neural Network Model, a custom Configuration file and
trained Weights. Java is used for Android application.

Tools and Libraries:

No| Tools & Library Usage
Name
1 | Keras We are using for deep learning tasks like
creating model, predicting the object etc.
2 | Pillow Pillow we are using for preprocessing the
Images of our dataset.
3 | Streamit It is backend framework for developing the
web application.
4 | Beautifulsoup, We are using it for scraping the calories
Requests from the internet for the predicted object.
5 | Numpy We are using it for the Image matrix
handling.

MATERIAL AND STRATEGIES

Deep Learning

Deep learning is a component of a broader conception of machine learning ways
supported learning knowledge and its representations. Learning are often carried
in 3 ways supervised, semi-supervised or unattended. Deep learning consists of
following architectures like deep neural ne process, audio recognition, social
network filtering, computational linguistics, bio-informatics, medical image
analysis, material scrutiny and parlor game programs, wherever they need made
results love and in some cases superior to human specialists.



Deep Learning based mostly Objection Detection

The authors selected quicker R-CNN rather than victimisation linguistics
segmentation technique like absolutely Convolution Networks (FCN). Here,
once the pictures square measure inputted as RGB channels, the authors will
get a series of bounding boxes, which implies the category if judge

LITERATURE SURVEY/PROJECT DESIGN

Paper Name : Machine Learning Based Approach on Food Recognition and
Nutrition Estimation

These days, a typical healthy diet it is important to store food to prevent obesity
the human body. In this paper, we present in full a unique system supported by
machine learning that automatically performs precise food classification photos
and measuring food qualities. This paper proposes an in-depth learning model
that contains convolutional neural network that separates food specific areas in
the training component of the model type system. The main purpose of the
proposed approach is to do so improves the accuracy of the pre-training model.

The papers design a model system that supports the client server model. Client
sends image detection request and process it on the server side. The prototype
system is intended for three major software components, including the training of a
pre-trained CNN model module for classification purposes, text data training
module for moderation attribute models, as well as server module. We tried food
distribution categories, each containing thousands of images, too through machine
learning training for maximum achievement section accuracy.

Paper Name : Deep Food: Food Image Analysis and Dietary
Assessment via Deep Model

Food is important to human health and has been a priority in many health
meetings. These days new food testing and food analysis tools offer many
opportunities to help people understand their daily eating habits, and check
nutrition patterns and keep a healthy diet. In this paper, we develop an in-depth
model of food and food recognition a food review and analysis program from



everyday food photos (e.g., taken by a smartphone).Specifically, we propose a
three-step algorithm to accept photos of many (food) items by discovery regions to
be immersed and use a deep convolutional neural network (CNN) object division.
The program first creates a wide range of suggestions for input images using the
Regional Proposal Network (RPN) obtained from the Faster R-CNN model. It then
identifies each region of suggestions by marking them on feature maps, and they
divide themselves into different categories of food, and as placing them within the
original images. Finally, The program will analyze the ingredients for healthy
eating supports the effects of popularity and creates food calorie counting
report,fats, carbohydrates and proteins. In testing, we do extensive exercises using
two popular foods Image data sets - UEC-FOOD100 and UEC-FOOD256 and
generate a new type of data about food items that are supported by FOOD101 by
binding. The model is tested with different test metrics. The test results show that
our system is in the position of receiving food items accurately and produce a good
food test report, viz will bring users out with a clear view of life diet and guide
their daily bodybuilding recipe health and well-being.

PROPOSED SYSTEM

Food recognition is an existing idea which can detect and recognize food
item based on the input image. Our model is trained on 101 categories of
food items. Further the idea is to estimate the calorie of the food item
which is being recognized. The convolutional Neural Network (CNN) is
used to recognize the food item. Further to estimate the calories we have
given the standard calorie value for one gram of each food item. The
weight of the food item is given as an input and based on the standard
calorie value the accurate calorie value of the food item is calculated.

Recognition method

Food Recognition deals with recognition of food item when given an image.For this
problem | used Convolutional Neural Network (CNN). The Architecture of CNN given
below figure 2



Figure 2: Architecture of CNN

FEATURE LEARNING CLASSIFICATION

For this project | used 5 convolution layers with ReLU activations,dropout, and
softmax layers. Fine tuning the model on our dataset took about 2 hours on a single
Windows 10 Pro CPU with 4GB of memory.For this training | used 100 imagesof each
food with 300*300 image size. All this work done in Python 3.7.1 with Anaconda
Distribution 4.6.11

Also used Adam optimizer and categorical cross entropy loss function with learning
rate 0.0001 to calculate and minimize loss as well as optimize model accuracy

METHODOLOGY

The project consists of two steps, identifying food from an image and
converting the food identified into a calorie estimation. We performed food
image classification using CNN (convolutional Neural Network). Steps followed:

1. Pre-processing: Some basic pre-processing has been performed to clean the
dataset where the irrelevant and noisy images of 15 categories have been
removed.

Also, data augmentation has been performed —
e Pixel values re-scaled in the range of [0,1].
e Random rotations max 40 degree.

e Random zoom applied.



e Shear angle in counter-clockwise direction in degrees

2. Trained the model: We trained the model with images of 15 categories
using the classifier CNN

(convolutional Neural Network) which is a class of deep, feed forward artificial
neural networks that has

successfully been applied to analyzing visual imagery

Convolutional Neural Network

The convolutional Neural Network (CNN) offers a technique for many general
image classification problems. It has been applied in food classification and
resulted in a good accuracy.CNN is widely used in food recognition and
provides high performance than the traditional methods. Over the last few years,
due to the enhancements in the deep learning, especially in the convolutional
neural networks, the accuracy in detecting and recognizing food images has
been increased. This is not only because larger datasets but also new algorithms
and improved deep architectures. convolutional Neural Network (CNN) is also
known as LeNet due to its inventor.CNN mainly comprises convolutional layers,
pooling layers and sub-

sampling layers followed by fully-connected layers. The CNN takes an input
image and applies convolutional and then sub-sampling. After two such
computations, the data is fed into the fully connected neural network, where it
performs the classification task. The main advantage of CNN is the ability to
learn the high-level efficient features and in addition to that, it is robust against
small rotations and shifts.



Pooling

Input Layer Convolutinal

Layer Layer

Fully Connected Output
Layer Layer

Image classification!

The convolutional neural network (CNN) is a class of deep learning neural networks.
CNN s represent a huge breakthrough in image recognition. They’re most commonly
used to analyze visual imagery and are frequently working behind the scenes in image
classification. They can be found at the core of everything from Facebook’s photo
tagging to self-driving cars. They’re working hard behind the scenes in everything
from healthcare to security.

They’re fast and they’re efficient. But how do they work?

Image classification is the process of taking an input (like a picture) and outputting

a class (like “cat”) or a probability that the input is a particular class (“there’s a 90%
probability that this input is a cat™). You can look at a picture and know that you’re
looking at a terrible shot of your own face, but how can a computer learn to do that?

With a convolutional neural network!

A CNN has

o Convolutional layers

o ReLU layers



« Pooling layers

 a Fully connected layer
A classic CNN architecture would look something like this:

Input ->Convolution ->RelL.U ->Convolution ->RelL.U ->Pooling ->
ReLU ->Convolution ->RelL.U ->Pooling ->Fully Connected

A CNN convolves (not convolutes...) learned features with input data and uses 2D
convolutional layers. This means that this type of network is ideal for processing 2D
Images. Compared to other image classification algorithms, CNNs actually use very
little preprocessing. This means that they can learn the filters that have to be hand-
made in other algorithms. CNNSs can be used in tons of applications from image and
video recognition, image classification, and recommender systems to natural language
processing and medical image analysis.

CNN s are inspired by biological processes. They’re based on some cool research done
by Hubel and Wiesel in the 60s regarding vision in cats and monkeys. The pattern of
connectivity in a CNN comes from their research regarding the organization of the
visual cortex. In a mammal’s eye, individual neurons respond to visual stimuli only in
the receptive field, which is a restricted region. The receptive fields of different regions
partially overlap so that the entire field of vision is covered. This is the way that a CNN
works.

CNNs have an input layer, and output layer, and hidden layers. The hidden layers
usually consist of convolutional layers, ReL.U layers, pooling layers, and fully
connected layers.

« Convolutional layers apply a convolution operation to the input. This passes
the information on to the next layer.

» Pooling combines the outputs of clusters of neurons into a single neuron in
the next layer.

o Fully connected layers connect every neuron in one layer to every neuron in
the next layer.

In a convolutional layer, neurons only receive input from a subarea of the previous
layer. In a fully connected layer, each neuron receives input from every element of the
previous layer.


http://klab.tch.harvard.edu/academia/classes/Neuro230/2014/readings/reading_assignment2_gk1852.pdf
http://klab.tch.harvard.edu/academia/classes/Neuro230/2014/readings/reading_assignment2_gk1852.pdf

A CNN works by extracting features from images. This eliminates the need for manual
feature extraction. The features are not trained! They’re learned while the network
trains on a set of images. This makes deep learning models extremely accurate for
computer vision tasks. CNNs learn feature detection through tens or hundreds of
hidden layers. Each layer increases the complexity of the learned features.

A CNN

o starts with an input image

« applies many different filters to it to create a feature map

« applies a ReLLU function to increase non-linearity

« applies a pooling layer to each feature map

« flattens the pooled images into one long vector.

« Inputs the vector into a fully connected artificial neural network.

 processes the features through the network. The final fully connected layer
provides the “voting” of the classes that we’re after.

« trains through forward propagation and backpropagation for many, many
epochs. This repeats until we have a well-defined neural network with
trained weights and feature detectors.

So what does that mean?

At the very beginning of this process, an input image is broken down into
pixels. Based on that information, the computer can begin to work on the data.

For a color image, this is a 3D array with a blue layer, a green layer, and a red layer.
Each one of those colors has its own value between 0 and 255. The color can be found
by combining the values in each of the three layers.

What are the basic building blocks of a CNN?

Convolution

The main purpose of the convolution step is to extract features from the input image.
The convolutional layer is always the first step in a CNN.



You have an input image, a feature detector, and a feature map. You take the filter and
apply it pixel block by pixel block to the input image. You do this through the
multiplication of the matrices.

The light from the flashlight here is your filter and the region you’re sliding over is
the receptive field. The light sliding across the receptive fields is your

flashlight convolving. Your filter is an array of numbers (also called weights or
parameters). The distance the light from your flashlight slides as it travels (are you
moving your filter over one row of bubbles at a time? Twao?) is called the stride. For
example, a stride of one means that you’re moving your filter over one pixel at a time.
The convention is a stride of two.

The depth of the filter has to be the same as the depth of the input, so if we were
looking at a color image, the depth would be 3. That makes the dimensions of this filter
5x5x3. In each position, the filter multiplies the values in the filter with the original
values in the pixel. This is element wise multiplication. The multiplications are
summed up, creating a single number. If you started at the top left corner of your

bubble wrap, this number is representative of the top left corner. Now you move your
filter to the next position and repeat the process all around the bubble wrap. The array
you end up with is called a feature map or an activation map! You can use more than
one filter, which will do a better job of preserving spatial relationships.

Transfer Learning:

Transfer learning means taking the relevant parts of a pre-trained machine
learning model and applying it to a new but similar problem. This will usually
be the core information for the model to function, with new aspects added to
the model to solve a specific task.

Transfer Learning for Image Recognition

A range of high-performing models have been developed for image classification and
demonstrated on the annual ImageNet Large Scale Visual Recognition Challenge, or
ILSVRC.

This challenge, often referred to simply as ImageNet, given the source of the image
used in the competition, has resulted in a number of innovations in the architecture and
training of convolutional neural networks. In addition, many of the models used in the
competitions have been released under a permissive license.

These models can be used as the basis for transfer learning in computer vision
applications.

This is desirable for a number of reasons, not least:


http://www.image-net.org/challenges/LSVRC/
http://image-net.org/

o Useful Learned Features: The models have learned how to detect generic
features from photographs, given that they were trained on more than 1,000,000
images for 1,000 categories.

o State-of-the-Art Performance: The models achieved state of the art
performance and remain effective on the specific image recognition task for
which they were developed.

o Easily Accessible: The model weights are provided as free downloadable files
and many libraries provide convenient APIs to download and use the models
directly.

The model weights can be downloaded and used in the same model architecture using a
range of different deep learning libraries, including Keras.

How to Use Pre-Trained Models
The use of a pre-trained model is limited only by your creativity.

For example, a model may be downloaded and used as-is, such as embedded into an
application and used to classify new photographs.

Alternately, models may be downloaded and use as feature extraction models. Here,
the output of the model from a layer prior to the output layer of the model is used as
input to a new classifier model.

Recall that convolutional layers closer to the input layer of the model learn low-level
features such as lines, that layers in the middle of the layer learn complex abstract
features that combine the lower level features extracted from the input, and layers
closer to the output

interpret the extracted features in the context of a classification task.

Armed with this understanding, a level of detail for feature extraction from an existing
pre-trained model can be chosen. For example, if a new task is quite different from
classifying objects in photographs (e.g. different to ImageNet), then perhaps the output
of the pre-trained model after the few layers would be appropriate. If a new task is
quite similar to the task of classifying objects in photographs, then perhaps the output
from layers much deeper in the model can be used, or even the output of the fully
connected layer prior to the output layer can be used.

The pre-trained model can be used as a separate feature extraction program, in which
case input can be pre-processed by the model or portion of the model to a given an
output (e.g. vector of numbers) for each input image, that can then use as input when
training a new model.

Alternately, the pre-trained model or desired portion of the model can be integrated
directly into a new neural network model. In this usage, the weights of the pre-trained



can be frozen so that they are not updated as the new model is trained. Alternately, the
weights may be updated during the training of the new model, perhaps with a lower
learning rate, allowing the pre-trained model to act like a weight initialization scheme
when training the new model.

We can summarize some of these usage patterns as follows:

o Classifier: The pre-trained model is used directly to classify new images.

« Standalone Feature Extractor: The pre-trained model, or some portion of the
model, is used to pre-process images and extract relevant features.

o Integrated Feature Extractor: The pre-trained model, or some portion of the
model, is integrated into a new model, but layers of the pre-trained model are
frozen during training.

o Weight Initialization: The pre-trained model, or some portion of the model, is
Integrated into a new model, and the layers of the pre-trained model are trained
in concert with the new model.

Each approach can be effective and save significant time in developing and training a
deep convolutional neural network model.

It may not be clear as to which usage of the pre-trained model may yield the best
results on your new computer vision task, therefore some experimentation may be
required.

Models for Transfer Learning

There are perhaps a dozen or more top-performing models for image recognition that
can be downloaded and used as the basis for image recognition and related computer
vision tasks.

Perhaps three of the more popular models are as follows:

e VGG (e.g. VGG16 or VGG19).
e (GoogLeNet (e.g. InceptionV3).
» Residual Network (e.g. ResNet50).

These models are both widely used for transfer learning both because of their
performance, but also because they were examples that introduced specific
architectural innovations, namely consistent and repeating structures (VGG), inception
modules (GoogLeNet), and residual modules (ResNet).

Keras provides access to a number of top-performing pre-trained models that were
developed for image recognition tasks.



They are available via the Applications API, and include functions to load a model
with or without the pre-trained weights, and prepare data in a way that a given model
may expect (e.g. scaling of size and pixel values).

The first time a pre-trained model is loaded, Keras will download the required model
weights, which may take some time given the speed of your internet connection.
Weights are stored in the .keras/models/ directory under your home directory and will
be loaded from this location the next time that they are used.

When loading a given model, the “include_top” argument can be set to False, in which
case the fully-connected output layers of the model used to make predictions is not
loaded, allowing a new output layer to be added and trained.

Transfer learning: idea

Source labels I Target labels -—\

Small
Large I
amount of
data/labels Source model m""‘ Target model

amount of
data/labels

Source data I
Target data
f SE e j l Eg. PASCAL
4

Following is the general outline for transfer learning for object recognition:
e [oad in a pre-trained CNN model trained on a large dataset
e Freeze parameters (weights) in model’s lower convolutional layers
e Add custom classifier with several layers of trainable parameters to model
e Train classifier layers on training data available for task

e Fine-tune hyperparameters and unfreeze more layers as needed


https://keras.io/applications/

This approach has proven successful for a wide range of domains. It’s a great
tool to have in your arsenal and generally the first approach that should be
tried when confronted with a new image recognition problem.

MobileNet:

MobileNets: Efficient Convolutional Neural Networks for Mobile Vision
Applications, Howard et al, 2017.

We shall be using Mobilenet as it is lightweight in its architecture. It uses
depthwise separable convolutions which basically means it performs a single
convolution on each colour channel rather than combining all three and
flattening it. This has the effect of filtering the input channels. Or as the
authors of the paper explain clearly: “ For MobileNets the depthwise
convolution applies a single filter to each input channel. The pointwise
convolution then applies a 1x1 convolution to combine the outputs the
depthwise convolution. A standard convolution both filters and combines inputs
into a new set of outputs in one step. The depthwise separable convolution
splits this into two layers, a separate layer for filtering and a separate layer for
combining. This factorization has the effect of drastically reducing computation
and model size. ”



M

Dy — N —

(a) Standard Convolution Filters

e -~ M —

(b) Depthwise Convolutional Filters

g

(c) 1 > 1 Convolutional Filters called Pointwise Convolution in the con-
text of Depthwise Separable Convolution

MobileNet Architecture:

The main aim of TL is to implement a model quickly. There will be no
change in the MobileNet architecture whatsoever. The model will transfer the
features it has learned from a different dataset that has performed the same

task.



M A

Dg —N—

Standard Convolution Filters
Where:

. 5 3 Df"- Dimension of input feature maps
Computational cost = Df * M * N * Dj M- Input Channel

N- Output Channel
D,%- Kernel size

While applying the composite function in the standard convolution layer, the convolution
kernel is applied to all the channels of the input image and slides the weighted sum to the
next pixel. MobileNet uses this standard convolution filter on only the first layer.

Depthwise Separable Convolution

The next layer is depthwise separable convolution, which is the combination
of depthwise and pointwise convolution.

Depthwise Convolution

Unlike standard convolution, a depthwise convolution maps only one convolution on each
input channel separately. The channel dimension of the output image (3 RGB) will be the
same as that of an input image.

P ¢ £ 7 y: "1
I)}\ l‘/} [ | -
} /

v
Dy — M —

Depthwise Convolution Filters

Computational cost = D * M * D

Pointwise Convolution



This is the last operation of the filtering stage. It's more or less similar to regular
convolution but with a 1x1 filter. The idea behind pointwise convolution is to merge the
features created by depthwise convolution, which creates new features.

w

=

1 - _\' ST
Pointwise Convolution Filters (1x1 conv)

Computational cost = D]? * M * N

The cost function of DSC is the sum of the cost of depthwise and pointwise convolution.

Depthwise Separable Convolution Cost Function
/. /'f 2
/ /) Param1Kernel= DgxXM
v eyd

Param N Kernels = N x M x D2

=N Param 1 Kernel = pZ
| Param M Kernels = M x D} _
M(D: + N)
/' aram 1 Kernel = M
’ 4
aram N Kernels = N x M
Number of params in DSC _ Dg-Dg-M-Dp-Dp+M-N-Dp-Dg
Number of param in standard Conv Dy -Dyg-M-N-Dg-Dp

1 1
N DR

times less operations than standard
convolution
Ref: Howard et al

Other than this, MobileNet offers two more parameters to reduce the operations
further:

Width Multiplier:

This introduces the variable o € (0, 1) to thin the number of channels. Instead
of producing N channels, it will produce oxN channels. It will choose 1 if you
need a smaller model.Resolution Multiplier: This introduces the variable p € (O,



1), it is used to reduce the size of the input image from 244, 192, 160px or
128px. 1 is the baseline for image size 224px.

You can train the model on a 224x224 image and then use it on 128x128
images as MobileNet uses Global Average Pooling and doesn't flatten layers.

MobileNet-V?2

The MobileNet-V2 pre-trained version is available here. Its weights were
initially obtained by training on the ILSVRC-2012-CLS dataset for image

classification (Imagenet).

The basic building blocks in MobileNet-V1 and V2:

MobileNet-V1 MobileNet-V2

Add | conv 1x1, Linear

Dwise 3x3,
stride=2, Relué

3

conv 1x1, Relu6

? conv 1x1, Linear

Dwise 3x3, Relub

Dwise 3x3,

stride=s, Relu6 ]‘

Conv 1x1. Relué

Conv 1x1, Relué

.

anut \l input ) C input p]
- Stride=1 block Stride=2 block
K b A A A conv 1x1 %
depthwise conv j.:[j\: I | | | | | | I
. R depthwise conv |[[\ ._i_"\' | | | | | |
conv 1x1 4 V VAN
conv 1x1 W

Keeps the number of channels same or doubles them Makes the number of channels smaller

Howard et al
Yusuke Uchida



MobileNet version

The final MobileNet-V2architecture looks like this:

Input Depthwise separable convolution

oo c: DW2: PW2: :
: o3 = F15: layer
RN@I2x 112 R2@12x 112 64@112x 112 1034
/3 PW13: PW14: Output

1024@7 x 7 1024@7 x 7 classes

M Bas 15T
. el

3 |24 || S _,—"'\

] Seihitios bl Global average
Depthwise Pointwise Depthwise separable pooling

Depthwise separable . ; %
Convi . s convolution Ful
Convolution convolution  convolution convolution I

connections

MobileNet-V2 Architecture
Chiung-Yu Chen

Difference between pointwise and depth wise convolutions

So the overall architecture of the Mobilenet is as follows, having 30 layers
with

convolutional layer with stride 2 depthwise layer
pointwise layer that doubles the number of channels
depthwise layer with stride 2

pointwise layer that doubles the number of channels etc.



Table 1. MobileNet Body Architecture

Type / Stride Filter Shape Input Size
Conv / s2 323 x3 x 32 224 x 224 =« 3
Conv dw / sl 3 =3 x32dw 112 x 112 x 32
Conv / sl 1 x1x32 =64 112 =< 112 = 32
Conv dw / s2 3 x 3 x 64 dw 112 =< 112 x 64
Conv / sl 1x1x64x128 06 = 56 x 64
Conv dw / sl 3 =3 =x 128 dw 56 = H6 = 128
Conv / sl 1 =1 = 128 = 128 06 = H6 = 128
Conv dw / s2 3 x 3 = 128 dw 56 = H6 x 128
Conv / sl 1 =<1 x 128 = 256 28 x 28 x 128
Conv dw /sl 3 =< 3 x 256 dw 28 x 28 x 256
Conv / sl 1 x 1 x 256 x 256 28 x 28 x 256
Conv dw / s2 3 x 3 x 256 dw 28 = 28 = 256
Conv / sl 1 =1 = 256 = 512 14 = 14 = 256
EKCUnvde’sl 3 x 3 x5H12dw 14 = 14 = 512
"7 Conv /sl 1x1x512x 512 14 % 14 x 512
Conv dw / s2 3 =3 =512 dw 14 = 14 =< 512
Conv / sl 1> 1 =512 x 1024 T »x 7 x 512
Conv dw / s2 3 %3 = 1024 dw T =T = 1024
Conv / sl 1 x1x1024 x 1024 | 7 x 7 x 1024
Avg Pool /sl Pool 7 < 7 Tx T x 1024
FC /sl 1024 = 1000 1 %1 x 1024
Softmax / sl Classifier 1 =1 = 1000

It is also very low maintenance thus performing quite well with high speed.
There are also many flavours of pre-trained models with the size of the
network in memory and on disk being proportional to the number of parameters
being used. The speed and power consumption of the network is proportional to
the number of MACs (Multiply-Accumulates) which is a measure of the number
of fused Multiplication and Addition operations.



Architecture Diagram

USER > FOOD ESTIMAT
WEIGHT E
¥ A
UPLOAD R
FOOD "
MACHINE LEARNING MODEL
IMAGE || PRE-
L 5 ACQUISITION PROCESSING
Y
FOOD M FOOD
RECOGNITION DETECTION
Use-Case Diagram
CAPTURE FOOD
A\ _IMAGE
UPLOAD FOOD
7 L"\amact )
& DETECT THE FOOD - .
USER \ >\ WV
. QECOGN'ZE i ) /" INFERENCE
\ N ENGINE

\(FOODWEIGHT ) ¢

/

/ i
/ /\
. GSTIMATE CALORIES}'
\ //,
i C DISPLAY CALORIES)’
\C VIEW CALORIES )

Use-Case Diagram




Y

YV V V VY

>

Architecture: - We are using the MobilenetV2 architecture. MobileNetV2
is a convolutional neural network architecture that seeks to perform well
on mobile devices. It is based on an inverted residual structure where the
residual connections are between the bottleneck layers. Mobilenet support
any input size greater than 32 x 32

In MobileNetV2, there are two types of blocks. One is residual block
with stride of another one is block with stride of 2 for downsizing.
There are 3 layers for both types of blocks.

This time, the first layer is 1x1 convolution with ReLU®6.

The second layer is the depth wise convolution.

The third layer is another 1x1 convolution but without any non-linearity.
It is claimed that if RELU is used again, the deep networks only have
the power of a linear classifier on the non-zero volume part of the output
domain.

MobileNetV2 building block

Translormauon.
3x3 Rely {Conv 1x1, inear

Duwase.

Bottleneck i Bottleneck
Input Add Output
% ShomCut 5

Figure 1. MobilenetV2 Architecture

Dataset: - In this project we are using the “Fruit and Vegetable Image
Recognition” dataset. This dataset have 36 classes, and almost 100 images
for each class so we can say we have 3600+ training images. We have
10 images for each category in Train/Validation



» Workflow: - In this we are going to see how our web-application is
working. We have divided our modules so our task is going to be easy.
Our frontend-backend will be handled by the Streamlit. As a normal user,
user will visit our application by URL. There will be upload button so
user can upload the image. After the uploading the Image our system will
do the task automatically.

» User, will upload the Image. That image will be stored into the local
system.

» Now pillow will resize the image according to our model shape, it will
convert into vector.

» Now this vector will be passed to our model, our model will classify the
class of category.

» We will get the ID of category, now we need to map the labels
according to the ID.

» Now our system will do web-scrap the calories for predicted object. Our
application will display the Result and Calories into our application.

Source Code and Outputs:

import the necessary libraries. (Remember the TensorFlow version, because we need to
use the same version into the local machine)

import numpy as np

import pandas as pd

from pathlib import Path

import os.path

import matplotlib.pyplot as plt

import tensorflow as tf

from tensorflow.keras.preprocessing.image import load_img,img_to_array
print(tf.__version_ )

2.6.9

Now we need to define the Train, test, and validation images.



# Create a List with the filepaths for training and testing
train_dir = Path('../input/fruit-and-vegetable-image-recognition/train"')
train_filepaths = list(train_dir.glob(r'**/*.jpg'))

test_dir = Path('../input/fruit-and-vegetable-image-recognition/test"')
test_filepaths = list(test_dir.glob(r'**/*.jpg"'))

val _dir = Path('../input/fruit-and-vegetable-image-recognition/validation')
val_filepaths = list(test_dir.glob(r'**/*.jpg'))

Now we need to create the data frame for each image with its label, So this is the function
for it.
def image_processing(filepath):
""" Create a DataFrame with the filepath and the labels of the pictures

mon

labels = [str(filepath[i]).split("/")[-2] \
for i in range(len(filepath))]

filepath = pd.Series(filepath, name='Filepath').astype(str)
labels = pd.Series(labels, name='Label')

# Concatenate filepaths and Labels
df = pd.concat([filepath, labels], axis=1)

# Shuffle the DataFrame and reset index
df = df.sample(frac=1).reset_index(drop = True)

return df

Now we need to make a function call for Train, Test, and Val images. Let's check how
many labels and images we have in the dataset.



train_df = image_processing(train_filepaths)
test_df = image_processing(test_filepaths)
val df = image_processing(val_filepaths)

print('-- Training set --\n")

print(f'Number of pictures: {train_df.shape[8]}\n")

print(f'Number of different labels: {len(train_df.Label.unique())}\n')
print(f'Labels: {train_df.Label.unique()}")

-- Training set --

Number of pictures: 3193

Number of different labels: 36

Labels: ['grapes' 'pomegranate' 'banana' 'carrot' 'garlic’ 'onion' 'pineapple’
'orange' 'capsicum' 'jalepeno' 'paprika' 'watermelon' 'raddish' 'lettuce’
‘spinach' 'tomato' ‘sweetpotato’ ‘cauliflower' 'bell pepper' ‘'peas’
"lemon' 'kiwi' 'chilli pepper' 'cabbage' 'turnip' 'eggplant' 'potato’

'soy beans' 'pear' 'mango' 'beetroot' 'sweetcorn' 'cucumber' 'corn'
"apple’ 'ginger']

Now let's check the generated data frame.

train_df.head(5)

Filepath Label
0 _./input/fruit-and-vegetable-image-recognition... grapes

1 ./input/fruit-and-vegetable-image-recognition... pomegranate

2 .Jinput/fruit-and-vegetable-image-recognition... banana
3 ./input/fruit-and-vegetable-image-recognition... carrot
4 _/input/fruit-and-vegetable-image-recognition... garlic

Now let's check our labels of images are matching with the original image or not, We are
going to use matplotlib to plot the images.



# Create a DataFrame with one Label of each category
df_unique = train_df.copy().drop_duplicates(subset=["Label"]).reset_index()

# Display some pictures of the dataset
fig, axes = plt.subplots(nrows=6, ncols=6, figsize=(8, 7),
subplot_kw={"'xticks"': [], 'yticks': []})

for i, ax in enumerate(axes.flat):
ax.imshow(plt.imread(df_unique.Filepath[i]))
ax.set_title(df_unique.Label[i], fontsize = 12)
plt.tight_layout(pad=0.5)

plt.show()
grapes pomegranate banana carrot garlic onion
capsicum jalepeno paprika watermelon

N A

i

raddish lettuce spinach tomato sweetpotato cauliflower

Now we need to generate the new images using these images, because we have a low
number of images for each class, we are going to use the

ImageDataGenerator module from the Keras, basically it will do the zoom, rotate,
changing the color format, changing brightness and much more technique. With these
techniques, it will generate new images.

train_generator = tf.keras.preprocessing.image.ImageDataGenerator(
preprocessing_function=tf.keras.applications.mobilenet_v2.preprocess_input

)

test_generator = tf.keras.preprocessing.image.ImageDataGenerator(
preprocessing_function=tf.keras.applications.mobilenet_v2.preprocess_input

)

Let's fit the images for training and testing.



train_images = train_generator.flow_from_dataframe(
dataframe=train_df,
x_col="Filepath',
y _col="lLabel’,
target_size=(224, 224),
color_mode="rgb’,
class_mode="categorical’,
batch_size=32,
shuffle=True,
seed=8,
rotation_range=30,
zoom_range=0.15,
width_shift_range=9.2,
height shift _range=8.2,
shear_range=06.15,
horizontal flip=True,
fill mode="nearest"

Found 3193 validated image filenames belonging to 36 classes.

test_images = test_generator.flow_from_dataframe(
dataframe=test_df,
Xx_col="'Filepath",
y_col="Label"’,
target_size=(224, 224),
color_mode="rgb’,
class_mode="'categorical’,
batch_size=32,
shuffle=False

Found 334 validated image filenames belonging to 36 classes.

Let's fit the pre-trained MobilenetV2 model.



pretrained_model = tf.keras.applications.MobileNetV2(
input_shape=(224, 224, 3),
include_top=False,
weilghts="'1imagenet',
pooling="avg'
)

pretrained_model.trainable = False

User settings:

KMP_AFFINITY=granularity=fine,verbose,compact,1,0
KMP_BLOCKTIME=0

KMP_SETTINGS=1

KMP_WARNINGS=0

Let's start training with our own images.

inputs = pretrained_model.input
x = tf.keras.layers.Dense(128, activation="relu’)(pretrained_model.output)
x = tf.keras.layers.Dense(128, activation="relu’)(x)

outputs = tf.keras.layers.Dense(26, activation='softmax’) (x)
model = tf.keras.Model(inputs=inputs, outputs=outputs)

model .compile(
optimizer="adam’,
loss="categorical crossentropy’,
metrics=[ "accuracy']

)

history = model.fit(

train_images,

validation data=wval images,

batch size = 32,

epochs=5,

callbacks=[

tf.keras.callbacks.EarlyStopping(

monitor="wval loss"',
patience=2,
restore_ best weights=True



Eboch 1/5

s 17 - ETA: 2:33 - loss: 3.6501 - accuracy: 0.8469
/opt/conda/lib/python3.7/site-packages/PIL/Image.py:963: UserWarning: Palette images with Transparency expressed in bytes should be
ages

"Palette images with Transparency expressed in bytes should be "

100/100 [ ========] - 2265 2s/step - loss: 1.912@ - accuracy: ©.4933 - val_loss: 0.4976 - val_accuracy: ©.8383
E h 2/5
15;;1@@f[ ========] - 1895 25/step - loss: @.7049 - accuracy: 0.782@ - val loss: 0.2377 - val accuracy: ©.9341
E h 3/5
123;1@9/[ ========] - 1755 2s/step - loss: @.4369 - accuracy: 0.8675 - val loss: 0.1612 - val accuracy: 0.9521
E h 4/5
12;;199/[ - 1825 2s/step - loss: @.2781 - accuracy: ©.9226 - val loss: 0.1267 - val accuracy: ©.9551
E h 5/5
1;;;199/[ - 184s 2s/step - loss: @.179@ - accuracy: ©.9417 - val loss: ©.1094 - val accuracy: ©.9521

Let's check our trained model on the test images.

# Predict the label of the test images

pred = model.predict(test images)

pred = np.argmax(pred,axis=1)

# Map the label

labels = (train images.class indices)

labels = dict((v,k) for k,v in labels.items())
predl = [labels[k] for k in pred]

predl

"bell pepper’,
‘carrot’,
"cauliflower',
"paprika’,
‘mango’,
"jalepeno”’,
"pear’,
"beetroot’,
‘raddish’,
"sweetpotato’,

Now we need to feed some random images from google or from the validation images.
Let's create a separate function for it,



def output(location):
img=load_img(location,target size=(224,224,3))
img=img_to array(img)
img=img/255
img=np.expand dims(img,[@])
answer=model.predict(img)
y_class = answer.argmax(axis=-1)
y = " ".join(str(x) for x in y class)
y = int(y)
res = labels[y]
return res

img = output('../input/fruit-and-vegetable-image-recognition/test/cabbage/Image 1.jpg")
img

'cabbage’

Let's save the model so we can use it in our application.

model.save( "FV.h5")

Now we need to create a web app using Streamlit.

Let's create an application code. It contains the following things.

GUI for app

Model processing code

Image saving and prediction

Fetch the calories from google for a particular class.

imp
ort
strea
mlit
as st
from PIL import Image
from keras.preprocessing.image import load_img,img_to_array



import numpy as np

from keras.models import load_model
Import requests

from bs4 import BeautifulSoup

model = load_model('FV.h5")
labels = {0: 'apple’, 1: 'banana’, 2: 'beetroot’, 3: 'bell pepper’, 4: 'cabbage’, 5:
‘capsicum’, 6: ‘carrot’, 7: ‘cauliflower’, 8: 'chilli pepper’, 9: ‘corn’, 10:
‘cucumber’, 11: 'eggplant’, 12: 'garlic', 13: 'ginger’, 14: 'grapes', 15: 'jalepeno’,
16: 'kiwi', 17: 'lemon’, 18: 'lettuce’,

19: 'mango’, 20: 'onion’, 21: 'orange’, 22: 'paprika’, 23: 'pear’, 24: 'peas’,
25: 'pineapple’, 26: 'pomegranate’, 27: 'potato’, 28: ‘raddish’, 29: 'soy beans',
30: 'spinach’, 31: 'sweetcorn’, 32: 'sweetpotato’, 33: 'tomato’, 34: 'turnip’, 35:
‘watermelon'}

fruits = ['Apple’,'Banana’,'Bello Pepper’,'Chilli
Pepper','Grapes','Jalepeno’,'Kiwi','Lemon’,'Mango','Orange’,'Paprika’,'Pear’,'P
ineapple’,'Pomegranate’,'\Watermelon']

vegetables =
['Beetroot','Cabbage’,'Capsicum’,'Carrot’,'Cauliflower','Corn','Cucumber','Egg
plant','Ginger','Lettuce’,'Onion’,'Peas','Potato’,'Raddish’,'Soy
Beans','Spinach’,'Sweetcorn','Sweetpotato', Tomato', Turnip']

def fetch_calories(prediction):
try:

url = 'https://lwww.google.com/search?&q=calories in ' + prediction
req = requests.get(url).text
scrap = BeautifulSoup(req, 'html.parser’)
calories = scrap.find("div", class_="BNeawe iBp4i AP7Wnd").text
return calories

except Exception as e:
st.error("Can't able to fetch the Calories™)

print(e)

def processed_img(img_path):
Img=load_img(img_path,target_size=(224,224,3))



Img=img_to_array(img)
Img=img/255
Img=np.expand_dims(img,[0])
answer=model.predict(img)
y_class = answer.argmax(axis=-1)
print(y_class)

y =" "join(str(x) for x iny_class)
y = int(y)

res = labels[y]

print(res)

return res.capitalize()

def run():
st.title("Fruits %% -Vegetable ™) Classification")
img_file = st.file_uploader("Choose an Image", type=["jpg", "png"])
if img_file is not None:
Img = Image.open(img_file).resize((250,250))
st.image(img,use_column_width=False)
save_image_path ="./upload_images/'+img_file.name
with open(save_image path, "wb") as f:
f.write(img_file.getbuffer())

# if st.button("Predict™):
if img_file is not None:
result= processed img(save_image path)
print(result)
If result in vegetables:
st.info("**Category : Vegetables**")
else:
st.info("**Category : Fruit**")
st.success("**Predicted : "+result+**")
cal = fetch_calories(result)
if cal:
st.warning("**'+cal+'(100 grams)**")

run()



Now type the following command to run the code in CMD.

streamlit run Streamlit App.py
Go to the localhost, and upload the image into the app.

Display Output

Fruits "® -Vegetable &
Classification

Choose an image

D d file here =
> rag and drop file here Browse files
Limit 200MB per file - JPG, PN

D Image_5.jpg 33435 s

N
SN

41 calories(100 grams)

Fruits "® -Vegetable &
Classification

Choose an Image
Browse files

Image_1.jpg 1.6MB >

52 calories(100 grams)




Results:

In this process 1st we run the main code then the GUI will display. In this we
see input image and other options. Then we selelct the input image.Then the
output will be displayed.

After this their is two more predictions through mobileNet one of them is the
category of the food item and second is type of food and third is most important

result 1s the calorie of that food

Image Parameters:

item.

In this process 1st we take the input image of food. After selection
of iput image a command window will be open.
the parameters of food. Then we follow this process different-
different food image and the resultant parameters are given in the table
1 which 1is given below.
Table 1. MobileNet Body Architecture
Type / Stride Filter Shape Input Size
Conv /s2 IxIx3Ix32 224 x 224 x 3
Conv dw /sl 3 x 3 x32dw 112 x 112 x 32
Conv /sl 1x1x32x64 112 x 112 x 32
Conv dw / s2 3 x 3 x 64dw 112 x 112 x 64
Conv /sl 1x1x64x128 56 x 56 x 64
Conv dw / sl 3 x 3 x 128 dw 56 x 56 x 128
Conv /sl 1x1x128 x 128 56 x 56 x 128
Conv dw / s2 3 x 3 x 128 dw 56 x 56 x 128
Conv /sl 1x1x 128 x 256 28 x 28 x 128
Conv dw /sl 3 x 3 x 256 dw 28 x 28 x 256
Conv /sl 1 x 1 x 256 x 256 28 x 28 x 256
Conv dw / s2 3 x 3 x 256 dw 28 x 28 x 256
Conv /sl 1x1x256x 512 14 x 14 x 256
5xConvdw/sl 3 x 3 x512dw 14 x 14 x 512
Conv /sl 1x1x512x 512 14 x 14 x 512
Conv dw / s2 3 x 3 x 512 dw 14 x 14 x 512
Conv /sl 1x1x512x 1024 1% %512
Conv dw / s2 3 x 3 x 1024 dw 7x7x1024
Conv /sl 1x1x1024 x1024 | 7x 7 x 1024
Avg Pool / sl Pool 7 x 7 7 x 7 x 1024
FC/ sl 1024 x 1000 1x1x1024
Softmax / sl Classifier 1 x 1 x 1000




Displayed Output:

The displayed is based on Three categories:
— Taking image as an input

— Prediction of Image Category
—>Prediction of Type of Image Category
—Prediction of Calorie of that Food Image

Create Web-app file into local machine. Use a saved model to recognize
the 1image.

In this we are going to see how our web-application is working. We have
divided our modules so our task is going to be easy. Our frontend-backend will
be handled by the Streamlit. As a normal user, user will visit our application by
URL. There will be upload button so user can upload the image. After the
uploading the Image our system will do the task automatically. User, will upload
the Image. That image will be stored into the local system. Now pillow will
resize the image according to our model shape, it will convert into vector. Now
this vector will be passed to our model, our model will classify the class of
category. We will get the ID of category, now we need to map the labels
according to the ID. Now our system will do web-scrap the calories for predicted
object. Our application will display the Result and Calories into our application.

CHALLENGES

e Recognizing the food item with the help of single picture

e Similar type of images for example roti and dosa, both are in same shape
which we find difficult to recognize

e Dataset becomes much larger when it comes on food images, so
currently we take a finite dataset for training

BENEFITS
e Precise and accurate recognition of food
e Rapid estimation of calorie helps users to monitor their nutritional intake

e (Can keep track of dietary information

FUTURE WORK:




Food recognition & dietary intake estimation using computer vision is an emerging
field of computer engineering. Our system has demonstrated identification or
classification of food from food image using image processing & artificial neural
network our system has demonstrated, decent accuracy in recognition of food. As
automated food classification is an rapidly emerging field the techniques & systems
have to adopt to the pace of development & improvement & add-ons to the
system are sought. One of the most sought improvements is the addition of
automatic calorie estimation depending upon the food type. Other improvement
canbe advent of a total dietary management system based upon proposed
technique which can aid in selection of food types, nutrient cycles &
can comment on food selection according to physio medical Requirements.

CONCLUSION:

As these enormous variety in food categories & classes of food items,
& Hough intra class variations within every classes, automated food
recognition using computer visionis on emerging challenge. With the
advent of fitness devices & application & advancements 1in wearable
devices, food recognition research is graining pace. The proposed system
1S an 1image processing based food recognition system with high accuracy
& repetitive performance. Image processingis employed to segment the
food position of the image & extract the food containing part of the
image & then various

image parameters of the region of interest are computed. The parameter
matrix is fed to a trained artificial neural network which classified the
food in a particular type. Multiple methods such as surface feature
extraction, Bag of

shapes & HSV background elimination have been employed

for food area segmentation. Morphology & binary image labelling have
been used to obtain the various image

parameters. Levenberg marquardt function fitting neural network 1is used
to approximate or classify the food type.

Combination of the above techniques yield higher accuracy as compared
to previous methods.









