
A Project Report 

On 

Hue: Chatbot Using Deep Learning 
 

Submitted in partial fulfillment of the  

Requirement for the award of the degree of 

 

B.Tech in Computer Science and 

Engineering 
 

 

Under The Supervision of  

Ms. Kiran Singh  

Assistant Professor 

Department of Computer Science and Engineering 
 

 
 

Submitted By: 

Dev Singh Chauhan 

(18SCSE1180039) 

 

Arpit Rastogi 

(18SCSE1010581) 

 

 

 

SCHOOL OF COMPUTING SCIENCE AND ENGINEERING 

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING 

GALGOTIAS UNIVERSITY, GREATER NOIDA 

INDIA OCTOBER,2021 

 



 

CANDIDATE’S DECLARATION 

 

I/We hereby certify that the work which is being presented in the 

thesis/project/dissertation, entitled “HUE: CHATBOT USING DEEP LEARNING” in 

partial fulfillment of the requirements for the award of the Bachelor of Technology 

submitted in the School of Computing Science and Engineering of Galgotias 

University, Greater Noida, is an original work carried out during the period of month, 

JULY-2021 TO DECEMBER 2021, under the supervision of Ms. Kiran Singh 

(Assistant Professor), Department of Computer Science and Engineering of School 

of Computing Science and Engineering , Galgotias University, Greater Noida. 

 

 The matter presented in the thesis/project/dissertation has not been submitted by me/us 

for the award of any other degree of this or any other places. 

 

Dev Singh Chauhan, 18SCSE1180039 

Arpit Rastogi, 18SCSE1010581 

 

This is to certify that the above statement made by the candidates is correct to the best of 

my knowledge. 

Supervisor 

(Ms. Kiran Singh , Assistant Professor)                                                                                        



 

CERTIFICATE 

 

The Final Thesis/Project/ Dissertation Viva-Voce examination of Dev Singh Chauhan: 

18SCSE1180039, Arpit Rastogi : 18SCSE1010581  has been held on 

_________________ and his/her work is recommended for the award of Bachelor of 

Technology In Computer Science and Engineering. 

 

 

Signature of Examiner(s)       Signature of Supervisor(s) 

 

 

 

Signature of Project Coordinator           Signature of Dean 

 

 

Date :  20 December, 2021 

 

Place : Galgotias University, Greater Noida 

 

 

 



 

ABSTRACT 

 

Depression is a typical sickness worldwide with conceivably serious ramifications. Early 

distinguishing proof of burdensome side effects is a vital initial move towards appraisal, 

intercession, and backslide avoidance. With an expansion in informational indexes with 

importance for discouragement, and the headway of AI, there is a possibility to foster 

smart frameworks to recognize side effects of misery in composed material. This work 

proposes an effective methodology utilizing Long Short-Term Memory (LSTM)- based 

Recurrent Neural Network (RNN) to recognize texts portraying self-saw indications of 

depression. The methodology is applied on an enormous dataset from a public web-based 

data divert for youngsters in Norway. The dataset comprises of youth's own text-put 

together inquiries with respect to this data channel. Highlights are then given from a one-

hot cycle on powerful elements extricated from the impression of potential manifestations 

of melancholy pre-characterized by clinical and mental specialists. The elements are 

superior to traditional methodologies, which are for the most part dependent on the word 

frequencies (i.e., some highest successive words are picked as highlights from the entire 

message dataset and applied to show the fundamental occasions in any instant message) 

rather than manifestations. Then, at that point, a profound learning approach is applied 

(i.e., RNN) to prepare the time-successive highlights separating texts depicting gloom 

manifestations from posts with no such portrayals (non-sorrow posts). At last, the 

prepared RNN is utilized to consequently anticipate melancholy posts. The framework is 

thought about against traditional methodologies where it accomplished predominant 

execution than others. The straight discriminant space obviously uncovers the vigor of 

the highlights by creating preferred grouping over other conventional elements. 

 

Keywords – Depression, LSTM (Long Short Term Memory), chatbot, therapy 

 

 



INDEX 

I. Candidates Declaration 

II. Acknowledgement 

III. Abstract 

IV. List of Figures  

CHAPTER-1:  Introduction          5 

  1.1. Advantages of Chatbot       9 

  1.1. Problem Formulation       9 

  1.2. Technology Used        9-10 

 

CHAPTER-2:  Literature Survey        12 

 

CHAPTER—3:  Project Design        14 

  3.1. Learning about LSTM RNN model     14-16 

   3.1.1. LSTM structure       16-18 

  3.2. Architecture of LSTM       18-21 

3.3. Sequential Diagram        22 

  3.4. Data Flow Diagram        23 

 

CHAPTER-4: Source Code and Output       23 

4.1. main python file        23-38 

4.2. app.py file         39-46 

4.3. model.py file        47-56 

4.4. Training Process        57 

4.5. Output         58 

CHAPTER-5: Result and Conclusion        59 

CHAPTER-6: Future Scope and References      60 

 



List of Figures 

 

S.no Figure Page Number 

1. Basic overlay of the project’s working 14 

2. LSTM Model to be used in the model 15 

3. Forget Gate in LSTM 16 

4. Input gate in LSTM 17 

5. Output gate in LSTM 18 

6. Basic structure of LSTM 19 

7.   Working of the Chatbot 20 

8. Sequential Diagram 21 

9. Data Flow Diagrams 22 

10. Training and Test Loss of the model 57 

11. Precision of Model 58 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER-1 

INTRODUCTON 

 

Depression, or depression disorder, is a common disorder. According to the World Health 

Organization (WHO), the number of people suffering from depression is estimated at 

more than 300 million worldwide. Depression can seriously affect well-being and work, 

school, and family, and can even lead to self-injury. Adolescent depression is associated 

with emotional disorders and severe mental illness in adult life. About 0.8 million people 

die from suicide each year and suicide is the fourth leading cause of death among 15-19 

year olds, according to the WHO. Of the major illnesses that contribute to disability or 

dysfunction, five are mental illnesses — the most common of which is depression. 

Therefore, the burden of disease due to depression is high. The prevalence of depression 

in adults is about 5% in all cultures, and 20% in your soft tissues (i.e., incomplete 

symptoms, mild depression, and possible depression). For older people, those most at risk 

are within the middle age group. Also, the incidence of depression worldwide is 

increasing, with an increase of 18% between 2005 and 2015. However, early intervention 

by a specialist can improve psychological symptoms (e.g., intestinal problems and sleep 

disorders) in many cases. 

 

 Early detection of symptoms of depression following diagnosis and treatment can 

significantly improve the chances of preventing symptoms and the underlying disease; 

reducing the negative social and health impacts as well as personal, economic, and social 

health. However, finding symptoms of depression is challenging and requires resources. 

Current methods are based on clinical discussions and questionnaires conducted by 

hospitals or agencies, where psychological analysis tables are used to make predictions of 

mental disorders. This method is based largely on individual questionnaires and can 

diagnose almost any psychological disorder of depression. 

 

 



Another method of discussion or predictions based on a list of stress questions is to 

analyze informal texts provided by users. Previous research on medical psychology has 

shown that the relationship between language user (e.g., speaker or author) and their text 

is meaningful and powerful for the future. A recent study by Havigerová et al. 

demonstrate the power of text-based diagnosis for people at risk of depression, using a 

sample of informal text written about the holiday. Therefore, online records and data are 

increasingly seen as an important data source in supporting health care with decision 

support. The method of identifying stress symptoms in informal texts is promising, as it 

allows for the benefit of the latest advances in natural language processing and artificial 

intelligence (AI). AI has applied for natural language processing using language 

technologies and computer techniques to help machines understand basic things such as 

emotions or feelings from texts. If so, the main objective is to analyze ideas, opinions, 

and assumptions using the polarity allocation can be negative or positive. 

 

Previous work has found that automatic analysis of depressive symptoms from texts can 

be used, for example, to recall emotions in suicidal notes and to find obscene or 

depressing words or sentences in conversations or blog posts. However, there is still a 

great deal of unused energy in research to remove symptoms of depression in the 

literature. Key challenges include presenting significant indicators of stress from the 

literature. Also, there is a major obstacle to finding symptoms of depression in short 

texts. 

 

To contribute to solving these challenges, we aim to develop an automated algorithm for 

detecting depressive symptoms in texts, using a text-based sample of young people 

seeking advice on depressive symptoms they see. We believe that our automated 

discovery method, which explains user problems in the native language, could make a 

significant contribution to this research field. Therefore, the current study focuses on how 

depressive symptoms are expressed in text in a natural language using AI. 

 

Among the various methods of analyzing the human body and mind from different data 

sources, machine learning has become widely used. As machine learning models are 



gradually being used to make important predictions in important day-to-day situations, 

the need to demonstrate things increases in such situations from various stakeholders in 

the AI industry. The main danger in this is to make and apply AI decisions that are unfair 

and without explanations of the behavior of the models. Therefore, the definitions of the 

model effect are important. For example, specialists in the field of medicine need more 

information from machine learning models than simple speculation to support their 

diagnosis. Such needs may also arise in other areas, such as medical emergencies. 

Therefore, focusing only on the performance of AI models, gradually makes systems 

more susceptible to reactions in some cases. Therefore, the current study highlighted the 

importance of descriptive Artificial Intelligence (XAI) for establishing trust in decisions 

based on machine learning with descriptions of black box models. Popular modern 

definition algorithms include Model-Agnostic Definitions (LIME), Additional SHApley 

Definitions (SHAP), and Layer-wise relevance propagation (LRP). Since then, LIME has 

a very low weight but is trying to produce quick and satisfying explanations after the hoc. 

Therefore, this function accepts LIME to determine definitions (i.e., value of features) 

once a decision has been given to the model. 

 

To visualize sample data of different groups in different applications, Line 

Discrimination Analysis (LDA) is a good discriminatory data-based tool. Works on 

collecting samples of similar classes. It seeks to find directions where classes are best 

divided by considering minimizing the internal disintegration of the classroom while 

maximizing inter-class dispersal. LDA has already been used in a variety of functional 

programs such as facial recognition and recognition of human activity. LDA is a sample 

data project for different classes in the lower vector area. Therefore, rates of intermediate 

phase dispersion and in-class dispersion are increased to achieve maximum 

discrimination. 

 

 

 

 

 



 

 

1.1) ADVANTAGES OF USING CHATBOT 

 

 Accessible anytime: chatbots are digital robots that never get tired and keep 

running. Throughout the year, they will continue to operate every day without 

having to take a break 

 Flexible attribute: chatbots have the benefit that it can quite easily be used in any 

industry 

 Communication with the user is easy 

 Reduces human effort for reading files 

 Easy for maintenance 

 Anonymity, privacy, and security could be maintained with a privacy-enhancing 

approach. 

 Chatbots are designed to be nonjudgmental and therefore more compassionate 

toward patient worries. This could reassure individuals to unhesitatingly unwrap. 

 

 

1.2) PROBLEM FORMULATION 

 

 

This review means to see how clients connect with and are diverted through a 

chatbot for sadness (Hue) to give plan proposals. 

 

 

 

1.3) TECHNOLOGY USED 

 

 Python = 3.6 - Python is an interpreted high-level general-purpose 

programming language. Its design philosophy emphasizes code readability 

with its use of significant indentation. 



 

 Pandas= 0.22.0 - pandas is a fast, powerful, flexible and easy to use open 

source data analysis and manipulation tool ,built on top of the Python 

programming language. 

 

 

 Numpy= 1.14.3 - The fundamental package for scientific computing with 

Python 

 

 

 Tensorfow= 1.13 - The core open source library to help you develop and train 

ML models. Get started quickly by running Colab notebooks directly in your 

browser. 

 

 Flask - Flask is a micro web framework written in Python. It is classified as a 

microframework because it does not require particular tools or libraries. 

 

 

 Jupyter Notebook - The Jupyter Notebook is a web application for creating and 

sharing documents that contain code, visualizations, and text. It can be used for 

data science, statistical modeling, machine learning, and much more. 

 

 Spyder- Spyder is a free and open source scientific environment written in 

Python, for Python, and designed by and for scientists, engineers and data 

analysts. It features a unique combination of the advanced editing, analysis, 

debugging, and profiling functionality of a comprehensive development tool 

with the data exploration, interactive execution, deep inspection, and beautiful 

visualization capabilities of a scientific package. 

 

 

 

 



 

CHAPTER-2 

LITERATURE SURVEY 

 

2.1) Title:“ Emassnuela Haaller and Traiian Raebedea, “Designing a Chat-bot that 

Simulates an Historical Figure”, IEEE Conference Publications, July 2013. 

There might be applications that are consolidating man-like appearance and expecting to 

copy human, however in the greater part of the situations the data of the conversational 

bot is put away in a db made by somebody who has delayed information in that field. In 

any case, scarcely any specialists might have examined making a Chat Bot utilizing a 

counterfeit person and character starting from pages or plain-text of someone in 

particular. The paper expounds bringing up the significant realities in texts clarifying the 

existence of an antiquated figure for making a specialist that is utilized in school 

situations. 

 

2.2 Title: Maja Pantic, Reinier Zwitserloot, and Robbert Jan Grootjans, “Teaching 

Introductory Artificial Intelligence Using Asimple Agent Framework”, IEEE 

Transactions On Education, Vol. 48, No. 3, August 2005. 

The paper clarify a method of showing man-made consciousness (AI) utilizing a 

certified, credulous specialist systems just for this course. However numerous specialist 

systems has been proposed in the writing, none of the accessible constructions was 

simple or easy to be utilized by to be alumni of CSE. The principle objective of utilizing 

such a review was to keep occupied the understudies into which they observed to be 

extremely fascinating. A useful methodology and a conventional methodology was 

utilized with the goal that understudies learn viably. 

 

 



 

 

As of late, there are such countless organizations have created AI applications to help for 

discouraged individuals, up to this point give security and namelessness. These 

applications, focused on client, were created to proactively keep an eye on patients, be 

prepared to listen them also visit whenever, anyplace with suggest exercises which 

attempts to work on client’s psychological needs. One of the fruitful chatbots that have 

been in the market up to this point is woebot which filter the states of mind and make a 

stage wherein clients will communicate their contemplations and feelings.  

 

 Moodkit: It is an application that assists clients with diminishing stress of client 

utilizing CBT treatment. This application attempt to perceive and change negative 

considered client. It similar as an every day suspected record. 

 Pacifica: It is an application which assists with making due stress dependent on 

CBT Therapy. It incorporates reflection, unwinding, mind-set and wellbeing 

following instruments. 

 Wysa: It is a sincerely savvy chatbot that assist clients with dealing with their 

feelings and contemplations in light of CBT, DBT Therapy with contemplation 

practice and inspirational talking.  

 

 

Every one of these applications are not intended to recommend legitimate treatment. 

They are only the initial step of perceive and to oversee gloom. This application is by all 

accounts attainable arrangement able to do dealing with uneasiness and wretchedness the 

executives upto a few limit. 

 

 



CHAPTER-3 

PROJECT DESIGN 

 

Emotional situations can be represented as chronological words in text data while 

communicating with others. Therefore, a machine learning model capable of encoding 

consecutive data coding is ideal for such type of work. Therefore, Recurrent Neural 

Networks (RNNs) were adopted for this project. 

 

 

 

3.1)  LEARNING ABOUT LSTM RNN MODEL 

RNN can be considered as the mostwell-known deep learning methods used to model 

time sequence information. RNNs basically contain a recurring link between history to 

present the state and the hidden circumstances. That is the most important memory role in 

neural networks. Conventional RNN algorithms often deal with the problem of extinct 

gradient, the limit of long-term data processing known as Long-Term Dependence. To 



overcome the problem, Long-Term Short Memory (LSTM) was developed. Figure 1 

shows a sample of a deep neural network consisting of 50 LSTM units. 

.  

Fig.1 LSTM MODEL 

 

 

LSTM networks are an extension of recurrent neural networks (RNNs) mainly introduced 

to handle situations where RNNs fail. Talking about RNN, it is a network that works on 

the present input by taking into consideration the previous output (feedback) and storing 

in its memory for a short period of time (short-term memory). Out of its various 

applications, the most popular ones are in the fields of speech processing, non-Markovian 

control, and music composition. Nevertheless, there are drawbacks to RNNs. First, it fails 

to store information for a longer period of time. At times, a reference to certain 

information stored quite a long time ago is required to predict the current output. But 

RNNs are absolutely incapable of handling such “long-term dependencies”. Second, there 

is no finer control over which part of the context needs to be carried forward and how 

much of the past needs to be ‘forgotten’. Other issues with RNNs are exploding and 

vanishing gradients (explained later) which occur during the training process of a 



network through backtracking. Thus, Long Short-Term Memory (LSTM) was brought 

into the picture. It has been so designed that the vanishing gradient problem is almost 

completely removed, while the training model is left unaltered. Long time lags in certain 

problems are bridged using LSTMs where they also handle noise, distributed 

representations, and continuous values. With LSTMs, there is no need to keep a finite 

number of states from beforehand as required in the hidden Markov model (HMM). 

LSTMs provide us with a large range of parameters such as learning rates, and input and 

output biases. Hence, no need for fine adjustments. The complexity to update each weight 

is reduced to O(1) with LSTMs, similar to that of Back Propagation Through Time 

(BPTT), which is an advantage. Information is retained by the cells and the memory 

manipulations are done by the gates. There are three gates –  

3.1.1) LSTM STRUCTURE 

1. Forget Gate: The information that is no longer useful in the cell state is removed 

with the forget gate. Two inputs x_t (input at the particular time) and h_t-1 

(previous cell output) are fed to the gate and multiplied with weight matrices 

followed by the addition of bias. The resultant is passed through an activation 

function which gives a binary output. If for a particular cell state the output is 0, 

the piece of information is forgotten and for output 1, the information is retained 

for future use. 

 

 

 



 

2.  Input gate: The addition of useful information to the cell state is done by the 

input gate. First, the information is regulated using the sigmoid function and filter 

the values to be remembered similar to the forget gate using inputs h_t-1 and x_t. 

Then, a vector is created using tanh function that gives an output from -1 to +1, 

which contains all the possible values from h_t-1 and x_t. At last, the values of the 

vector and the regulated values are multiplied to obtain the useful information. 

 

 

 

 

 

 

3. Output gate: The task of extracting useful information from the current cell state 

to be presented as output is done by the output gate. First, a vector is generated by 

applying tanh function on the cell. Then, the information is regulated using the 

sigmoid function and filter by the values to be remembered using inputs h_t-1 and 

x_t. At last, the values of the vector and the regulated values are multiplied to be 

sent as an output and input to the next cell. 

 



 

 

 

3.2)  ARCHITECTURE OF LSTM 

 

The basic difference between the architectures of RNNs and LSTMs is that the hidden 

layer of LSTM is a gated unit or gated cell. It consists of four layers that interact with one 

another in a way to produce the output of that cell along with the cell state. These two 

things are then passed onto the next hidden layer. Unlike RNNs which have got the only 

single neural net layer of tanh, LSTMs comprises of three logistic sigmoid gates and one 

tanh layer. Gates have been introduced in order to limit the information that is passed 

through the cell. They determine which part of the information will be needed by the next 

cell and which part is to be discarded. The output is usually in the range of 0-1 where ‘0’ 

means ‘reject all’ and ‘1’ means ‘include all’.   

Each LSTM cell has three inputs h_{t-1}  ,C_{t-1}  and x_t  and two outputs h_t  and C_t  

. For a given time t, h_t  is the hidden state, C_t  is the cell state or memory, x_t  is the 

current data point or input. The first sigmoid layer has two inputs–h_{t-1}  and x_t  

where h_{t-1}  is the hidden state of the previous cell. It is known as the forget gate as its 

output selects the amount of information of the previous cell to be included. The output is 

a number in [0,1] which is multiplied (point-wise) with the previous cell state C_{t-1}  . 



 

 

Each LSTM memory block has a cell state as well as three gates, which are input, forget, 

and the output gates. The input gate Ft can be represented as 

It=β(WLILt+WHLHt−1+bI)        (1) 

where W is weight matrix, b bias vectors, and β a logistic function. The forget gate F can 

be expressed as 

Ft=β(WLFLt+WHFHt−1+bF).       (2) 

 

The long-term memory is stored in a cell state vector S that is expressed as 

St=FtSt−1+Fttanh(WLSLt+WHSHt−1+bS).     (3) 

The output gate V produces the output for the unit and can be expressed as 

Vt=β(WLVLt+WHVHt−1+bV).       (4) 

The hidden state H is expressed as 

Ht=Vttanh(St).         (5) 

We adopt an attention layer over the LSTM units before applying dense layer  as 

A(att)t=LSTM(Ht,A(att)t−1)       (6) 



The attention technique is basically used for emphasising important information in the 

current task rather than other useless information. Hence, it can be applied on top of the 

LSTM layers to improve the model's accuracy. Finally, the output can be determined 

using a softmax function as 

O=softmax(WOAO+bO)        (7) 

where W and b represent weights and bias, respectively. Figures 11 and 12 show the 

algorithms for training and prediction of depression or non-depression through RNN, 

respectively. 

 

 

 DATASET - For separating on the web sites information web scratching instrument, 

excellent soup is utilized. Additionally twitter's feeling examination information is 

considered to investigate the most continuous words utilized by discouraged individuals. 

The extricated information put away into yml documents for additional pre-handling 

information step which incorporates changing over text into lowercase and eliminate 

accentuation marks. 



TRAINING AND TESTING - For the preparation and testing part dataset is partitioned 

into two section. To remove the feeling from text, profound learning model, LSTM a fake 

repetitive neural organization is helpful for this interaction. 

MODEL - Seq2Seq LSTM (Long transient memory) a fake intermittent neural 

organization model learns long conditions and turn out incredibly for consecutive 

information. LSTM is fundamentally an answer for resolve the disappearing inclination 

issue of RNN throughout different time steps 

 

 

3.3) SEQUENTIAL DIAGRAM - 

 

 

 

 

 

 



3.4) DATA FLOW DIAGRAM (LEVEL-0) – 

 

 

 

 

DATA FLOW DIAGRAM (LEVEL-1) – 

 

 

 



CHAPTER-4 

SOURCE CODE 

 

import os 

import nltk 

import numpy as np 

import json 

 

# For making a precision, recall report and confusion matrix on the classes 

from sklearn.metrics import classification_report, confusion_matrix 

 

import matplotlib.pyplot as plt 

from nltk.stem.lancaster import LancasterStemmer 

from string import punctuation 

anger_training_set = [] 

fear_training_set = [] 

sadness_training_set = [] 

joy_training_set = [] 

 

anger_test_set = [] 

fear_test_set = [] 

sadness_test_set = [] 

joy_test_set = [] 

stemmer = LancasterStemmer() 

all_words=[] 

 

# Here I am loading the dataset from stored folder. The training data is stored as 

text file and each tweet is accompanied 

 

# by the magnitude of its sentiment (0 to 1). I had to go through the tweets myself 

and observed that a threshold of 0.5 is  



# good enough to classify a tweet according to its sentiment. Tweets with lesser 

threshold were not definitive to be trained as per their mentioned classification  

  

# I only read those tweets that have a dominant classification factor i.e. above 0.5 

 

# Here i am setting each tweet's threshold magnitude accordingly 

 

def load_training_data(sentiment): 

    data = open("ML Project/datasets/"+sentiment+"_training_set.txt",encoding="utf8") 

    if sentiment == "anger":         

        threshold = 0.5 

    elif sentiment == "fear": 

        threshold = 0.6 

    elif sentiment == "sadness": 

        threshold = 0.5 

    elif sentiment == "joy": 

        threshold = 0.5 

    else: 

        pass 

    return data,threshold 

 

 

def load_test_data(sentiment): 

    data = open("ML Project/datasets/"+sentiment+"_test_set.txt",encoding="utf8") 

    return data 

 

# In this method, I am cleaning the tweet data removing punctuations and then 

tokenizing the words in tweet removing name tags 

# and appending them to training set 

 

def clean_data(training_data,threshold): 

    training_set = [] 

    for line in training_data: 

        line = line.strip().lower() 

        if line.split()[-1] == "none": 



            line = " ".join(filter(lambda x:x[0]!='@', line.split())) 

            punct = line.maketrans("","",'.*%$^0123456789#!][\?&/)/(+-<>') 

            result = line.translate(punct) 

            tokened_sentence = nltk.word_tokenize(result) 

            sentence = tokened_sentence[0:len(tokened_sentence)-1] 

            label = tokened_sentence[-2] 

            training_set.append((sentence,label)) 

        else: 

            intensity = float(line.split()[-1])         

            if (intensity>=threshold): 

                line = " ".join(filter(lambda x:x[0]!='@', line.split())) 

                punct = line.maketrans("","",'.*%$^0123456789#!][\?&/)/(+-<>') 

                result = line.translate(punct) 

                tokened_sentence = nltk.word_tokenize(result) 

                sentence = tokened_sentence[0:len(tokened_sentence)-1] 

                label = tokened_sentence[-1] 

                training_set.append((sentence,label)) 

    return training_set 

     

# This method collects all the unique words that are contained in the entire tweet 

dataset, finds their stem and  

# encodes each sentence according to the bag of words appending it to training set 

 

def bag_of_words(all_data): 

    training_set = [] 

    all_words = [] 

    for each_list in all_data: 

        for words in each_list[0]: 

            word = stemmer.stem(words) 

            all_words.append(word) 

    all_words = list(set(all_words)) 

     

    for each_sentence in all_data:   

        bag = [0]*len(all_words) 

        training_set.append(encode_sentence(all_words,each_sentence[0],bag)) 



    return training_set,all_words 

# Here we encode each tweet's words according to the words it contained from the bag of 

words which is based on all words in all tweets 

def encode_sentence(all_words,sentence, bag): 

    for s in sentence:         

        stemmed_word = stemmer.stem(s) 

        for i,word in enumerate(all_words): 

            if stemmed_word == word: 

                bag[i] = 1 

    return bag 

     

     

def main(): 

    bag = []  

    all_data = [] 

    all_test_data = [] 

    labels = [] 

    classes = [] 

    labels = [] 

    test_labels = [] 

    words=[] 

    test_words = [] 

         

######### Here we read the whole training data for each class and the threshold we 

will use for its classification 

 

    anger_training_data,threshold = load_training_data("anger") 

    anger_training_set = clean_data(anger_training_data,threshold) 

    print(anger_training_set[0]) 

     

    fear_training_data,threshold = load_training_data("fear") 

    fear_training_set = clean_data(fear_training_data,threshold) 

     

    sadness_training_data,threshold = load_training_data("sadness") 

    sadness_training_set = clean_data(sadness_training_data,threshold) 



     

    joy_training_data,threshold = load_training_data("joy") 

    joy_training_set = clean_data(joy_training_data,threshold) 

     

     

 ######### Here we read the whole test data for each class and the threshold we will 

use for its classification 

 

    anger_test_data = load_test_data("anger") 

    anger_test_set = clean_data(anger_test_data,threshold) 

    #print(anger_test_set[0]) 

    print(len(anger_test_set)) 

     

    fear_test_data = load_test_data("fear") 

    fear_test_set = clean_data(fear_test_data,threshold) 

   # print(fear_test_set[0]) 

    print(len(fear_test_set)) 

    

    sadness_test_data = load_test_data("sadness") 

    sadness_test_set = clean_data(sadness_test_data,threshold) 

  #  print(sadness_test_set[0]) 

    print(len(sadness_test_set)) 

     

    joy_test_data = load_test_data("joy") 

    joy_test_set = clean_data(joy_test_data,threshold) 

  #  print(joy_test_set[0]) 

    print(len(joy_test_set)) 

    ###### In every training set above we have a nested list whose first element is 

sentence and 2nd element its respective label ###### 

     

#    print(anger_training_set[0][0],anger_training_set[0][1]) 

#    print(joy_training_set[0][0],joy_training_set[0][1]) 

 

     

    ###### Here we combine all training sets in one list ###### 



 

    all_data.extend(anger_training_set) 

    all_data.extend(fear_training_set) 

    all_data.extend(sadness_training_set) 

    all_data.extend(joy_training_set) 

     

    all_data.extend(anger_test_set) 

    all_data.extend(fear_test_set) 

    all_data.extend(sadness_test_set) 

    all_data.extend(joy_test_set) 

     

    ###### Here we simply make a classification label list encoding our 4 classes as 

follows 

     

     

    for i,j in all_data: 

        if j == "anger":             

            labels.append([1,0,0,0]) 

        elif j == "fear":             

            labels.append([0,1,0,0]) 

        elif j == "sadness":             

            labels.append([0,0,1,0]) 

        elif j == "joy":             

            labels.append([0,0,0,1]) 

        else: 

            pass 

 

    print(len(labels)) 

print(len(test_labels)) 

    classes = ["anger","fear","sadness","joy"] 

    print(classes) 

    np.set_printoptions(threshold=np.inf) 

     

    # Here we will have the whole training set and the all the words contained in 

whole training set 



 

    training_set,words = bag_of_words(all_data) 

     

# We convert our training,test set and training, test labels in a numpy array as it is 

required for calculations in neural net 

 

    dataset = np.array(training_set) 

    labels = np.array(labels) 

     

    # It is important to shuffle dataset so your classifier does not attempt to memorize 

training set, this functions shuffles data and labels. 

 

    shuffling_function = np.random.permutation(dataset.shape[0]) 

    shuffled_dataset, shuffled_labels = np.zeros((dataset.shape)),np.zeros((dataset.shape)) 

    shuffled_dataset,shuffled_labels = 

dataset[shuffling_function],labels[shuffling_function] 

     

     

    split = int(len(shuffled_dataset)*0.8) 

    training_data = shuffled_dataset[:split] 

    training_labels = shuffled_labels[:split] 

    test_data = shuffled_dataset[split:] 

    test_labels = shuffled_labels[split:] 

    print(training_data.shape) 

    print(training_labels.shape)     

    print(test_data.shape) 

    print(test_labels.shape) 

     

         

############# HERE WE HAVE A SHUFFLED DATASET WITH RESPECTIVE 

LABELS NOW WE HAVE TO TRAIN THIS DATA BOTH NUMPY ARRAYS 

############ 

 

    Train_model(training_data,training_labels,words,classes) 

    Test_model(test_data,test_labels,words,classes) 



 

# Method for calculating sigmoid 

 

def sigmoid(z): 

    return (1/(1+np.exp(-z))) 

     

# Method for calculating relu 

 

def relu(z): 

    A = np.array(z,copy=True) 

    A[z<0]=0 

    assert A.shape == z.shape 

    return A 

 

# Method for calculating softmax 

 

def softmax(x): 

    num = np.exp(x-np.amax(x,axis=0,keepdims=True))     

    return num/np.sum(num,axis=0,keepdims=True) 

 

 

# Method for calculating forward propagation 

 

def forward_prop(n_x,n_h,n_y,m,X,W1,W2,b1,b2): 

 

# Forward propagate data ... dimensions should be 100x1547 

 

    Z1 = np.dot(W1,X)+b1 

    A1 = relu(Z1) 

    Z2 = np.dot(W2,A1)+b2 

    A2 = softmax(Z2) 

    return Z1,A1,Z2,A2 

 

# Method for calculating relu activation's derivative 

 



def relu_backward(da,dz): 

    da1 = np.array(da,copy=True) 

    da1[dz<0]=0 

    assert da1.shape == dz.shape 

    return da1 

 

# Method for calculating linear part of backward propagation 

 

def linear_backward(dz,a,m,w,b): 

    dw = (1/m)*np.dot(dz,a.T) 

    db = (1/m)*np.sum(dz,axis=1,keepdims=True) 

    da = np.dot(w.T,dz) 

    assert (dw.shape==w.shape) 

    assert (da.shape==a.shape) 

    assert (db.shape == b.shape) 

    return da,dw,db  

 

# Method for calculating loss function 

 

def calculate_loss(Y,Yhat,m): 

    loss = (-1/m)*np.sum(np.multiply(Y,np.log(Yhat))) 

    return loss 

 

# Method for back propagation 

 

def back_prop(Z1,A1,Z2,A2,X,Y,W1,W2,b1,b2,learning_rate,m): 

    dZ2 = A2-Y 

    da1,dw2,db2 = linear_backward(dZ2,A1,m,W2,b2) 

    dZ1 = relu_backward(da1,Z1) 

    da0,dw1,db1 = linear_backward(dZ1,X,m,W1,b1) 

    W2 = W2 - learning_rate * dw2 

    b2 = b2 - learning_rate * db2 

    W1 = W1 - learning_rate * dw1 

    b1 = b1 - learning_rate * db1 

    return W1,b1,W2,b2 



 

 

# Method for training model 

 

def Test_model(test_data, test_labels,words,classes): 

    all_losses = [] 

    learning_rate = 0.1 

    iterations = 50 

    np.random.seed(1) 

    X = test_data.T 

    print(" Shape of X is ", X.shape) 

    Y = test_labels.T 

    print(" Shape of Y is ", Y.shape) 

    # m is total number of training examples 

    m = X.shape[1] 

    print(" Shape of m is ", m) 

 

    # Number of hidden layer neurons 

    n_h = 100 

    # Number of training points 

    n_x = X.shape[0] 

    # Number of output neurons because we have 4 classes 

    n_y = 4 

     

    weights_file = 'weights.json'  

    with open(weights_file) as data_file:  

        weights = json.load(data_file)  

        W1 = np.asarray(weights['weight1'])  

        W2 = np.asarray(weights['weight2']) 

        b1 = np.asarray(weights['bias1'])  

        b2 = np.asarray(weights['bias2']) 

 

    print("################### TEST MODEL STATISTICS 

######################") 

 



    for i in range(1): 

        # input layer is our encoded sentence 

        l0 = X 

        # matrix multiplication of input and hidden layer 

        l1 = relu(np.dot(W1,l0)+b1) 

        # output layer 

        l2 = softmax(np.dot(W2,l1)+b2) 

        predictions = np.argmax(l2, axis=0) 

        labels = np.argmax(Y, axis=0) 

        print(classification_report(predictions,labels)) 

 

# Method for training model 

def Train_model(training_data, training_labels,words,classes): 

    all_losses = [] 

    learning_rate = 0.1 

    iterations = 50 

    np.random.seed(1) 

    X = training_data.T 

    print(" Shape of X is ", X.shape) 

    Y = training_labels.T 

    print(" Shape of Y is ", Y.shape) 

    # m is total number of training examples 

    m = X.shape[1] 

    print(" Shape of m is ", m) 

    # Number of hidden layer neurons 

    n_h = 100 

    # Number of training points 

    n_x = X.shape[0] 

    # Number of output neurons because we have 4 classes 

    n_y = 4 

    # Multiplying by 0.01 so that we get smaller weights .. dimensions 100x3787 

    W1 = np.random.randn(n_h,n_x)*0.01 

    print(" Shape of W1 is ", W1.shape) 

    # Dimensions 100x1 

    b1 = np.zeros((n_h,1)) 



    # Dimensions 1547 x 4 

    W2 = np.random.randn(n_y,n_h) 

    print(" Shape of W2 is ", W2.shape) 

    # Forward propagate data ... dimensions should be 100x1547 

    b2 = np.zeros((n_y,1)) 

    print("################### TRAIN MODEL STATISTICS 

######################") 

    for i in range(0,iterations): 

        Z1,A1,Z2,A2 = forward_prop(n_x,n_h,n_y,m,X,W1,W2,b1,b2) 

        predictions = np.argmax(A2, axis=0) 

        labels = np.argmax(Y, axis=0) 

        print(classification_report(predictions,labels)) 

        Loss = calculate_loss(Y,A2,m) 

        W1,b1,W2,b2 = back_prop(Z1,A1,Z2,A2,X,Y,W1,W2,b1,b2,learning_rate,m) 

        all_losses.append(Loss) 

 

    # storing weights so that we can reuse them without having to retrain the neural 

network 

 

    weights = {'weight1': W1.tolist(), 'weight2': W2.tolist(),  

               'bias1':b1.tolist(), 'bias2':b2.tolist(), 

               'words': words, 

               'classes': classes 

              } 

    weights_file = "weights.json" 

 

 

    with open(weights_file, 'w') as outfile: 

        json.dump(weights, outfile, indent=4, sort_keys=True) 

    print ("saved synapses to:", weights_file) 

    plt.plot(all_losses) 

 

     

if __name__ == '__main__': 

    main() 



 

# probability threshold 

 

ERROR_THRESHOLD = 0.1 

# load our calculated weight values 

 

weights_file = 'weights.json'  

with open(weights_file) as data_file:  

    weights = json.load(data_file)  

    W1 = np.asarray(weights['weight1'])  

    W2 = np.asarray(weights['weight2']) 

    b1 = np.asarray(weights['bias1'])  

    b2 = np.asarray(weights['bias2']) 

    all_words = weights['words'] 

    classes = weights['classes'] 

     

def clean_sentence(verification_data): 

    line = verification_data 

 

    # Remove whitespace from line and lower case iter 

    line = line.strip().lower() 

 

    # Removing word with @ sign as we dont need name tags of twitter 

    line = " ".join(filter(lambda x:x[0]!='@', line.split())) 

 

    # Remove punctuations and numbers from the line 

    punct = line.maketrans("","",'.*%$^0123456789#!][\?&/)/(+-<>') 

    result = line.translate(punct) 

 

    # Tokenize the whole tweet sentence 

    tokened_sentence = nltk.word_tokenize(result) 

 

    # We take the tweet sentence from tokened sentence 

    sentence = tokened_sentence[0:len(tokened_sentence)] 

    return sentence     



 

def verify(sentence, show_details=False): 

    bag=[0]*len(all_words) 

    cleaned_sentence = clean_sentence(sentence) 

 

    # This line returns the bag of words as 0 or 1 if words in sentence are found in 

all_words 

    x = encode_sentence(all_words,cleaned_sentence,bag) 

    x = np.array(x) 

    x = x.reshape(x.shape[0],1) 

     

#    print("Shape of X is ", x.shape) 

    if show_details: 

        print ("sentence:", sentence, "\n bow:", x) 

    # input layer is our encoded sentence 

    l0 = x 

    # matrix multiplication of input and hidden layer 

    l1 = relu(np.dot(W1,l0)+b1) 

    # output layer 

    l2 = softmax(np.dot(W2,l1)+b2) 

     

    return l2 

 

def classify(sentence, show_details=False): 

    results = verify(sentence, show_details) 

    results = [[i,r] for i,r in enumerate(results) if r>ERROR_THRESHOLD ]  

    results.sort(key=lambda x: x[1], reverse=True)  

    return_results =[[classes[r[0]],r[1]] for r in results] 

    print ("%s \n classification: %s \n" % (sentence, return_results)) 

    return return_results 

 

classify("I want to kill everyone @Name1 #why?") 

classify("I am so happy @Name2 #yayyyy") 

classify("This depression will kill me someday .. i am dying @Name3 #killme") 

classify("I am afraid terrorists might attack us @Name4 #isis") 



classify("What should I do when i am happy @Name5 ") 

classify("I want to be happy") 

 

from IPython.display import clear_output 

input_sentiment = input("Hi :) How are you feeling today ? ") 

#print(input_sentiment) 

#print(classify(input_sentiment)[0][0]) 

sentiment = classify(input_sentiment)[0][0] 

print(sentiment) 

if sentiment == "anger" or sentiment == "sadness" or sentiment == "fear": 

    answer = input("Sorry to hear that .... would you like to hear a joke to lighten your 

mood ? Press Yes or No ") 

    if answer == "N" or answer == "No" or answer == "no" or answer == "n": 

        print("Have a nice day. Goodbye :) ") 

    else: 

        file = open('C:/Users/Shaya/Desktop/jokes.txt','r') 

        while(1): 

            full_file = file.readline() 

            split_file = full_file.split('/') 

        #    print(split_file) 

            slashes = full_file.count('/') 

        #    print(slashes) 

            line_of_joke = [] 

            for i in range(slashes): 

                k=0 

            #    print(split_file[i]) 

                commas = split_file[i].count('"') 

        #        print(commas) 

                length = int(commas/2) 

                if length == 0: 

                    line_of_joke.append(split_file[i]) 

                else: 

                    for j in range(length): 

        #            print("Here") 

                        line_of_joke.append(split_file[i].split('"')[k]+split_file[i].split('"')[k+1]) 



                        if j==length-1: 

                            line_of_joke.append(split_file[i].split('"')[k+2]) 

                        k=k+2 

    #    break 

            for i in line_of_joke: 

                print(i) 

            user_input = input("Do you want another joke ? Write Yes or No\t") 

            if user_input == "Y": 

                clear_output() 

                pass 

            else: 

                clear_output() 

                break 

        #print(line_of_joke[1]) 

 

Now we also have to deploy our created model with the help of flask. So here is the 

code, 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



APP.PY 
 

from flask import Flask, request, render_template, jsonify 

app = Flask(__name__) 

 

import collections 

 

import numpy as np 

 

from keras.preprocessing.text import Tokenizer 

from keras.preprocessing.sequence import pad_sequences 

from keras.models import Model 

from keras.layers import GRU, Input, Dense, TimeDistributed, Activation, RepeatVector, 

Bidirectional 

from keras.layers import Embedding, CuDNNLSTM, GlobalMaxPooling1D, 

GlobalAveragePooling1D, CuDNNGRU 

from keras.layers.embeddings import Embedding 

from keras.optimizers import Adam 

from keras.losses import sparse_categorical_crossentropy 

from keras.utils.vis_utils import plot_model 

from keras.callbacks import ModelCheckpoint, EarlyStopping, TensorBoard 

from nltk.translate.bleu_score import sentence_bleu, corpus_bleu 

import helper 

import tensorflow as tf 

from tensorflow.python.layers.core import Dense 

from tensorflow.python.ops.rnn_cell_impl import _zero_state_tensors 

from tensorflow.contrib.seq2seq import AttentionWrapper as attention_wrapper 

from tensorflow.contrib.seq2seq import BeamSearchDecoder as beam_search_decoder 

# print('TensorFlow Version: {}'.format(tf.__version__)) 

import json 

import pandas as pd 

import matplotlib.pyplot as plt 

from tqdm import tqdm 

tqdm.pandas() 



import re 

import os 

os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'  

import warnings 

warnings.filterwarnings("ignore", category=DeprecationWarning) 

 

 

contraction_mapping = {"ain't": "is not", "aren't": "are not","can't": "cannot", "'cause": 

"because", "could've": "could have", "couldn't": "could not", "didn't": "did not",  

"doesn't": "does not", "don't": "do not", "hadn't": "had not", "hasn't": "has not", "haven't": 

"have not", "he'd": "he would","he'll": "he will", "he's": "he is", "how'd": "how did", 

"how'd'y": "how do you", "how'll": "how will", "how's": "how is",  "I'd": "I would", 

"I'd've": "I would have", "I'll": "I will", "I'll've": "I will have","I'm": "I am", "I've": "I 

have", "i'd": "i would", "i'd've": "i would have", "i'll": "i will",  "i'll've": "i will 

have","i'm": "i am", "i've": "i have", "isn't": "is not", "it'd": "it would", "it'd've": "it would 

have", "it'll": "it will", "it'll've": "it will have","it's": "it is", "let's": "let us", "ma'am": 

"madam", "mayn't": "may not", "might've": "might have","mightn't": "might 

not","mightn't've": "might not have", "must've": "must have", "mustn't": "must not", 

"mustn't've": "must not have", "needn't": "need not", "needn't've": "need not 

have","o'clock": "of the clock", "oughtn't": "ought not", "oughtn't've": "ought not have", 

"shan't": "shall not", "sha'n't": "shall not", "shan't've": "shall not have", "she'd": "she 

would", "she'd've": "she would have", "she'll": "she will", "she'll've": "she will have", 

"she's": "she is", "should've": "should have", "shouldn't": "should not", "shouldn't've": 

"should not have", "so've": "so have","so's": "so as", "this's": "this is","that'd": "that 

would", "that'd've": "that would have", "that's": "that is", "there'd": "there would", 

"there'd've": "there would have", "there's": "there is", "here's": "here is","they'd": "they 

would", "they'd've": "they would have", "they'll": "they will", "they'll've": "they will 

have", "they're": "they are", "they've": "they have", "to've": "to have", "wasn't": "was 

not", "we'd": "we would", "we'd've": "we would have", "we'll": "we will", "we'll've": "we 

will have", "we're": "we are", "we've": "we have", "weren't": "were not", "what'll": "what 

will", "what'll've": "what will have", "what're": "what are",  "what's": "what is", 

"what've": "what have", "when's": "when is", "when've": "when have", "where'd": "where 

did", "where's": "where is", "where've": "where have", "who'll": "who will", "who'll've": 

"who will have", "who's": "who is", "who've": "who have", "why's": "why is", "why've": 

"why have", "will've": "will have", "won't": "will not", "won't've": "will not have", 



"would've": "would have", "wouldn't": "would not", "wouldn't've": "would not have", 

"y'all": "you all", "y'all'd": "you all would","y'all'd've": "you all would have","y'all're": 

"you all are","y'all've": "you all have","you'd": "you would", "you'd've": "you would 

have", "you'll": "you will", "you'll've": "you will have", "you're": "you are", "you've": 

"you have", 'u.s':'america', 'e.g':'for example'} 

def clean_contractions(text, mapping): 

    specials = ["’", "‘", "´", "`"] 

    for s in specials: 

        text = text.replace(s, "'") 

    text = ' '.join([mapping[t] if t in mapping else t for t in text.split(" ")]) 

    return text 

 

punct = [',', '.', '"', ':', ')', '(', '-', '!', '?', '|', ';', "'", '$', '&', '/', '[', ']', '>', '%', '=', '#', '*', '+', '\\', '•',  

'~', '@', '£',  

 '·', '_', '{', '}', '©', '^', '®', '`',  '<', '→', '°', '€', '™', '›',  '♥', '←', '×', '§', '″', '′', 'Â', '█', '½', 'à', 

'…',  

 '“', '★', '”', '–', '●', 'â', '►', '−', '¢', '²', '¬', '░', '¶', '↑', '±', '¿', '▾', '═', '¦', '║', '―', '¥', '▓', '—', 

'‹', '─',  

 '▒', '：', '¼', '⊕', '▼', '▪', '†', '■', '’', '▀', '¨', '▄', '♫', '☆', 'é', '¯', '♦', '¤', '▲', 'è', '¸', '¾', 'Ã', '⋅', 

'‘', '∞',  

 '∙', '）', '↓', '、', '│', '（', '»', '，', '♪', '╩', '╚', '³', '・', '╦', '╣', '╔', '╗', '▬', '❤', 'ï', 'Ø', '¹', '≤', 

'‡', '√', ] 

 

punct_mapping = {"‘": "'", "₹": "e", "´": "'", "°": "", "€": "e", "™": "tm", "√": " sqrt ", "×": 

"x", "²": "2", "—": "-", "–": "-", "’": "'", "_": "-", "`": "'", '“': '"', '”': '"', '“': '"', "£": "e", '∞': 

'infinity', 'θ': 'theta', '÷': '/', 'α': 'alpha', '•': '.', 'à': 'a', '−': '-', 'β': 'beta', '∅': '', '³': '3', 'π': 'pi', '!':' 

'} 

 

def  clean_special_chars(text, punct, mapping): 

    for p in mapping: 

        text = text.replace(p, mapping[p]) 

     

    for p in punct: 

        text = text.replace(p, f' {p} ') 



     

    specials = {'\u200b': ' ', '…': ' ... ', '\ufeff': '', '    ': '', '  ': ''}   

    for s in specials: 

        text = text.replace(s, specials[s]) 

     

    return text 

 

 

mispell_dict = {'colour': 'color', 'centre': 'center', 'favourite': 'favorite', 'travelling': 

'traveling', 'counselling': 'counseling', 'theatre': 'theater', 'cancelled': 'canceled', 'labour': 

'labor', 'organisation': 'organization', 'wwii': 'world war 2', 'citicise': 'criticize', 'youtu ': 

'youtube ', 'Qoura': 'Quora', 'sallary': 'salary', 'Whta': 'What', 'narcisist': 'narcissist', 

'howdo': 'how do', 'whatare': 'what are', 'howcan': 'how can', 'howmuch': 'how much', 

'howmany': 'how many', 'whydo': 'why do', 'doI': 'do I', 'theBest': 'the best', 'howdoes': 

'how does', 'mastrubation': 'masturbation', 'mastrubate': 'masturbate', "mastrubating": 

'masturbating', 'pennis': 'penis', 'Etherium': 'Ethereum', 'narcissit': 'narcissist', 'bigdata': 

'big data', '2k17': '2017', '2k18': '2018', 'qouta': 'quota', 'exboyfriend': 'ex boyfriend', 

'airhostess': 'air hostess', "whst": 'what', 'watsapp': 'whatsapp', 'demonitisation': 

'demonetization', 'demonitization': 'demonetization', 'demonetisation': 'demonetization'} 

def correct_spelling(x, dic): 

    for word in dic.keys(): 

        x = x.replace(word, dic[word]) 

    return x 

 

def preprocess_sentence(w): 

 

    # creating a space between a word and the punctuation following it 

    # eg: "he is a boy." => "he is a boy ." 

    # Reference:- https://stackoverflow.com/questions/3645931/python-padding-

punctuation-with-white-spaces-keeping-punctuation 

#     w = re.sub(r"([?.!,¿])", r" \1 ", w) 

#     w = re.sub(r'[" "]+', " ", w) 

 

    # replacing everything with space except (a-z, A-Z, ".", "?", "!", ",") 



    w = re.sub(r"[^a-zA-Z?.!¿]+", " ", w) 

 

    w = w.rstrip().strip() 

     

    # adding a start and an end token to the sentence 

    # so that the model know when to start and stop predicting. 

#     w = '<start> ' + w + ' <end>' 

     

    return w 

 

 

# with open('indextosent.pkl', 'rb') as f: 

#     idx2sent = pickle.load(f) 

 

# with open('senttoindex.pkl', 'rb') as f: 

#     sent2idx = pickle.load(f) 

 

reverse_vocab = json.load( open( "idxtosent.json" ) ) 

vocab = json.load( open( "senttoindex.json" ) ) 

 

 

enc_sentence_length = 17 

dec_sentence_length = 17 

 

_START_ = "_START_" 

_PAD_ = "_PAD_" 

_END_ = "_END_" 

 

def tokenizer(sentence): 

    tokens = re.findall(r"[\w]+|[^\s\w]", str(sentence)) 

    return tokens 

 

def token2idx(word, vocab): 

    return vocab[word] 

 



def sent2idx(sent, vocab=vocab, max_sentence_length=enc_sentence_length, 

is_target=False): 

    tokens = tokenizer(sent) 

    current_length = len(tokens) 

    pad_length = max_sentence_length - current_length 

    if is_target: 

        return [0] + [token2idx(token, vocab) for token in tokens] + [2] + [1] * (pad_length-

1), current_length + 1 

    else: 

        return [token2idx(token, vocab) for token in tokens] + [1] * pad_length, 

current_length 

 

def idx2token(idx, reverse_vocab): 

    return reverse_vocab[idx] 

 

def idx2sent(indices, reverse_vocab=reverse_vocab): 

    return " ".join([idx2token(str(idx), reverse_vocab) for idx in indices]) 

 

# # Enc Example 

# print('hi what is your name?') 

# print(sent2idx('hi what is your name?')) 

 

# # Dec Example 

# print('hi this is chinmay.') 

# print(sent2idx('hi this is chinmay.', max_sentence_length=dec_sentence_length, 

is_target=True)) 

 

# print(idx2sent([0, 16, 41, 7, 36, 3, 2, 1, 1, 1, 1])) 

 

from model import BasicS2SModel 

 

def respond(inp): 

    tf.reset_default_graph() 

    # model = BasicS2SModel(vocab=vocab,num_layers=3) 

 



    with tf.Session() as sess: 

        model = 

BasicS2SModel(vocab=vocab,mode="inference",use_beam_search=False,num_layers=3) 

        saver = tf.train.Saver(tf.global_variables()) 

        saver.restore(sess,tf.train.latest_checkpoint('./test_s2s/')) 

        inputs = ['hi what is your name', inp] 

 

 

        batch_preds = [] 

        batch_tokens = [] 

        batch_sent_lens = [] 

        for input_sent in inputs: 

            tokens, sent_len = sent2idx(input_sent) 

            batch_tokens.append(tokens) 

            batch_sent_lens.append(sent_len) 

 

        batch_preds = model.inference(sess,batch_tokens,batch_sent_lens) 

    #       print(batch_preds) 

         

        response = [] 

        preds = batch_preds[0][1] 

        for i in range(1,len(preds)-1): 

            if preds[i] == preds[i+1]: 

                response.append(preds[i]) 

                # preds[i+1:9] = 1 

                # preds[9] = 2 

                break 

            else: 

                response.append(preds[i]) 

 

 

        # for input_sent, pred in zip(input_batch,  batch_preds[0]): 

        #     print('Input:', input_sent) 

        #     print(pred) 

        #     print('Prediction:', idx2sent(pred, reverse_vocab=reverse_vocab)) 



        #     print('Target:', target_sent) 

 

        response = idx2sent(response, reverse_vocab=reverse_vocab) 

        return response 

 

 

 

def preprocessing(text): 

    text = text.lower() 

    text = clean_contractions(text,contraction_mapping) 

    text = clean_special_chars(text, punct, punct_mapping) 

    text = correct_spelling(text, mispell_dict) 

    text = re.sub(r'^https?:\/\/.*[\r\n]*', '', text, flags=re.MULTILINE) 

    text = re.sub(r'\/r\/[a-z]+ ', '', text, flags=re.MULTILINE) 

    text = preprocess_sentence(text) 

    return text 

 

 

@app.route('/ask', methods=['POST']) 

def index(): 

        text = request.form['messageText'] 

        if text=='exit': 

            exit() 

        else: 

            sentence = preprocessing(text) 

            bot_response = respond(sentence) 

            # print(text) 

            return jsonify(({'status':'OK','answer':bot_response})) 

 

@app.route('/') 

def my_form(): 

    return render_template('my-form.html') 

if __name__ == '__main__': 

  app.run(debug=True) 



MODEL.PY 
 

import collections 

 

import numpy as np 

 

from keras.preprocessing.text import Tokenizer 

from keras.preprocessing.sequence import pad_sequences 

from keras.models import Model 

from keras.layers import GRU, Input, Dense, TimeDistributed, Activation, RepeatVector, 

Bidirectional 

from keras.layers import Embedding, CuDNNLSTM, GlobalMaxPooling1D, 

GlobalAveragePooling1D, CuDNNGRU 

from keras.layers.embeddings import Embedding 

from keras.optimizers import Adam 

from keras.losses import sparse_categorical_crossentropy 

from keras.utils.vis_utils import plot_model 

from keras.callbacks import ModelCheckpoint, EarlyStopping, TensorBoard 

from nltk.translate.bleu_score import sentence_bleu, corpus_bleu 

import helper 

import tensorflow as tf 

from tensorflow.python.layers.core import Dense 

from tensorflow.python.ops.rnn_cell_impl import _zero_state_tensors 

from tensorflow.contrib.seq2seq import AttentionWrapper as attention_wrapper 

from tensorflow.contrib.seq2seq import BeamSearchDecoder as beam_search_decoder 

# print('TensorFlow Version: {}'.format(tf.__version__)) 

import json 

import pandas as pd 

import matplotlib.pyplot as plt 

from tqdm import tqdm 

tqdm.pandas() 

import re 

import os 

os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'  



import warnings 

warnings.filterwarnings("ignore", category=DeprecationWarning) 

 

_START_ = "_START_" 

_PAD_ = "_PAD_" 

_END_ = "_END_" 

 

 

def get_optimizer(opt): 

    if opt == "adam": 

        optfn = tf.train.AdamOptimizer 

    elif opt == "sgd": 

        optfn = tf.train.GradientDescentOptimizer 

    else: 

        assert(False) 

    return optfn 

 

 

def single_rnn_cell(cell_name,dim_size, train_phase = True, keep_prob = 0.75): 

    if cell_name == "gru": 

        cell = tf.contrib.rnn.GRUCell(dim_size) 

    elif cell_name == "lstm": 

        cell = tf.contrib.rnn.LSTMCell(dim_size) 

    else: 

        cell = tf.contrib.rnn.BasicRNNCell(dim_size) 

    if train_phase and keep_prob < 1.0: 

        cell = tf.contrib.rnn.DropoutWrapper( 

              cell=cell, 

              input_keep_prob=keep_prob, 

              output_keep_prob=keep_prob) 

    return cell 

 

def multi_rnn_cell(cell_name,dim_size,num_layers = 1, train_phase = True, 

keep_prob=0.75): 

    cells = [] 



    for _ in range(num_layers): 

        cell = single_rnn_cell(cell_name,dim_size, train_phase, keep_prob) 

        cells.append(cell) 

     

    if len(cells) > 1: 

        final_cell = tf.contrib.rnn.MultiRNNCell(cells=cells) 

    else: 

        final_cell = cells[0] 

    return final_cell 

 

class BasicS2SModel(object): 

    def __init__(self, vocab, batch_size = 2, dim_size=128, rnn_cell = 'gru', num_layers=2, 

max_gradient_norm=5.0, atten_size=30,  

                 learning_rate=0.001, learning_rate_decay_factor=0.98, 

dropout=0.2,max_inference_lenght=10, 

                 max_source_len = 10, max_target_len = 10,beam_size =3, optimizer="adam", 

mode ='train', 

                 use_beam_search = False): 

        assert mode in ['train', 'inference'] 

        self.start_token = vocab.get(_START_) 

        self.end_token = vocab.get(_END_) 

        self.train_phase = True if mode == 'train' else False 

        self.cell_name = rnn_cell 

        self.dim_size = dim_size 

        self.vocab_size = len(vocab) 

        self.num_layers = num_layers 

        self.keep_prob_config = 1.0 - dropout 

        self.atten_size = atten_size 

         

        # decoder 

        self.max_inference_lenght = max_inference_lenght 

         

        # beam search 

        self.beam_size = beam_size 

        self.beam_search = use_beam_search 



         

        # learning 

        self.learning_rate = tf.Variable(float(learning_rate), trainable=False) 

        self.learning_rate_decay_op = self.learning_rate.assign(self.learning_rate * 

learning_rate_decay_factor) 

        self.global_step = tf.Variable(0, trainable=False) 

         

        # if we use beam search decoder, we need to specify the batch size and max 

source len 

        if self.beam_search: 

            self.batch_size = batch_size 

            self.source_tokens = tf.placeholder(tf.int32, shape=[batch_size, max_source_len]) 

            self.source_length = tf.placeholder(tf.int32, shape=[batch_size,]) 

        else: 

            self.source_tokens = tf.placeholder(tf.int32,shape=[None,None]) 

            self.source_length = tf.placeholder(tf.int32,shape=[None,]) 

             

        if self.train_phase: 

            self.target_tokens = tf.placeholder(tf.int32, shape=[None, None]) 

            self.target_length = tf.placeholder(tf.int32, shape=[None,]) 

          

        with tf.variable_scope("S2S",initializer = tf.uniform_unit_scaling_initializer(1.0)): 

            self.setup_embeddings() 

            #self.setup_encoder() 

            self.setup_bidirection_encoder() 

            self.setup_attention_decoder() 

                 

        if self.train_phase: 

            opt = get_optimizer(optimizer)(self.learning_rate) 

            params = tf.trainable_variables() 

            gradients = tf.gradients(self.losses, params) 

            clipped_gradients, _ = tf.clip_by_global_norm(gradients, max_gradient_norm) 

            self.gradient_norm = tf.global_norm(gradients) 

            self.param_norm = tf.global_norm(params) 



            self.updates = opt.apply_gradients(zip(clipped_gradients, params), 

global_step=self.global_step) 

     

    def setup_embeddings(self): 

        with tf.variable_scope("Embeddings"): 

            with tf.device('/cpu:0'): 

                self.enc_emd = tf.get_variable("encode_embedding", [self.vocab_size, 

self.dim_size]) 

                self.dec_emd = tf.get_variable("decode_embedding", [self.vocab_size, 

self.dim_size]) 

                self.encoder_inputs = tf.nn.embedding_lookup(self.enc_emd, 

self.source_tokens) 

                if self.train_phase: 

                    self.decoder_inputs = tf.nn.embedding_lookup(self.dec_emd, 

self.target_tokens) 

     

    def setup_encoder(self): 

        cell = multi_rnn_cell(self.cell_name,self.dim_size, self.num_layers, 

self.train_phase,self.keep_prob_config) 

        outputs,state = 

tf.nn.dynamic_rnn(cell,inputs=self.encoder_inputs,sequence_length=self.source_length,d

type=tf.float32) 

        self.encode_output = outputs 

        self.encode_state = state 

        # using the state of last layer of rnn as initial state 

        self.decode_initial_state = self.encode_state[-1] 

         

    def setup_bidirection_encoder(self): 

        fw_cell = single_rnn_cell('gru',self.dim_size, train_phase=self.train_phase, 

keep_prob=self.keep_prob_config) 

        bw_cell = single_rnn_cell('gru',self.dim_size, train_phase=self.train_phase, 

keep_prob=self.keep_prob_config) 

         

        with tf.variable_scope("Encoder"): 

            outputs,states = tf.nn.bidirectional_dynamic_rnn( 



                cell_fw = fw_cell, 

                cell_bw = bw_cell, 

                dtype = tf.float32, 

                sequence_length = self.source_length, 

                inputs = self.encoder_inputs 

                ) 

            outputs_concat = tf.concat(outputs, 2) 

        self.encode_output = outputs_concat 

        self.encode_state = states 

         

        # use Dense layer to convert bi-direction state to decoder inital state 

        convert_layer = Dense(self.dim_size,dtype=tf.float32,name="bi_convert") 

        self.decode_initial_state = convert_layer(tf.concat(self.encode_state,axis=1)) 

         

    def setup_training_decoder_layer(self): 

        max_dec_len = tf.reduce_max(self.target_length, name='max_dec_len') 

        training_helper = 

tf.contrib.seq2seq.TrainingHelper(self.decoder_inputs,self.target_length,name="training_

helper") 

        training_decoder = tf.contrib.seq2seq.BasicDecoder( 

            cell = self.dec_cell, 

            helper = training_helper, 

            initial_state = self.initial_state, 

            output_layer = self.output_layer 

        ) 

        train_dec_outputs, train_dec_last_state,_ = tf.contrib.seq2seq.dynamic_decode( 

            training_decoder, 

            output_time_major=False, 

            impute_finished=True, 

            maximum_iterations=max_dec_len) 

         

        # logits: [batch_size x max_dec_len x vocab_size] 

        logits = tf.identity(train_dec_outputs.rnn_output, name='logits') 

 

        # targets: [batch_size x max_dec_len x vocab_size] 



        targets = tf.slice(self.target_tokens, [0, 0], [-1, max_dec_len], 'targets') 

 

        masks = 

tf.sequence_mask(self.target_length,max_dec_len,dtype=tf.float32,name="mask") 

        self.losses = 

tf.contrib.seq2seq.sequence_loss(logits=logits,targets=targets,weights=masks,name="loss

es") 

         

        # prediction sample for validation 

        self.valid_predictions = tf.identity(train_dec_outputs.sample_id, 

name='valid_preds') 

     

    def setup_inference_decoder_layer(self): 

        start_tokens = tf.tile(tf.constant([self.start_token],dtype=tf.int32),[self.batch_size]) 

        inference_helper = tf.contrib.seq2seq.GreedyEmbeddingHelper( 

            embedding=self.dec_emd, 

            start_tokens=start_tokens, 

            end_token=self.end_token) 

         

        inference_decoder = tf.contrib.seq2seq.BasicDecoder( 

            cell = self.dec_cell, 

            helper = inference_helper,  

            initial_state=self.initial_state, 

            output_layer=self.output_layer) 

         

        infer_dec_outputs, infer_dec_last_state,_ = tf.contrib.seq2seq.dynamic_decode( 

                    inference_decoder, 

                    output_time_major=False, 

                    impute_finished=True, 

                    maximum_iterations=self.max_inference_lenght) 

        # [batch_size x dec_sentence_length], tf.int32 

        self.predictions = tf.identity(infer_dec_outputs.sample_id, name='predictions') 

             

    def setup_beam_search_decoder_layer(self): 

        start_tokens = tf.tile(tf.constant([self.start_token],dtype=tf.int32),[self.batch_size]) 



        bsd = tf.contrib.seq2seq.BeamSearchDecoder( 

                    cell=self.dec_cell, 

                    embedding=self.dec_emd, 

                    start_tokens= start_tokens, 

                    end_token=self.end_token, 

                    initial_state=self.initial_state, 

                    beam_width=self.beam_size, 

                    output_layer=self.output_layer, 

                    length_penalty_weight=0.0) 

        # final_outputs are instances of FinalBeamSearchDecoderOutput 

        final_outputs, final_state, final_sequence_lengths = 

tf.contrib.seq2seq.dynamic_decode( 

            bsd,  

            output_time_major=False, 

           # impute_finished=True, 

            maximum_iterations=self.max_inference_lenght 

        ) 

        beam_predictions = final_outputs.predicted_ids 

        self.beam_predictions = tf.transpose(beam_predictions,perm=[0,2,1]) 

        self.beam_prob = final_outputs.beam_search_decoder_output.scores 

        self.beam_ids = final_outputs.beam_search_decoder_output.predicted_ids 

         

    def setup_attention_decoder(self): 

        #dec_cell = multi_rnn_cell('gru',self.dim_size,num_layers=self.num_layers, 

train_phase = self.train_phase, keep_prob=self.keep_prob_config) 

        dec_cell = 

[single_rnn_cell(self.cell_name,self.dim_size,self.train_phase,self.keep_prob_config) for 

i in range(self.num_layers)] 

        if self.beam_search: 

            memory = tf.contrib.seq2seq.tile_batch(self.encode_output,multiplier = 

self.beam_size) 

            memory_sequence_length = 

tf.contrib.seq2seq.tile_batch(self.source_length,multiplier = self.beam_size) 

        else: 

            memory = self.encode_output 



            memory_sequence_length = self.source_length 

             

        attn_mech = tf.contrib.seq2seq.BahdanauAttention( 

            num_units = self.atten_size, 

            memory = memory, 

            memory_sequence_length = memory_sequence_length, 

            name = "BahdanauAttention" 

        ) 

        dec_cell[0] = tf.contrib.seq2seq.AttentionWrapper( 

            cell=dec_cell[0], 

            attention_mechanism=attn_mech, 

            attention_layer_size=self.atten_size) 

         

        if self.beam_search: 

            tile_state = tf.contrib.seq2seq.tile_batch(self.decode_initial_state,self.beam_size) 

            initial_state = [tile_state for i in range(self.num_layers)] 

            cell_state = 

dec_cell[0].zero_state(dtype=tf.float32,batch_size=self.batch_size*self.beam_size) 

            initial_state[0] = cell_state.clone(cell_state=initial_state[0]) 

            self.initial_state = tuple(initial_state) 

        else: 

            # we use dynamic batch size 

            self.batch_size = tf.shape(self.encoder_inputs)[0] 

            initial_state = [self.decode_initial_state for i in range(self.num_layers)] 

            cell_state = dec_cell[0].zero_state(dtype=tf.float32, batch_size = self.batch_size) 

            initial_state[0] = cell_state.clone(cell_state=initial_state[0]) 

            self.initial_state = tuple(initial_state) 

             

        print(self.initial_state) 

        self.dec_cell = tf.contrib.rnn.MultiRNNCell(dec_cell) 

        self.output_layer = Dense(self.vocab_size,kernel_initializer = 

tf.truncated_normal_initializer(mean = 0.0, stddev=0.1)) 

        if self.train_phase: 

            self.setup_training_decoder_layer() 

        else: 



            if self.beam_search: 

                self.setup_beam_search_decoder_layer() 

            else: 

                self.setup_inference_decoder_layer() 

     

    def train_one_step(self,sess,encode_input,encode_len,decode_input,decode_len): 

        feed_dict = {} 

        feed_dict[self.source_tokens] = encode_input 

        feed_dict[self.source_length] = encode_len 

        feed_dict[self.target_tokens] = decode_input 

        feed_dict[self.target_length] = decode_len 

        valid_predictions,loss,_ = 

sess.run([self.valid_predictions,self.losses,self.updates],feed_dict=feed_dict) 

        return valid_predictions,loss 

     

    def inference(self,sess,encode_input,encode_len): 

        feed_dict = {} 

        feed_dict[self.source_tokens] = encode_input 

        feed_dict[self.source_length] = encode_len 

        if self.beam_search: 

            predictions,probs,ids = 

sess.run([self.beam_predictions,self.beam_prob,self.beam_ids],feed_dict=feed_dict) 

            return predictions,ids 

        else: 

            predictions = sess.run([self.predictions],feed_dict=feed_dict) 

            return predictions 

     

    def save_model(self,sess,checkpoint_dir): 

        writer = tf.summary.FileWriter(checkpoint_dir, sess.graph) 

        saver = tf.train.Saver(tf.global_variables()) 

        saver.save(sess,checkpoint_dir + "model.ckpt",global_step=self.global_step) 

         

    def restore_model(self,sess,checkpoint_dir): 

        saver = tf.train.Saver(tf.global_variables()) 

        saver.restore(sess,tf.train.latest_checkpoint(checkpoint_dir)) 



TRAINING PROCESS 

 
The model is trained for 50 epochs and learning rate is kept 0.1. Following training and 

validation set loss is observed. It is seen that our model converges nicely. 

 

 

 
 

 

Following curve shows the precision of our model which is seen to be very good for all 

classes. 

 

 



 

OUTPUT 

 

 

 



 

RESULT 

Arrangement to-grouping LSTM, a fake intermittent neural organization model shows 

more exact outcome for successive information by taking care of disappearing slope issue 

in RNN model. Proposing various approaches to the client to control their tension over 

sadness model ready to oversee around 70% exactness . The main hindrance of LSTM 

model is takes more time than other profound learning calculation as it deals with 

feedforward and back proliferation. 

 

 

CONCLUSION 

 

In this work, an astute chatbot is worked for the client who can talk transparently to the 

bot since there is no dread of judgment and it attempts to recommend a few methods for 

surviving their downturn. To recognize feeling of client from talk text and answer in like 

manner, profound learning calculations LSTM (RNN) is utilized which handle slope 

issue. There are still such countless variables which influences the discussion, where need 

to chip away at that. 

We have seen bots like Woebot, Wysa, and Joy might have a great impact on providing 

help to people suffering from mental illness. Many people are still not educated about this 

technology of treating depression and how chatbots could be a real help. The chatbot is a 

great platform for anyone and is widely available anytime through an interface and 

internet access. The automated bot follows up the minimum standard it should meet- to 

respect user privacy, should be evidence-based and also ensure user's safety. Chatbots 

using LSTM have certainly made things sorted by making their clients identify emotions, 

distinguishing between healthy and unhealthy feelings and how distorted thoughts 

contribute to painful feelings. The chatbot therapist is an amazing invention in the 

healthcare department. It will encourage users to discuss their problems and emotions 

with ease. 



 

FUTURE SCOPE 

 

 Empowering various languages in chat. 

 Review various parts of the language, which illuminate issues for chatbot-learning. 

 Maintain a characteristic discussion stream of chatbot. 

 

REFERENCES 

 

[1] C. K. M, “Artificial paranoia: A computer program for the study of natural language communication between 

man and machine,” ACM Communications, vol. 9, pp. 36–45, 1975  

[2] ] Bhargava V., Nikhil M. (2009), “An intelligent speech recognition system for education system”, [Online]. 

Available: https://pdfs.semanticscholar.org/8ea7/725bab4e39 0e4d8ab8eb ee747d2a5340c3b2.pdf  

[3] M. Wöllmer, F. Weninger, T. Knaup, B. Schuller, C. Sun, K. Sagae, and L. P. Morency, “Youtube movie 

reviews: Sentiment analysis in an audiovisual context,” IEEE Intelligent Systems 28(3), pp. 46-53, 2013.  

[4] B. Inkster, S. Sarda, and V. Subramanian, “An empathy-driven, conversational artificial intelligence agent 

(wysa) for digital mental wellbeing: real-world data evaluation mixed-methods study,” JMIR mHealth and 

uHealth, vol. 6, no. 11, p. e12106, 2018. 

[5] R. Plutchik, “Emotions and Life: Perspectives from Psychology, Biology, and Evolution,” Washington, DC: 

American Psychological Association, 2002. 

 [6] B. K. Kim, J. Roh, S. Y. Dong, and S. Y. Lee, “Hierarchical committee of deep convolutional neural 

networks for robust facial expression recognition,” Journal on Multimodal User Interfaces, pp. 1-17, 2016 

[7] D. Elmasri, A. Maeder, “A Conversational Agent for an Online Mental Health Intervention,” In proc. of 

International Conference on Brain and Health Informatics, pp. 243-251, 2016.  

[8] T. Kiss and J. Strunk, “Unsupervised multilingual sentence boundary detection,” Computational Linguistics, 

vol. 32, no. 4, pp. 485–525, 2006. 

  


