
Project

on

IMAGE PROCESSING TECHNIQUES FOR SKIN CARE DETECTION

Submitted in partial fulfillment of the

 requirement for the award of the degree of

Bachelor Of Technology in Computer Science &

Engg.

Under The Supervision of

Dr. Bassety Malligarjuna

Associate Professor

Submitted By

Abhishek Tripathi(18SCSE1010057)
Ankit Sharma(18SCSE1010055)

SCHOOL OF COMPUTING SCIENCE AND ENGINEERING

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

GALGOTIAS UNIVERSITY, GREATER NOIDA

INDIA

DECEMBER, 2021

SCHOOL OF COMPUTING SCIENCE AND
ENGINEERING

GALGOTIAS UNIVERSITY, GREATER NOIDA

CANDIDATE’S DECLARATION

I/We hereby certify that the work which is being presented in the thesis/project/dissertation,

entitled “IMAGE PROCESSING TECHNIQUES FOR SKIN CARE DETECTION” in

partial fulfillment of the requirements for the award of the Bachelor of Technology submitted in

the School of Computing Science and Engineering of Galgotias University, Greater Noida, is an

original work carried out during the period of month, Year to Month and Year, under the

supervision of Name… Designation, Department of Computer Science and Engineering/Computer

Application and Information and Science, of School of Computing Science and Engineering ,

Galgotias University, Greater Noida

The matter presented in the thesis/project/dissertation has not been submitted by me/us for the

award of any other degree of this or any other places.

Abhishek Tripathi(18SCSE1010057)

Ankit Sharma(18SCSE1010055)

This is to certify that the above statement made by the candidates is correct to the best of my

knowledge.

 Dr. Bassety Malligarjuna

 Associate Professor

CERTIFICATE

The Final Thesis/Project/ Dissertation Viva-Voce examination of Abhishek

Tripathi(18SCSE1010057), Ankit Sharma(18SCS1010055) has been held on

_________________ and his/her work is recommended for the award of Bachelor of Technology

in Computer Science & Engg.

Signature of Examiner(s) Signature of Supervisor(s)

Signature of Project Coordinator Signature of Dean

Date: December, 2021

Place: Greater Noida

Abstract

Skin diseases are more common than other diseases. Skin diseases may

be caused by fungal infection, bacteria, allergy, or viruses, etc. The

advancement of lasers and Photonics based medical technology has made

it possible to diagnose the skin diseases much more quickly and

accurately. But the cost of such diagnosis is still limited and very

expensive. So, image processing techniques help to build automated

screening system for dermatology at an initial stage. The extraction of

features plays a key role in helping to classify skin diseases. Computer

vision has a role in the detection of skin diseases in a variety of techniques.

Due to deserts and hot weather, skin diseases are common in Saudi

Arabia. This work contributes in the research of skin disease detection.

We proposed an image processing -based method to detect skin diseases.

This method takes the digital image of disease effect skin area, then use

image analysis to identify the type of disease. Our proposed approach is

simple, fast and does not require expensive equipment other than a camera

and a computer. The approach works on the inputs of a color image. Then

resize the of the image to extract features using pretrained convolutional

neural network. After that classified feature using Multiclass SVM.

Finally, the results are shown to the user, including the type of disease,

spread, and severity. The system successfully detects 3 different types of

skin diseases with an accuracy rate of 100%.

Contents

Title Page

No.

Candidates Declaration I

Acknowledgement II

Abstract III

Contents IV

List of Table V

List of Figures VI

Acronyms VII

Chapter 1 Introduction 1

 1.1 Introduction 2

 1.2 Formulation of Problem 3

 1.2.1 Tool and Technology Used

Chapter 2 Literature Survey/Project Design 5

Chapter 3 Functionality/Working of Project 9

Chapter 4 Results and Discussion 11

Chapter 5 Conclusion and Future Scope 41

 5.1 Conclusion 41

 5.2 Future Scope 42

 Reference 43

 Publication/Copyright/Product 45

List of Table

S.No. Caption Page No.

1 No Tables Required

List of Figures

S.No. Title Page No.

1 Convolutional Layer 4

2 ReLU Layer 5

3 Fully Connected Layer 7

4 UML Diagram 8

5 Sequence diagram 10

7

CHAPTER-1 Introduction

Machine learning algorithms have the potential to be invested deeply in all fields of medicine,

from drug discovery to clinical decision making, significantly altering the way medicine is

practiced. The success of machine learning algorithms at computer vision tasks in recent years

comes at an opportune time when medical records are increasingly digitalized. The use of

electronic health records (EHR) quadrupled from 11.8% to 39.6% amongst offce-based

physicians in the US from 2007 to 2012. Medical images are an integral part of a patient’s EHR

and are currently analyzed by human radiologists, who are limited by speed, fatigue, and

experience. It takes years and great financial cost to train a qualified radiologist, and some

health-care systems out source radiology reporting to lower cost countries such as India via tele-

radiology. A d5elayed or erroneous diagnosis causes harm to the patient. Therefore, it is ideal for

medical image analysis to be carried out by an automated, accurate and effcient machine learning

algorithm. Medical image analysis is an active field of research for machine learning, partly

because the data is relatively structured and labelled, and it is likely that this will be the area

where patients first interact with functioning, practical artificial intelligence systems. This is

significant for two reasons. Firstly, in terms of actual patient metrics, medical image analysis is a

litmus test as to whether artificial intelligence systems will actually improve patient outcomes

and survival. Secondly, it provides a testbed for human-AI interaction, of how receptive patients

will be towards health- altering choices being made, or assisted by a non-human actor.

 Computer aided detection (CAD) of brain tumor is a preferred tool for non-invasively

diagnosing brain tumor. The brain images are obtained using Magnetic Resonance Imaging

(MRI), which are prone to noise and artefacts such as labels and intensity variations during

acquisition [2]. In addition, there are many structures in the brain image such as cerebrospinal

fluid, grey matter, and white matter and skull tissues apart from the tumor. A generic CAD brain

tumor detection process follows the following steps: pre-processing the image to remove noise

and artefacts, segmenting the pre-processed image to identify possible tumor regions, extracting

useful features from the tumor regions and classifying whether or not tumor is present.

Purpose of the project

The tremendous success of machine learning algorithms at image recognition tasks in recent

years intersects with a time of dramatically increased use of electronic medical records and

diagnostic imaging. This review introduces the machine learning algorithms as applied to

medical image analysis, focusing on convolutional neural networks, and emphasizing clinical

aspects of the field. The purpose of this project is to address the automatic brain tumor

detection using image processing tools and to reduce the computation time of the steps involved

so that a brain MRI image can be identified as malignant or benign in the least computation time

possible.

A. Problem statement

 Medical images are an integral part of a patient’s EHR(electronic health records) and are

currently analyzed by human radiologists, who are limited by speed, fatigue, and experience. It

takes years and great financial cost to train a qualified radiologist, and some health-care systems

out source radiology reporting to lower cost countries such as India via tele-radiology. A delayed

or erroneous diagnosis causes harm to the patient. Therefore, it is ideal for medical image

analysis to be carried out by an automated, accurate and efficient machine learning algorithm.

B. Solution for the problem statement

Detection, sometimes known as Computer-Aided Detection is a keen area of study
as missing a lesion on a scan can have drastic consequences for both the patient and the

clinician. This project is contributing in the field of image processing by introducing a
model which can automate the diagnosis of tumor more accurately, efficiently and in less

time.
Here we will use classification technique with proposing model of Deep Neural

Network with grey scaled segmentation technique which will improve the diagnosis
process of brain tumor for the effective and timely treatment.

So, one can detect the patient’s tumor is cancerous or not just by inputting the

MRI image with ease.

C. Introduction of Medical Imaging

Medical imaging is the technique and process of creating visual representations of the interior of

a body for clinical analysis and medical intervention, as well as visual representation of the

function of some organs or tissues (physiology). Medical imaging seeks to reveal internal

structures hidden by the skin and bones, as well as to diagnose and treat disease.

Review of Literature

Several researchers have proposed image processing-based techniques to

detect the type of skin diseases. Here we briefly review some of the

techniques as reported in the literature.

In [1], a system is proposed for the dissection of skin diseases using color

images without the need for doctor intervention. The system consists of

two stages, the first the detection of the infected skin by uses color image

processing techniques, k -means clustering and color gradient techniques

to identify the diseased skin and the second the classification of the

disease type using artificial neural networks. The system was tested on six

types of skin diseases with average accuracy of first stage 95.99% and the

second stage 94.016%.

In the method of [2], extraction of image features is the first step in

detection of skin diseases. In this method, the greater number of features

extracted from the image, better the accuracy of system.

The author of [2] applied the method to nine types of skin diseases with

accuracy up to 90%.

Melanoma is type of skin cancer that can cause death, if not diagnose and

treat in the early stages. The author of [3], focused on the study of various

segmentation techniques that could be applied to detect melanoma using

image processing. Segmentation process is described that falls on the

infected spot boundaries to extract more features.

MACHINE LEARNING ARCHITECTURE

Machine learning (ML) is the scientific study of algorithms and statistical models that

computer systems use to effectively perform a specific task without using explicit instructions,

relying on patterns and inference instead. It is seen as a subset of artificial intelligence. Machine
learning algorithms build a mathematical model based on sample data, known as "training data",

in order to make predictions or decisions without being explicitly programmed to perform the
task. Machine learning algorithms are used in a wide variety of applications, such as medical

image analysis, email filtering, computer vision, etc., where it is infeasible to develop an
algorithm of specific instructions for performing the task. Machine learning is closely related to

computational statistics, which focuses on making predictions using computers. The study of
mathematical optimization delivers methods, theory and application domains to the field of

machine learning. Data mining is a field of study within machine learning, and focuses on

exploratory data analysis through unsupervised learning. In its application across business
problems, machine learning is also referred to as predictive analytics.

Basicaly there are two types of machine learning models-Supervised and Unsupervised.

Supervised Learning Model
 Supervised learning algorithms build a mathematical model of a set of data that contains both

the inputs and the desired outputs. The data is known as training data, and consists of a set of
training examples. Each training example has one or more inputs and a desired output, also

known as a supervisory signal. In the case of semi-supervised learning algorithms, some of the
training examples are missing the desired output. In the mathematical model, each training

example is represented by an array or vector, and the training data by a matrix. Through iterative
optimization of an objective function, supervised learning algorithms learn a function that can be

used to predict the output associated with new inputs. An optimal function will allow the

algorithm to correctly determine the output for inputs that were not a part of the training data. An
algorithm that improves the accuracy of its outputs or predictions over time is said to have

learned to perform that task.

Classification:

The Classification comes under the supervised machine learning. A classification problem is
when the output variable is a category, such as “red” or “blue” or “disease” and “no disease”. A

classification model attempts to draw some conclusion from observed values. Given one or more
inputs a classification model will try to predict the value of one or more outcomes. For example,

when filtering emails “spam” or “not spam”, when looking at transaction data, “fraudulent”, or

“authorized”. In short Classification either predicts categorical class labels or classifies data
(construct a model) based on the training set and the values (class labels) in classifying attributes

and uses it in classifying new data. There are a number of classification models. Classification
models include logistic regression, decision tree, random forest, gradient-boosted tree, multi

layer perceptron, one-vsrest, and Naive Bayes.

Convolutional Neural Networks

CNNs are the most researched machine learning algorithms in medical image analysis . The

reason for thesis that CNNs preserve spatial relationships when filtering input images. As

mentioned, spatial relationships are of cru-cial importance in radiology, for example, in how the

edge of a bone joins with muscle, or where normal lung tissue interfaces with cancerous tissue. A

CNN takes an input image of raw pixels, and transforms it via Convolutional Layers, Rectified

Linear Unit (ReLU) Layer sand Pooling Layers. This feeds into a final Fully Connected Layer

which assigns class scores or probabilities, thus classifying the input into the class with the

highest probability.

Convolution:

A convolution is defined as an operation on two functions. In image analysis, one function

consists of input values(e.g. pixel values) at a position in the image, and the second function is a

filter (or kernel); each can be represented as array of numbers. Computing the dot product

between the two functions gives an output. The filter is then shifted to the next position in the

image as defined by the stride length .The computation is repeated until the entire image is

covered,producing a feature (or activation) map. This is a map of where the filter is strongly

activated and ‘sees’ a feature such as a straight line, a dot, or a curved edge. If a photograph of a

face was fed into a CNN, initially low-level features such as lines and edges are discovered by

the filters. These build up to progressively higher features in subsequent layers, such as nose,

eye or ear, as the feature maps become inputs for the next layer in the CNN architecture.

 Convolution exploits three ideas intrinsic to perform com- computationally efficient machine

learning: sparse connect-tions, parameter sharing (or weights sharing) and equivariant(or

invariant) representation. Unlike some neural net-works where every input neuron is connected

to every output neuron in the subsequent layer, CNN neurons have sparse connections, meaning

that only some inputs are connected to the next layer. By having a small, local receptive

field(i.e., the area covered by the filter per stride), meaningful features can be gradually learnt,

and the number of weights to be calculated can be drastically reduced, increasing the algorithm's

efficiency. In using each filter with its fixed weights across different positions of the entire

image, CNNsreduce memory storage requirements. This is known as parameter sharing. This is

in contrast to a fully connected neural network where the weights between layers are more

numerous, used once and then discarded. Parameter sharing results in the quality of equivariant

representation to arise.This means that input translations result in a corresponding feature map

translation. The convolution operation is defined by the symbol. An output (or feature map)s(t)

is defined below when input I(t) is convolved with a filter or kernal.

 Fig: Convolutional Layer
Rectified linear unit(ReLU) layer:
The ReLU layer is an activation function that sets negative input values to zero. This simplifies

and accelerates calculations and training, and helps to avoid the vanishing gradient problem.

Mathematically it is defined as:f(x)=max(0,x).(6)where xis the input to the neuron. Other

activation functions include the sigmoid, tanh, leaky RELUs, Randomized RELUs and

parametric RELUs

Fig: ReLU Layer
Pooling layer:
The Pooling layer is inserted between the Convolution and RELU layers to reduce the number of

parameters to be calculated, as well as the size of the image (width and height, but not depth).

 Fig: Pooling Layer

Max-pooling is most commonly used; other pooling layers include Average pooling and L2-

normalization pooling. Max-pooling simply takes the largest input value within a filter and

discards the other values; effectively it summarizes the strongest activations over a neighborhood.

The rationale is that the relative location of a strongly activated feature to another is more important

than its exact location

After getting max-pooled matrix, the task is to convert pooled matrix to a single 1D array. This

process is called Flattening.

Fully Connected Layer:

 Fig: Fully Connected Layer

The final layer in a CNN is the Fully Connected Layer, meaning that every neuron in the preceding

layer is connected to every neuron in the Fully Connected Layer. Like the convolution, ReLU and

pooling layers, there can be1 or more fully connected layers depending on the level of feature

abstraction desired. This layer takes the output from the preceding layer (Convolutional, ReLU or

Pooling) as its input, and computes a probability score for classification into the different available

classes. In essence, this layer looks at the combination of the most strongly activated features that

would indicate the image belongs to a particular class. For example, on histology glass slides,

cancer cells have a high DNA to cytoplasm ratio compared to normal cells. f features of DNA

were strongly detected from the preceding layer, the CNN would be more likely to predict the

presence of cancer cells. Standard neural network training methods with back propagation [10]

and stochastic gradient descent help the CNN learn important associations from training image

Regression
In statistical modeling, regression analysis is a set of statistical processes for estimating the

relationships among variables. It includes many techniques for modeling and analyzing several

variables, when the focus is on the relationship between a dependent variable and one or more

independent variables (or 'predictors'). More specifically, regression analysis helps one

understand how the typical value of the dependent variable (or 'criterion variable') changes when

any one of the independent variables is varied, while the other independent variables are held

fixed. Regression also comes under supervised machine learning .

Unsupervised Learning models

Unsupervised learning is a term used for Hebbian learning, associated to learning without a

teacher, also known as self-organization and a method of modeling the probability density of

inputs,e.g. K-Means clustering. The cluster analysis is a branch of machine learning that groups

the data that has not been labelled, classified or categorized. Instead of responding to feedback,

cluster analysis identifies commonalities in the data and reacts based on the presence or absence

of such commonalities in each new piece of data.

A central application of unsupervised learning is in the field of density estimation in statistics,

though unsupervised learning encompasses many other domains involving summarizing and

explaining data features. It could be contrasted with supervised learning by saying that whereas

supervised learning intends to infer a conditional probability distribution conditioned on the

label of input data; unsupervised learning intends to infer an a priori probability distribution .

SYSTEM ANALYSIS

 STUDY OF THE SYSTEM

1. NumPy

2. Pandas

3. Matplotlib

4. SciKit-Learn

5. TensorFlow

6. Keras

1. NumPy

NumPy is a general-purpose array-processing package. It provides a high-

performance multidimensional array object, and tools for working with these arrays. It is

the fundamental package for scientific computing with Python. It contains various

features including these important ones:

 A powerful N-dimensional array object

 Sophisticated (broadcasting) functions

 Tools for integrating C/C++ and FORTRAN code

 Useful linear algebra, Fourier transform, and random number capabilities

Besides its obvious scientific uses, NumPy can also be used as an efficient multi-dimensional

container of generic data. Arbitrary data-types can be defined using NumPy which allows

NumPy to seamlessly and speedily integrate with a wide variety of databases.

2. Pandas

 Pandas is an open-source Python Library providing high-performance data manipulation and

analysis tool using its powerful data structures. Python was majorly used for data munging and

preparation. It had very little contribution towards data analysis. Pandas solved this problem.

Using Pandas, we can accomplish five typical steps in the processing and analysis of data,

regardless of the origin of data load, prepare, manipulate, model, and analyze. Python with

Pandas is used in a wide range of fields including academic and commercial domains including

finance, economics, Statistics, analytics, etc.

3. Matplotlib

Matplotlib is a Python 2D plotting library which produces publication quality figures in a variety
of hard copy formats and interactive environments across platforms. Matplotlib can be used in
Python scripts, the Python and IPython shells, the Jupyter notebook, web application servers, and
four graphical user interface toolkits. Matplotlib tries to make easy things easy and hard things
possible. You can generate plots, histograms, power spectra, bar charts, error charts, scatter plots,
etc., with just a few lines of code. For examples, see the sample plots and thumbnail gallery.

For simple plotting the pyplot module provides a MATLAB-like interface,
particularly when combined with IPython. For the power user, you have full control of
line styles, font properties, axes properties, etc, via an object oriented interface or via a set
of functions familiar to MATLAB users.

4. SciKit – Learn

Scikit-learn provides a range of supervised and unsupervised learning algorithms via a

consistent interface in Python. It is licensed under a permissive simplified BSD license
and is distributed under many Linux distributions, encouraging academic and commercial

use. The library is built upon the SciPy (Scientific Python) that must be installed before
you can use scikit-learn. This stack that includes:

• NumPy: Base n-dimensional array package

• SciPy: Fundamental library for scientific computing

• Matplotlib: Comprehensive 2D/3D plotting

• IPython: Enhanced interactive console

• Sympy: Symbolic mathematics

• Pandas: Data structures and analysis

• Extensions or modules for SciPy care conventionally named SciKits. As such, the

module provides learning algorithms and is named scikit-learn.

5.Tensorflow
 TensorFlow is a free and open-source software library for dataflow and differentiable

programming across a range of tasks. It is a symbolic math library, and is also used for machine

learning applications such as neural networks. It is used for both research and production.

TensorFlow was developed by the Google Brain team for internal Google use.

TensorFlow architecture works in three parts:

• Preprocessing the data

• Build the model

• Train and estimate the model

It is called TensorFlow because it takes input as a multi-dimensional array, also known as

tensors. We can construct a sort of flowchart of operations (called a Graph) that you want to

perform on that input. The input goes in at one end, and then it flows through this system of

multiple operations and comes out the other end as output.

This is why it is called TensorFlow because the tensor goes in it flows through a list of

operations, and then it comes out the other side.

http://ipython.org/
http://ipython.org/
http://ipython.org/
http://jupyter.org/
http://jupyter.org/
http://jupyter.org/
https://matplotlib.org/tutorials/introductory/sample_plots.html
https://matplotlib.org/tutorials/introductory/sample_plots.html
https://matplotlib.org/gallery/index.html
https://matplotlib.org/gallery/index.html
http://scikits.appspot.com/scikits
http://scikits.appspot.com/scikits
http://scikits.appspot.com/scikits

6.Keras
 Keras is a minimalist Python library for deep learning that can run on top of Theano or

TensorFlow.

It was developed to make implementing deep learning models as fast and easy as possible for

research and development.

It runs on Python 2.7 or 3.5 and can seamlessly execute on GPUs and CPUs given the underlying

frameworks. It is released under the permissive MIT license.

• Modularity: A model can be understood as a sequence or a graph alone. All the

concerns of a deep learning model are discrete components that can be combined

in arbitrary ways.

• Minimalism: The library provides just enough to achieve an outcome, no frills and

maximizing readability.

• Extensibility: New components are intentionally easy to add and use within the

framework, intended for researchers to trial and explore new ideas.

• Python: No separate model files with custom file formats. Everything is native

Python.

We can summarize the construction of deep learning models in Keras as follows:

1. Define your model. Create a sequence and add layers.

2. Compile your model. Specify loss functions and optimizers.

3. Fit your model. Execute the model using data.

4. Make predictions. Use the model to generate predictions on new data.

INPUTS AND OUTPUTS

The following some are the projects inputs and outputs.

Inputs:

 Importing the all required packages like Tensorflow, keras ,NumPy, Pandas, Matplotlib,

scikit – learn and required machine learning algorithms packages .

 Setting the dimensions of visualization graph.

 Downloading and importing the dataset and convert to data frame (In case of images,we

need to convert it into numeric values since ML algorithm work on only numerical data).

Outputs:

 preprocessing the importing data frame for imputing nulls with the related information.

 All are displaying cleaned outputs.

 After applying machine learning algorithms, it will give good results and visualization

plots.

Chapter 3 REQUIREMENTS

Hardware Requirements:

 RAM: 4GB and Higher

 Processor: Intel i3 and above

 Hard Disk: 500GB: Minimum

Software Requirements:

OS: Windows or Linux

Python IDE : python 2.7.x and above

Jupyter IDE

Anaconda 3.x

Setup tools and pip to be installed for 3.6 and

above Python Scripting

DIAGRAMS

. UML DIAGRAMS

The Unified Modeling Language (UML) is used to specify, visualize, modify, construct
and document the artifacts of an object-oriented software intensive system under
development. UML offers a standard way to visualize a system's architectural
blueprints, including elements such as:

• actors

• business processes

• (logical) components

• activities

• programming language statements

• database schemas, and

• Reusable software components.

UML combines best techniques from data modeling (entity relationship diagrams), business

modeling (work flows), object modeling, and component modeling. It can be used with all

processes, throughout the software development life cycle, and across different implementation

technologies. UML has synthesized the notations of the Booch method, the Object-modeling

technique (OMT) and Object-oriented software engineering (OOSE) by fusing them into a

single, common and widely usable modeling language. UML aims to be a standard modeling

language which can model concurrent and distributed systems

Use Case Diagram

user

import modules

covert to sequential

maxpooling 2D

flatten

dense

preprocessing

train and test

predict

malignent benign

tensorflow

keraas

Sequence diagram

Sequence Diagrams Represent the objects participating the interaction horizontally and time

vertically. A Use Case is a kind of behavioral classifier that represents a declaration of an offered

behavior. Each use case specifies some behavior, possibly including variants that the subject can

perform in collaboration with one or more actors. Use cases define the offered behavior of the

subject without reference to its internal structure. These behaviors, involving interactions

between the actor and the subject, may result in changes to the state of the subject and

communications with its environment. A use case can include possible variations of its basic

behavior, including exceptional behavior and error handling.

..

user import modules preprocessing predict

1 : tensorflow ()

() : keras 2

3 : sequential ()

() : flatten 4

 : dense () 5

6 : maxpooling ()

7 : malignant ()

8 : benign ()

Activity diagram

Activity diagrams are graphical representations of Workflows of stepwise activities

and actions with support for choice, iteration and concurrency. In the Unified

Modeling Language, activity diagrams can be used to describe the business and

operational step-by-step workflows of components in a system. An activity diagram

shows the overall flow of control.

user

import modules

preprocessing

predict

Class Diagram:

The class diagram is the main building block of object-oriented modeling. It is used for general

conceptual modeling of the systematic of the application, and for detailed modeling translating

the models into programming code. Class diagrams can also be used for data modeling. The

classes in a class diagram represent both the main elements, interactions in the application, and

the classes to be programmed.

user

modules

keras +
tensorflow +

() import +

from keras

+ Sequential
maxpooling +

+ flatten
+ dense

+ converted ()

predict

+ Malignent
+ Benign

METHODOLOGY OF ANALYSIS AND IMPLEMENTATION

Operations and Code details:

Here we are solving an image classification problem, where our goal will be to tell which class
the input image belongs to. The way we are going to achieve it is by training an artificial neural

network on few brain scan images of benign and malignent type and make the NN(Neural

Network) learn to predict which class the image belongs to, next time it sees an image having a
malignent or benign i.e. tumor or not.

 So coming to the coding part, we are going to use Keras deep learning library in python to build

our CNN(Convolutional Neural Network).

 Here we will need to download two folders and both the folders named “ test set ” and

“training_set” into our working directory which is the training data as well as the test dataset.

 First, the folder “training_set” contains two sub folders benign and malignent, each holding

26 images of the respective category. Second, the folder “test_set” contains two sub folders

benign and malignent, each holding 9 images of respective category.

The process of building a Convolutional Neural Network always involves four major steps.

Step - 1 : Convolution

Step - 2 : Pooling

Step - 3 : Flattening

Step - 4 : Full connection

We will be going through each of the above operations while coding our neural network.

First let us import all the required keras packages using which we are going to build our CNN,

make sure that every package is installed properly in our machine, there is two ways os using

keras, i.e Using Tensorflow backend and by Using Theano backend, all the code remains the

same in either cases. I tested the below code using Tensorflow backend.

Importing the Keras libraries and

packages from keras.models import

Sequential from keras.layers import Conv2D

from keras.layers import MaxPooling2D

from keras.layers import Flatten

from keras.layers import Dense

https://keras.io/

Let us now see what each of the above packages are imported for :

In line 1, we’ve imported Sequential from keras.models, to initialise our neural network model

as a sequential network. There are two basic ways of initialising a neural network, either by a

sequence of layers or as a graph.

In line 2, we’ve imported Conv2D from keras.layers, this is to perform the convolution operation

i.e the first step of a CNN, on the training images. Since we are working on images here, which a

basically 2 Dimensional arrays, we’re using Convolution 2-D, you may have to use Convolution

3-D while dealing with videos, where the third dimension will be time.

In line 3, we’ve imported MaxPooling2D from keras.layers, which is used for pooling operation,

that is the step — 2 in the process of building a cnn. For building this particular neural network,

we are using a Maxpooling function, there exist different types of pooling operations like Min

Pooling, Mean Pooling, etc. Here in MaxPooling we need the maximum value pixel from the

respective region of interest.

In line 4, we’ve imported Flatten from keras.layers, which is used for Flattening. Flattening is

the process of converting all the resultant 2 dimensional arrays into a single long continuous

linear vector.

And finally in line 5, we’ve imported Dense from keras.layers, which is used to perform the full

connection of the neural network, which is the step 4 in the process of building a CNN.

Now, we will create an object of the sequential class below:

classifier = Sequential()

Let us now code the Convolution step, actually it is too easy to implement these complex

operations in a single line of code in python, because of Keras.

classifier.add(Conv2D(32, (3, 3), input_shape = (64, 64, 3), activation = 'relu'))

Let’s break down the above code function by function. We took the object which already has an

idea of how our neural network is going to be(Sequential), then we added a convolution layer by

using the “Conv2D” function. The Conv2D function is taking 4 arguments, the first is the

number of filters i.e 32 here, the second argument is the shape each filter is going to be i.e 3x3

here, the third is the input shape and the type of image(RGB or Black and White)of each image

i.e the input image our CNN is going to be taking is of a 64x64 resolution and “3” stands for

RGB, which is a colour img, the fourth argument is the activation function we want to use, here

‘relu’ stands for a rectifier function.

Now, we need to perform pooling operation on the resultant feature maps we get after the

convolution operation is done on an image. The primary aim of a pooling operation is to reduce

the size of the images as much as possible. But the key thing to understand here is that we are

trying to reduce the total number of nodes for the upcoming layers.

classifier.add(MaxPooling2D(pool_size = (2, 2)))

We start by taking our classifier object and add the pooling layer. We take a 2x2 matrix we’ll

have minimum pixel loss and get a precise region where the feature are located. We just reduced

the complexity of the model without reducing it’s performance.

It’s time for us to now convert all the pooled images into a continuous vector through Flattening.

Flattening is a very important step to understand. What we are basically doing here is taking the

2-D array, i.e pooled image pixels and converting them to a one dimensional single vector.

classifier.add(Flatten())

The above code is pretty self-explanatory. We’ve used flatten function to perform flattening, we

no need to add any special parameters, keras will understand that the “classifier” object is

already holding pooled image pixels and they need to be flattened.

In this step we need to create a fully connected layer, and to this layer we are going to connect

the set of nodes we got after the flattening step, these nodes will act as an input layer to these

fullyconnected layers. As this layer will be present between the input layer and output layer, we

can refer to it a hidden layer. classifier.add(Dense(units = 128, activation = 'relu'))

As we can see, Dense is the function to add a fully connected layer, ‘units’ is where we define

the number of nodes that should be present in this hidden layer, these units value will be always

between the number of input nodes and the output nodes but the art of choosing the most optimal

number of nodes can be achieved only through experimental tries. Though it’s a common

practice to use a power of 2. And the activation function will be a rectifier function.

Now it’s time to initialise our output layer, which should contain only one node, as it is binary

classification. This single node will give us a binary output of either a benign or malignent.

classifier.add(Dense(units = 1, activation = 'sigmoid'))

We can observe that the final layer contains only one node, and we will be using a sigmoid

activation function for the final layer.

Now that we have completed building our CNN model, it’s time to compile it.

classifier.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = ['accuracy'])

From above :

• Optimizer parameter is to choose the stochastic gradient descent algorithm.

• Loss parameter is to choose the loss function.

• Finally, the metrics parameter is to choose the performance metric.

It’s time to fit our CNN to the image dataset that you’ve downloaded. But before we do that, we

are going to pre-process the images to prevent over-fitting. Overfitting is when you get a great

training accuracy and very poor test accuracy due to overfitting of nodes from one layer to

another.

So before we fit our images to the neural network, we need to perform some image

augmentations on them, which is basically synthesising the training data. We are going to do this

using keras.preprocessing library for doing the synthesising part as well as to prepare the

training set as well as the test test set of images that are present in a properly structured

directories, where the directory’s name is take as the label of all the images present in it. For

example : All the images inside the ‘benign’ named folder will be considered as benign by keras.

train_datagen = ImageDataGenerator(rescale = 1./255,

shear_range = 0.2, zoom_range = 0.2, horizontal_flip =

True)

test_datagen = ImageDataGenerator(rescale = 1./255)

training_set =

train_datagen.flow_from_directory('training_set', target_size =

(64, 64), batch_size = 32, class_mode = 'binary')

test_set = test_datagen.flow_from_directory('test_set',

target_size = (64, 64), batch_size = 32, class_mode =

'binary')

We can find the explanation of what each of the above parameters do,in the keras documentation

page. As a whole of whats happening above is that we are creating synthetic data out of the same

images by performing different type of operations on these images like flipping, rotating,

blurring, etc.

Now fit the data to our model !

classifier.fit_generator(training_set,

steps_per_epoch = 8000,

epochs = 25,

validation_data = test_set,

validation_steps = 2000)

In the above code, ‘steps_per_epoch’ holds the number of training images, i.e the number of

images the training_set folder contains.

And ‘epochs’, a single epoch is a single step in training a neural network; in other words when a

neural network is trained on every training samples only in one pass we say that one epoch is

finished. So training process should consist more than one epochs. In this case we have defined

25 epochs.

Making new predictions from our trained model :

import numpy as np

from keras.preprocessing import image

test_image =

 image.load_img('dataset/single_prediction/benign_or_malignent_1.jpg', target_size

= (64, 64))

test_image = image.img_to_array(test_image)

test_image = np.expand_dims(test_image, axis = 0)

result = classifier.predict(test_image)

training_set.class_indices

if result[0][0] == 1:

prediction = 'Benign'

else: prediction =

'Malignent'

The test_image holds the image that needs to be tested on the CNN. Once we have the test

image, we will prepare the image to be sent into the model by converting its resolution to 64x64

as the model only excepts that resolution. Then we are using ‘predict()’ method on our classifier

object to get the prediction. As the prediction will be in a binary form, we will be receiving either

a 1 or 0, which will represent a ‘benign’ or ‘Malignent’ respectively.

Medical Image Analysis with CNN:-

The complete code with outputs :

import tensorflow as tf import keras
from keras.models import Sequential
from keras.layers import Conv2D from
keras.layers import MaxPooling2D from
keras.layers import Flatten from
keras.layers import Dense

classifier = Sequential()

classifier.add(Conv2D(32, (3, 3), input_shape = (64, 64, 3), activation = 'relu'))

classifier.add(MaxPooling2D(pool_size = (2, 2)))

classifier.add(Conv2D(32, (3, 3), activation = 'relu'))

classifier.add(MaxPooling2D(pool_size = (2, 2)))

classifier.add(Flatten())

classifier.add(Dense(activation = 'relu',units=128))

classifier.add(Dense(activation = 'sigmoid',units=1))

classifier.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = ['accuracy'])

classifier.summary()

o/p:

Layer (type) Output Shape Param #

===

conv2d_1 (Conv2D) (None, 62, 62, 32) 896

max_pooling2d_1 (MaxPooling2 (None, 31, 31, 32) 0

conv2d_2 (Conv2D) (None, 29, 29, 32) 9248

max_pooling2d_2 (MaxPooling2 (None, 14, 14, 32) 0

flatten_1 (Flatten) (None, 6272) 0

dense_1 (Dense) (None, 128) 802944

dense_2 (Dense) (None, 1) 129

===

Total params: 813,217

Trainable params: 813,217

Non-trainable params: 0

from keras.preprocessing.image import ImageDataGenerator

train_datagen = ImageDataGenerator(rescale = 1./255,

 shear_range = 0.2,
zoom_range = 0.2,
horizontal_flip = True)

test_datagen = ImageDataGenerator(rescale = 1./255)

training_set= train_datagen.flow_from_directory('/home/avinash/Deep Learning Applications

in/code/Brain_tumor/train/',

 target_size = (64, 64),
batch_size = 32,
class_mode = 'binary')

test_set = test_datagen.flow_from_directory('/home/avinash/Deep Learning

Applications in/code/Brain_tumor/test/',

 target_size=(64, 64),

 batch_size = 32,

 class_mode = 'binary')

Found 44 images belonging to 2 classes.

Found 14 images belonging to 2 classes.

classifier.fit_generator(training_set, steps_per_epoch=None, epochs=100, verbose=1,

callbacks=None, validation_data=test_set, validation_steps=None,

 class_weight=None, max_queue_size=10, workers=1, use_multiprocessing=False,

shuffle=True, initial_epoch=0) o/p:

Epoch 1/100

2/2 [==============================] - 0s 147ms/step - loss: 0.0388 - acc: 1.0000 -

val_loss: 3.0713 - val_acc: 0.4286

Epoch 2/100

2/2 [==============================] - 0s 151ms/step - loss: 0.0266 - acc: 1.0000 -

val_loss: 3.1552 - val_acc: 0.4286

.

.

.

.

Epoch 92/100

2/2 [==============================] - 0s 111ms/step - loss: 0.0207 - acc: 1.0000 -

val_loss: 3.9695 - val_acc: 0.4286

Epoch 93/100

2/2 [==============================] - 0s 153ms/step - loss: 0.0996 - acc: 0.9287 -

val_loss: 4.0976 - val_acc: 0.4286

Epoch 94/100

2/2 [==============================] - 0s 123ms/step - loss: 0.0684 - acc: 0.9820 -

val_loss: 3.6747 - val_acc: 0.4286

Epoch 95/100

2/2 [==============================] - 0s 135ms/step - loss: 0.0292 - acc: 1.0000 -

val_loss: 3.1225 - val_acc: 0.5714

Epoch 96/100

2/2 [==============================] - 0s 149ms/step - loss: 0.0479 - acc: 0.9820 -

val_loss: 2.8529 - val_acc: 0.5714

Epoch 97/100

2/2 [==============================] - 0s 121ms/step - loss: 0.0752 - acc: 0.9640 -

val_loss: 2.8919 - val_acc: 0.5714

Epoch 98/100

2/2 [==============================] - 0s 142ms/step - loss: 0.0264 - acc: 0.9820 -

val_loss: 3.1539 - val_acc: 0.5714

Epoch 99/100

2/2 [==============================] - 0s 111ms/step - loss: 0.1200 - acc: 0.9646 -

val_loss: 3.7281 - val_acc: 0.5714

Epoch 100/100

2/2 [==============================] - 0s 140ms/step - loss: 0.1041 - acc: 0.9467 -

val_loss: 3.9787 - val_acc: 0.5714

<keras.callbacks.History at 0x7f3c680e7240>

import numpy as np

from keras.preprocessing import image

test_image = image.load_img('/home/avinash/Deep Learning Applications in/mri-brain-image_

new/brain-tumors-fig2_large.jpg', target_size = (64, 64)) test_image

test_image = image.img_to_array(test_image)

test_image = np.expand_dims(test_image, axis =

0) test_image o/p:

array([[[[57., 57., 57.],

[11., 11., 11.],

 [11., 11., 11.],

 ...,

 [11., 11., 11.],

 [11., 11., 11.],

 [10., 10., 10.]],

 [[14., 14., 14.],

 [14., 14., 14.],

 [11., 11., 11.],

 ...,

 [10., 10., 10.],

 [10., 10., 10.],

 [9., 9., 9.]],

 [[12., 12., 12.],

 [10., 10., 10.],

 [11., 11., 11.],

 ...,

 [11., 11., 11.],

 [11., 11., 11.],

 [11., 11., 11.]],

 ...,

 [[63., 63., 63.],

 [60., 60., 60.],

 [93., 93., 93.],

 ...,

 [11., 11., 11.],

 [11., 11., 11.],

 [11., 11., 11.]],

 [[23., 23., 23.],

 [5., 5., 5.],

 [8., 8., 8.],

 ...,

 [11., 11., 11.],

 [11., 11., 11.],

 [11., 11., 11.]],

 [[13., 13., 13.],

 [13., 13., 13.],

 [15., 15., 15.],

 ...,

 [9., 9., 9.],

 [9., 9., 9.],

 [9., 9., 9.]]]], dtype=float32)

result =

classifier.predict(test_image) result

o/p:array([[1.]], dtype=float32)

training_set.class_indices

o/p:{'Benign': 0, 'Malignant': 1}

if result[0][0] == 0: prediction = 'Benign'

else: prediction = 'Malignent'

print("Detected tumor type

is %s"%prediction) o/p: Detected tumor type

is Malignent

OUTPUT SCREENSHOTS

a.) In Jupyter Notebook

b.) In user Interface

fig2: after selecting the test image

 fig3: Output for Benign(Non- Cancerous)

➔ The above screenshots has come after the deployment of Machine Learning model in stand

alone user interface for naive user who don’t have the technical knowledge. Model deployment

of machine learning is a very tough task.

CONCLUSION

Challenges:-

A recurring theme in machine learning is the limit imposed by the lack of labelled datasets,

which hampers training and task performance. Conversely, it is acknowledged that more data

improves performance, as Sun et al. shows using an internal Google dataset of 300 million

images. In general computer vision tasks, attempts have been made to circumvent limited data by

using smaller filters on deeper layers ,with novel CNN architecture combinations , or

hyperparameter optimization . In medical image analysis, the lack of data is two-fold and more

acute: there is general lack of publicly available data, and high quality labelled data is even more

scarce. Most of the datasets presented in this review involve fewer than 100 patients. Yet the

situation may not be as dire as it seems, as despite the small training datasets, the papers in this

review report relatively satisfactory performance in the various tasks. The question of how many

images are necessary for training in medical image analysis was partially answered by Cho et

al. . He ascertained the accuracy of a CNN with GoogLeNet architecture in classifying individual

axial CT images into one of 6 body regions: brain, neck, shoulder, chest, abdomen, pelvis. With

200 training images, accuracies of 88-98% were achieved on a test set of 6000 images. While

categorization into various body regions is not a realistic medical image analysis task, his report

does suggest that the problem may be surmountable. Being able to accomplish classification with

a small dataset is possibly due to the general intrinsic image homogeneity across different

patients, as opposed to the near-infinite variety of natural images, such as a dog in various

breeds, colors and poses. VAEs and GANS, being generative models, may sidestep the data

paucity problem, by creating synthetic medical data. This was done by Guibas and Virdi, who

used a 2 stage GAN to segment and then generate retinal fundus images successfully . Their

work was built on the research of Costa et al. , which first described using GANs to generate

retinal fundus images. Aside from synthetic data generation, GANs have been used in brain MRI

segmentation as well by Moeskops et al. , Kamnitsas et al. and Alex et al.

Data or class imbalance in the training set is also a significant issue in medical

image analysis. This refers to the number of images in the training data being skewed

towards normal and non-pathological images. Rare diseases are an extreme example of

this and can be missed without adequate training examples. This data imbalance effect

can be ameliorated by using data augmentation to generate more training images of rare

or abnormal data, though there is risk of overfitting. Aside from data-level strategies,

algorithmic modification strategies and cost sensitive learning have also been studied .

An important, non-technical challenge is the public reception towards their health results

being studied by a non-human actor. This situation is not helped by the apocalyptic

artificial intelligence scenarios painted by some. Machine learning algorithms have

surpassed human performance in image recognition tasks, and it is likely that they will

perform better than humans in medical image analysis as well. Indeed, some of the papers

in this review report that dermatologists and radiologists have already been bested by

machine learning. Yet the question regarding legal and moral culpability arises when a

patient is misdiagnosed, or suffers morbidity as a result of AI or AI-assisted medical

management. This is accentuated by our inability to fully explain how the black-box of

machine algorithms work. However, it is likely that our relationship will continue evolve

and recalibrate as AI-based technologies mature and inexorably permeate different facets

of our lives.

FUTURE SCOPE

The traditional applications for medical image analysis were discussed . New areas of research

include prognostication , content-based image retrieval,image report or caption generation,and

manipulation of physical objects with LSTMs and reinforcement learning, involving surgical

robots .

 A few innovative applications that span across traditional medical image analysis categories are

described below. An interesting application was reported by Nie et al. in which GANs were used

to generate CT brain images from MRI images. This is remarkable, as it means that patients can

potentially avoid the ionizing radiation from a CT scanner altogether, lowering cost and

improving patient safety. Nie also exploited the ability of GANs to generate improved, higher

resolution images from native images and reduced the blurriness in the CT images. A useful

extension of resolution improvement techniques would be applying them to generate MRI

images of higher quality. High quality MRI images require high tesla (and correspondingly

costlier) MRI scanners. Algorithmically generated high quality MRI images on a lower field-

strength scanner would thus lower healthcare costs.

References
[1]. Wang, X. Dong, F. Zhou, L. Cao, and C.-H. Chi, “Coupled attribute similarity learning on

categorical data,” IEEE TNNLS, vol. 26, no. 4, pp. 781–797, 2015.

[2]. S. Jian, L. Cao, K. Lu, and H. Gao, “Unsupervised coupled metric similarity for non-iid

categorical data,” IEEE TKDE, 2018.

[3] C. Zhu, L. Cao, Q. Liu, J. Yin, and V. Kumar, “Heterogeneous metric learning of

categorical data with hierarchical couplings,” IEEE TKDE, 2018.

[4] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A review and

new perspectives,” IEEE TPAMI, vol. 35, no. 8, pp. 1798–1828, 2013.

[5] L. Cao, Y. Ou, and S. Y. Philip, “Coupled behavior analysis with applications,”
IEEE TKDE, vol. 24, no. 8, pp. 1378–1392, 2012. [6] L. Cao, “Coupling learning of
complex interactions,” Information Processing & Management, vol. 51, no. 2, pp. 167–
186, 2015.
[7] A. Foss and O. R. Za¨ıane, “A parameterless method for efficiently discovering

clusters of arbitrary shape in large datasets,” in Pro- ceedings of ICDM. IEEE, 2002, pp.

179–186.

[8] A. Aizawa, “An information-theoretic perspective of tf–idf mea- sures,”

Information Processing & Management, vol. 39, no. 1, pp. 45–65, 2003.

[9] A. Ahmad and L. Dey, “A method to compute distance between two categorical

values of same attribute in unsupervised learning for categorical data set,” Pattern

Recognition Letters, vol. 28, no. 1, pp. 110–118, 2007. [9] C. Park, D. Kim, J. Oh, and H.

Yu, “Predicting user purchase in ecommerce by comprehensive feature engineering and

decision boundary focused undersampling,” in RecSys, 2015.

[10] Y. Dong, D. Tao, X. Li, J. Ma, and J. Pu, “Texture classification and retrieval using

shearlets and linear regression,” IEEE transactions on cybernetics, vol. 45, no. 3, pp. 358–

369, 2015. [11] X. Li, G. Cui, and Y. Dong, “Refined-graph regularization-based

nonnegative matrix factorization,” ACM Transactions on Intelligent Systems and

Technology (TIST), vol. 9, no. 1, p. 1, 2017.

[12] J. Lee, M. Podlaseck, E. Schonberg, R. Hoch, and S. Gomory, “Analysis and visualization of

metrics for online merchandising,” in WEBKDD’99 Workshop.

[13].Muhammad Naeem TahirClassification and characterization of brain tumor MRI by using

gray scaled segmenta-tion and DNN

