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Abstract 
 

Skin diseases are more common than other diseases. Skin diseases may 

be caused by fungal infection, bacteria, allergy, or viruses, etc. The 

advancement of lasers and Photonics based medical technology has made 

it possible to diagnose the skin diseases much more quickly and 

accurately. But the cost of such diagnosis is still limited and very 

expensive. So, image processing techniques help to build automated 

screening system for dermatology at an initial stage. The extraction of 

features plays a key role in helping to classify skin diseases. Computer 

vision has a role in the detection of skin diseases in a variety of techniques. 

Due to deserts and hot weather, skin diseases are common in Saudi 

Arabia. This work contributes in the research of skin disease detection. 

We proposed an image processing -based method to detect skin diseases. 

This method takes the digital image of disease effect skin area, then use 

image analysis to identify the type of disease. Our proposed approach is 

simple, fast and does not require expensive equipment other than a camera 

and a computer. The approach works on the inputs of a color image. Then 

resize the of the image to extract features using pretrained convolutional 

neural network. After that classified feature using Multiclass SVM. 

Finally, the results are shown to the user, including the type of disease, 

spread, and severity. The system successfully detects 3 different types of 

skin diseases with an accuracy rate of 100%.  
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CHAPTER-1 Introduction 

 
Machine learning algorithms have the potential to be invested deeply in all fields of medicine, 

from drug discovery to clinical decision making, significantly altering the way medicine is 

practiced. The success of machine learning algorithms at computer vision tasks in recent years 

comes at an opportune time when medical records are increasingly digitalized. The use of 

electronic health records (EHR) quadrupled from 11.8% to 39.6% amongst offce-based 

physicians in the US from 2007 to 2012. Medical images are an integral part of a patient’s EHR 

and are currently analyzed by human radiologists, who are limited by speed, fatigue, and 

experience. It takes years and great financial cost to train a qualified radiologist, and some 

health-care systems out source radiology reporting to lower cost countries such as India via tele-

radiology. A d5elayed or erroneous diagnosis causes harm to the patient. Therefore, it is ideal for 

medical image analysis to be carried out by an automated, accurate and effcient machine learning 

algorithm. Medical image analysis is an active field of research for machine learning, partly 

because the data is relatively structured and labelled, and it is likely that this will be the area 

where patients first interact with functioning, practical artificial intelligence systems. This is 

significant for two reasons. Firstly, in terms of actual patient metrics, medical image analysis is a 

litmus test as to whether artificial intelligence systems will actually improve patient outcomes 

and survival. Secondly, it provides a testbed for human-AI interaction, of how receptive patients 

will be towards health- altering choices being made, or assisted by a non-human actor.  

 Computer aided detection (CAD) of brain tumor is a preferred tool for non-invasively 

diagnosing brain tumor. The brain images are obtained using Magnetic Resonance Imaging 

(MRI), which are prone to noise and artefacts such as labels and intensity variations during 

acquisition [2]. In addition, there are many structures in the brain image such as cerebrospinal 

fluid, grey matter, and white matter and skull tissues apart from the tumor. A generic CAD brain 

tumor detection process follows the following steps: pre-processing the image to remove noise 

and artefacts, segmenting the pre-processed image to identify possible tumor regions, extracting 

useful features from the tumor regions and classifying whether or not tumor is present.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

Purpose of the project 
  

The tremendous success of machine learning algorithms at image recognition tasks in recent 

years intersects with a time of dramatically increased use of electronic medical records and 

diagnostic imaging. This review introduces the machine learning algorithms as applied to 

medical image analysis, focusing on convolutional neural networks, and emphasizing clinical 

aspects of the field.   The purpose of this project is to address the automatic brain tumor 

detection using image processing tools and to reduce the computation time of the steps involved 

so that a brain MRI image can be identified as malignant or benign in the least computation time 

possible.  

  

A. Problem statement  
  

 Medical images are an integral part of a patient’s EHR(electronic health records) and are 

currently analyzed by human radiologists, who are limited by speed, fatigue, and experience. It 

takes years and great financial cost to train a qualified radiologist, and some health-care systems 

out source radiology reporting to lower cost countries such as India via tele-radiology. A delayed 

or erroneous diagnosis causes harm to the patient. Therefore, it is ideal for medical image 

analysis to be carried out by an automated, accurate and efficient machine learning algorithm.  

  

B. Solution for the problem statement  

  

Detection, sometimes known as Computer-Aided Detection is a keen area of study 
as missing a lesion on a scan can have drastic consequences for both the patient and the 

clinician.  This project is contributing in the field of image processing by introducing a 
model which can automate the diagnosis of tumor more accurately, efficiently and in less 

time.  
Here we will use classification technique with proposing model of Deep Neural 

Network with grey scaled segmentation technique which will improve the diagnosis 
process of brain tumor for the effective and timely treatment.  

So, one can detect the patient’s tumor is cancerous or not just by inputting the 

MRI image with ease.  

  

  

C. Introduction of Medical Imaging  
  

Medical imaging is the technique and process of creating visual representations of the interior of 

a body for clinical analysis and medical intervention, as well as visual representation of the 

function of some organs or tissues (physiology). Medical imaging seeks to reveal internal 

structures hidden by the skin and bones, as well as to diagnose and treat disease. 

 

 



 

 

 

 

Review of Literature 
 

Several researchers have proposed image processing-based techniques to 

detect the type of skin diseases. Here we briefly review some of the 

techniques as reported in the literature.    

In [1], a system is proposed for the dissection of skin diseases using color 

images without the need for doctor intervention. The system consists of 

two stages, the first the detection of the infected skin by uses color image 

processing techniques, k -means clustering and color gradient techniques 

to identify the diseased skin and the second the classification of the 

disease type using artificial neural networks. The system was tested on six 

types of skin diseases with average accuracy of first stage 95.99% and the 

second stage 94.016%.    

In the method of [2], extraction of image features is the first step in 

detection of skin diseases. In this method, the greater number of features 

extracted from the image, better the accuracy of system.  

The author of [2] applied the method to nine types of skin diseases with 

accuracy up to 90%.    

Melanoma is type of skin cancer that can cause death, if not diagnose and 

treat in the early stages. The author of [3], focused on the study of various 

segmentation techniques that could be applied to detect melanoma using 

image processing. Segmentation process is described that  falls on the 

infected spot boundaries to extract more features.  
 

 

 

 

  



MACHINE LEARNING ARCHITECTURE  
  

  

  

  

  

Machine learning (ML) is the scientific study of algorithms and statistical models that 

computer systems use to effectively perform a specific task without using explicit instructions, 

relying on patterns and inference instead. It is seen as a subset of artificial intelligence. Machine 
learning algorithms build a mathematical model based on sample data, known as "training data", 

in order to make predictions or decisions without being explicitly programmed to perform the 
task. Machine learning algorithms are used in a wide variety of applications, such as medical 

image analysis, email filtering, computer vision, etc., where it is infeasible to develop an 
algorithm of specific instructions for performing the task. Machine learning is closely related to 

computational statistics, which focuses on making predictions using computers. The study of 
mathematical optimization delivers methods, theory and application domains to the field of 

machine learning. Data mining is a field of study within machine learning, and focuses on 

exploratory data analysis through unsupervised learning. In its application across business 
problems, machine learning is also referred to as predictive analytics.  

  

Basicaly there are two types of machine learning models-Supervised and Unsupervised.  

  

Supervised Learning Model  
  Supervised learning algorithms build a mathematical model of a set of data that contains both 

the inputs and the desired outputs. The data is known as training data, and consists of a set of 
training examples. Each training example has one or more inputs and a desired output, also 

known as a supervisory signal. In the case of semi-supervised learning algorithms, some of the 
training examples are missing the desired output. In the mathematical model, each training 

example is represented by an array or vector, and the training data by a matrix. Through iterative 
optimization of an objective function, supervised learning algorithms learn a function that can be 

used to predict the output associated with new inputs. An optimal function will allow the 

algorithm to correctly determine the output for inputs that were not a part of the training data. An 
algorithm that improves the accuracy of its outputs or predictions over time is said to have 

learned to perform that task.  

Classification:  
  

The Classification comes under the supervised machine learning. A classification problem is 
when the output variable is a category, such as “red” or “blue” or “disease” and “no disease”. A 

classification model attempts to draw some conclusion from observed values. Given one or more 
inputs a classification model will try to predict the value of one or more outcomes. For example, 

when filtering emails “spam” or “not spam”, when looking at transaction data, “fraudulent”, or 

“authorized”. In short Classification either predicts categorical class labels or classifies data 
(construct a model) based on the training set and the values (class labels) in classifying attributes 

and uses it in classifying new data. There are a number of classification models. Classification 
models include logistic regression, decision tree, random forest, gradient-boosted tree, multi 

layer perceptron, one-vsrest, and Naive Bayes.  



  

Convolutional Neural Networks  
  

CNNs are the most researched machine learning algorithms in medical image analysis . The 

reason for thesis that CNNs preserve spatial relationships when filtering input images. As 

mentioned, spatial relationships are of cru-cial importance in radiology, for example, in how the 

edge of a bone joins with muscle, or where normal lung tissue interfaces with cancerous tissue. A 

CNN takes an input image of raw pixels, and transforms it via Convolutional Layers, Rectified 

Linear Unit (ReLU) Layer sand Pooling Layers. This feeds into a final Fully Connected Layer 

which assigns class scores or probabilities, thus classifying the input into the class with the 

highest probability.  

  

 
Convolution:  

  

A convolution is defined as an operation on two functions. In image analysis, one function 

consists of input values(e.g. pixel values) at a position in the image, and the second function is a 

filter (or kernel); each can be represented as array of numbers. Computing the dot product 

between the two functions gives an output. The filter is then shifted to the next position in the 

image as defined by the stride length .The computation is repeated until the entire image is 

covered,producing a feature (or activation) map. This is a map of where the filter is strongly 

activated and ‘sees’ a feature such as a straight line, a dot, or a curved edge. If a photograph of a 

face was fed into a CNN, initially low-level features such as lines and edges are discovered by 

the filters. These build up to progressively higher features in subsequent layers, such as  nose, 

eye or ear, as the feature maps become inputs for the next layer in the CNN architecture.  

 Convolution exploits three ideas intrinsic to perform com- computationally efficient machine 

learning: sparse connect-tions, parameter sharing (or weights sharing) and equivariant(or 

invariant) representation. Unlike some neural net-works where every input neuron is connected 

to every output neuron in the subsequent layer, CNN neurons have sparse connections, meaning 

that only some inputs are connected to the next layer. By having a small, local receptive 

field(i.e., the area covered by the filter per stride), meaningful features can be gradually learnt, 



and the number of weights to be calculated can be drastically reduced, increasing the algorithm's 

efficiency. In using each filter with its fixed weights across different positions of the entire 

image, CNNsreduce memory storage requirements. This is known as parameter sharing. This is 

in contrast to a fully  connected  neural  network where  the  weights between layers are  more  

numerous, used once and  then  discarded. Parameter sharing results in the quality of equivariant 

representation to arise.This means that input translations result in a corresponding feature map 

translation. The convolution operation is defined by the symbol. An output (or feature map)s(t) 

is defined below when input I(t) is convolved with a filter or kernal.  

  
   

  
              Fig: Convolutional Layer  
Rectified linear unit(ReLU) layer:  
The ReLU layer is an activation function that sets negative input values to zero. This simplifies 

and accelerates calculations and training, and helps to avoid the vanishing gradient problem. 

Mathematically it is defined as:f(x)=max(0,x).(6)where xis the input to the neuron. Other 

activation functions include the sigmoid, tanh, leaky RELUs, Randomized RELUs and 

parametric RELUs  

  



 

 
 

Fig: ReLU Layer  
Pooling layer:  
The Pooling layer is inserted between the Convolution and RELU layers to reduce the number of 

parameters to be calculated, as well as the size of the image (width and height, but not depth).  

  

  

 
        Fig: Pooling Layer  

          

  

Max-pooling is most commonly used; other pooling layers include Average pooling and L2-

normalization pooling. Max-pooling simply takes the largest input value within a filter and 

discards the other values; effectively it summarizes the strongest activations over a neighborhood. 

The rationale is that the relative location of a strongly activated feature to another is more important 

than its exact location  

After getting max-pooled matrix, the task is to convert pooled matrix to a single 1D array. This 

process is called Flattening.  



  

  

Fully Connected Layer:  
  

  

   

  
              Fig: Fully Connected Layer  

  

The final layer in a CNN is the Fully Connected Layer, meaning that every neuron in the preceding 

layer is connected to every neuron in the Fully Connected Layer. Like the convolution, ReLU and 

pooling layers, there can be1 or more fully connected layers depending on the level of feature 

abstraction desired. This layer takes the output from the preceding layer (Convolutional, ReLU or 

Pooling) as its input, and computes a probability score for classification into the different available 

classes. In essence, this layer looks at the combination of the most strongly activated features that 

would indicate the image belongs to a particular class. For example, on histology glass slides, 

cancer cells have a high DNA to cytoplasm ratio compared to normal cells. f features of DNA 

were strongly detected from the preceding layer, the CNN would be more likely to predict the 

presence of cancer cells. Standard neural network training methods with back propagation [10] 

and stochastic gradient descent help the CNN learn important associations from training image  

  

Regression  
In statistical modeling, regression analysis is a set of statistical processes for estimating the 

relationships among variables. It includes many techniques for modeling and analyzing several 

variables, when the focus is on the relationship between a dependent variable and one or more 

independent variables (or 'predictors'). More specifically, regression analysis helps one 

understand how the typical value of the dependent variable (or 'criterion variable') changes when 

any one of the independent variables is varied, while the other independent variables are held 

fixed. Regression also comes under supervised machine learning .  

  

Unsupervised Learning models  



Unsupervised learning is a term used for Hebbian learning, associated to learning without a 

teacher, also known as self-organization and a method of modeling the probability density of 

inputs,e.g. K-Means clustering. The cluster analysis is a branch of machine learning that groups 

the data that has not been labelled, classified or categorized. Instead of responding to feedback, 

cluster analysis identifies commonalities in the data and reacts based on the presence or absence 

of such commonalities in each new piece of data.  

A central application of unsupervised learning is in the field of density estimation in statistics, 

though unsupervised learning encompasses many other domains involving summarizing and 

explaining data features. It could be contrasted with supervised learning by saying that whereas 

supervised learning intends to infer a conditional probability distribution  conditioned on the 

label  of input data; unsupervised learning intends to infer an a priori probability distribution .  

   

  

  

  

  

  

 

 

 

 

 

 

 

 

 

 

  

  



SYSTEM ANALYSIS  

  

  

 STUDY OF THE SYSTEM  

1. NumPy  

2. Pandas  

3. Matplotlib  

4. SciKit-Learn  

5. TensorFlow  

6. Keras  

1.  NumPy  

NumPy is a general-purpose array-processing package. It provides a high-

performance multidimensional array object, and tools for working with these arrays. It is 

the fundamental package for scientific computing with Python. It contains various 

features including these important ones:  

 A powerful N-dimensional array object  

 Sophisticated (broadcasting) functions  

 Tools for integrating C/C++ and FORTRAN code  

 Useful linear algebra, Fourier transform, and random number capabilities  

Besides its obvious scientific uses, NumPy can also be used as an efficient multi-dimensional 

container of generic data. Arbitrary data-types can be defined using NumPy which allows 

NumPy to seamlessly and speedily integrate with a wide variety of databases.  

2. Pandas  

 Pandas is an open-source Python Library providing high-performance data manipulation and 

analysis tool using its powerful data structures. Python was majorly used for data munging and 

preparation. It had very little contribution towards data analysis. Pandas solved this problem. 

Using Pandas, we can accomplish five typical steps in the processing and analysis of data, 

regardless of the origin of data load, prepare, manipulate, model, and analyze. Python with 

Pandas is used in a wide range of fields including academic and commercial domains including 

finance, economics, Statistics, analytics, etc.  

  

  



3. Matplotlib  

Matplotlib is a Python 2D plotting library which produces publication quality figures in a variety 
of hard copy formats and interactive environments across platforms. Matplotlib can be used in 
Python scripts, the Python and IPython shells, the Jupyter notebook, web application servers, and 
four graphical user interface toolkits. Matplotlib tries to make easy things easy and hard things 
possible. You can generate plots, histograms, power spectra, bar charts, error charts, scatter plots, 
etc., with just a few lines of code. For examples, see the sample plots and thumbnail gallery.  

For simple plotting the pyplot module provides a MATLAB-like interface, 
particularly when combined with IPython. For the power user, you have full control of 
line styles, font properties, axes properties, etc, via an object oriented interface or via a set 
of functions familiar to MATLAB users.   

4. SciKit – Learn  

Scikit-learn provides a range of supervised and unsupervised learning algorithms via a 

consistent interface in Python. It is licensed under a permissive simplified BSD license 
and is distributed under many Linux distributions, encouraging academic and commercial 

use. The library is built upon the SciPy (Scientific Python) that must be installed before 
you can use scikit-learn. This stack that includes:  

• NumPy: Base n-dimensional array package  

• SciPy: Fundamental library for scientific computing  

• Matplotlib: Comprehensive 2D/3D plotting  

• IPython: Enhanced interactive console  

• Sympy: Symbolic mathematics  

• Pandas: Data structures and analysis  

• Extensions or modules for SciPy care conventionally named SciKits. As such, the 

module provides learning algorithms and is named scikit-learn.  

  

5.Tensorflow  
 TensorFlow is a free and open-source software library for dataflow and differentiable 

programming across a range of tasks. It is a symbolic math library, and is also used for machine 

learning applications such as neural networks. It is used for both research and production. 

TensorFlow was developed by the Google Brain team for internal Google use.  

TensorFlow architecture works in three parts:  

• Preprocessing the data  

• Build the model  

• Train and estimate the model  

It is called TensorFlow because it takes input as a multi-dimensional array, also known as 

tensors.  We can construct a sort of flowchart of operations (called a Graph) that you want to 

perform on that input. The input goes in at one end, and then it flows through this system of 

multiple operations and comes out the other end as output.  

This is why it is called TensorFlow because the tensor goes in it flows through a list of 

operations, and then it comes out the other side.  

http://ipython.org/
http://ipython.org/
http://ipython.org/
http://jupyter.org/
http://jupyter.org/
http://jupyter.org/
https://matplotlib.org/tutorials/introductory/sample_plots.html
https://matplotlib.org/tutorials/introductory/sample_plots.html
https://matplotlib.org/gallery/index.html
https://matplotlib.org/gallery/index.html
http://scikits.appspot.com/scikits
http://scikits.appspot.com/scikits
http://scikits.appspot.com/scikits


6.Keras    
 Keras is a minimalist Python library for deep learning that can run on top of Theano or 

TensorFlow.  

It was developed to make implementing deep learning models as fast and easy as possible for 

research and development.  

It runs on Python 2.7 or 3.5 and can seamlessly execute on GPUs and CPUs given the underlying 

frameworks. It is released under the permissive MIT license.  

• Modularity: A model can be understood as a sequence or a graph alone. All the 

concerns of a deep learning model are discrete components that can be combined 

in arbitrary ways.  

• Minimalism: The library provides just enough to achieve an outcome, no frills and 

maximizing readability.  

• Extensibility: New components are intentionally easy to add and use within the 

framework, intended for researchers to trial and explore new ideas.  

• Python: No separate model files with custom file formats. Everything is native 

Python.  

We can summarize the construction of deep learning models in Keras as follows:  

1. Define your model. Create a sequence and add layers.  

2. Compile your model. Specify loss functions and optimizers.  

3. Fit your model. Execute the model using data.  

4. Make predictions. Use the model to generate predictions on new data.  

  

INPUTS AND OUTPUTS  
  

The following some are the projects inputs and outputs.  

  

Inputs:  

 Importing the all required packages like Tensorflow, keras ,NumPy, Pandas, Matplotlib, 

scikit – learn and required machine learning algorithms packages .  

 Setting the dimensions of visualization graph.  

 Downloading and importing the dataset and convert to data frame (In case of images,we 

need to convert it into numeric values since ML algorithm work on only numerical data).  

  

Outputs:  

 preprocessing the importing data frame for imputing nulls with the related information.  

 All are displaying cleaned outputs.  

 After applying machine learning algorithms, it will give good results and visualization 

plots.  

  

  

  

  

  



  

Chapter 3 REQUIREMENTS  
  

Hardware Requirements:  
  

  RAM:  4GB and Higher  

  Processor: Intel i3 and above  

  Hard Disk: 500GB: Minimum  

  

Software Requirements:  

  

OS: Windows or Linux                                                                     

Python  IDE : python 2.7.x and above              

Jupyter IDE                            

Anaconda 3.x  

Setup tools and pip to be installed for 3.6 and 

above Python Scripting  

 

 

 

 

 
 

 

 
 

 
 



 

DIAGRAMS 
  

  

. UML DIAGRAMS  

The Unified Modeling Language (UML) is used to specify, visualize, modify, construct 
and document the artifacts of an object-oriented software intensive system under 
development. UML offers a standard way to visualize a system's architectural 
blueprints, including elements such as:  

• actors  

• business processes  

• (logical) components  

• activities  

• programming language statements  

• database schemas, and  

• Reusable software components.  

  

UML combines best techniques from data modeling (entity relationship diagrams), business 

modeling (work flows), object modeling, and component modeling. It can be used with all 

processes, throughout the software development life cycle, and across different implementation 

technologies. UML has synthesized the notations of the Booch method, the Object-modeling 

technique (OMT) and Object-oriented software engineering (OOSE) by fusing them into a 

single, common and widely usable modeling language. UML aims to be a standard modeling 

language which can model concurrent and distributed systems  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

 



 

 

Use Case Diagram    
  

 
  

  

  

  

  

  

  

  

  

user  

import modules  

covert to sequential  

maxpooling 2D  

flatten  

dense  

preprocessing  

train and test  

predict  

malignent benign  

tensorflow  

keraas  



  

  

Sequence diagram  

  

  

 
  

  

  

Sequence Diagrams Represent the objects participating the interaction horizontally and time 

vertically. A Use Case is a kind of behavioral classifier that represents a declaration of an offered 

behavior. Each use case specifies some behavior, possibly including variants that the subject can 

perform in collaboration with one or more actors. Use cases define the offered behavior of the 

subject without reference to its internal structure. These behaviors, involving interactions 

between the actor and the subject, may result in changes to the state of the subject and 

communications with its environment. A use case can include possible variations of its basic 

behavior, including exceptional behavior and error handling.  

  

.. 

 

 

user import modules preprocessing predict  

1   : tensorflow  ()  

()   : keras  2  

3   : sequential  ()  

()   : flatten  4  

 : dense  ()  5  

6   : maxpooling  ()  

7   : malignant  ()  

8   : benign  ()  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  



 

 

  

Activity diagram  

 

  

  

   
  

  

Activity diagrams are graphical representations of Workflows of stepwise activities 

and actions with support for choice, iteration and concurrency. In the Unified 

Modeling Language, activity diagrams can be used to describe the business and 

operational step-by-step workflows of components in a system. An activity diagram 

shows the overall flow of control.  

  

  

  

user  

import modules  

preprocessing  

predict  



 

  

Class Diagram:  

  

 

  

The class diagram is the main building block of object-oriented modeling. It is used for general 

conceptual modeling of the systematic of the application, and for detailed modeling translating 

the models into programming code. Class diagrams can also be used for data modeling. The 

classes in a class diagram represent both the main elements, interactions in the application, and 

the classes to be programmed.  
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METHODOLOGY OF ANALYSIS AND IMPLEMENTATION 
  

  

  

  

  

Operations and Code details:  
  

Here we are solving an image classification problem, where our goal will be to tell which class 
the input image belongs to. The way we are going to achieve it is by training an artificial neural 

network on few brain scan images of benign and malignent type and make the NN(Neural 

Network) learn to predict which class the image belongs to, next time it sees an image having a 
malignent or benign i.e. tumor or not.  

 So coming to the coding part, we are going to use Keras deep learning library in python to build 

our CNN(Convolutional Neural Network).  

 Here we will need to download two folders and both the folders named “ test set ” and 

“training_set” into our working directory which is the training data as well as the test dataset.    

  First, the folder “training_set” contains two sub folders benign and malignent, each holding 

26 images of the respective category. Second, the folder “test_set” contains two sub folders 

benign and malignent, each holding 9 images of respective category.  

The process of building a Convolutional Neural Network always involves four major steps.  

Step - 1 : Convolution  

Step - 2 : Pooling  

Step - 3 : Flattening  

Step - 4 : Full connection  

We will be going through each of the above operations while coding our neural network.    

First let us import all the required keras packages using which we are going to build our CNN, 

make sure that every package is installed properly in our machine, there is two ways os using 

keras, i.e Using Tensorflow backend and by Using Theano backend, all the code remains the 

same in either cases. I tested the below code using Tensorflow backend.  

# Importing the Keras libraries and 

packages from keras.models import 

Sequential from keras.layers import Conv2D 

from keras.layers import MaxPooling2D 

from keras.layers import Flatten  

from keras.layers import Dense  

https://keras.io/


Let us now see what each of the above packages are imported for :  

In line 1, we’ve imported Sequential from keras.models, to initialise our neural network model 

as a sequential network. There are two basic ways of initialising a neural network, either by a 

sequence of layers or as a graph.  

In line 2, we’ve imported Conv2D from keras.layers, this is to perform the convolution operation 

i.e the first step of a CNN, on the training images. Since we are working on images here, which a 

basically 2 Dimensional arrays, we’re using Convolution 2-D, you may have to use Convolution 

3-D while dealing with videos, where the third dimension will be time.  

In line 3, we’ve imported MaxPooling2D from keras.layers, which is used for pooling operation, 

that is the step — 2 in the process of building a cnn. For building this particular neural network, 

we are using a Maxpooling function, there exist different types of pooling operations like Min 

Pooling, Mean Pooling, etc. Here in MaxPooling we need the maximum value pixel from the 

respective region of interest.  

In line 4, we’ve imported Flatten from keras.layers, which is used for Flattening. Flattening is 

the process of converting all the resultant 2 dimensional arrays into a single long continuous 

linear vector.  

And finally in line 5, we’ve imported Dense from keras.layers, which is used to perform the full 

connection of the neural network, which is the step 4 in the process of building a CNN.  

Now, we will create an object of the sequential class below: 

classifier = Sequential()  

Let us now code the Convolution step, actually it is too easy to implement these complex 

operations in a single line of code in python, because of Keras.  

classifier.add(Conv2D(32, (3, 3), input_shape = (64, 64, 3), activation = 'relu'))  

Let’s break down the above code function by function. We took the object which already has an 

idea of how our neural network is going to be(Sequential), then we added a convolution layer by 

using the “Conv2D” function. The Conv2D function is taking 4 arguments, the first is the 

number of filters i.e 32 here, the second argument is the shape each filter is going to be i.e 3x3 

here, the third is the input shape and the type of image(RGB or Black and White)of each image 

i.e the input image our CNN is going to be taking is of a 64x64 resolution and “3” stands for 

RGB, which is a colour img, the fourth argument is the activation function we want to use, here 

‘relu’ stands for a rectifier function.  

Now, we need to perform pooling operation on the resultant feature maps we get after the 

convolution operation is done on an image. The primary aim of a pooling operation is to reduce 

the size of the images as much as possible. But the key thing to understand here is that we are 

trying to reduce the total number of nodes for the upcoming layers.  

classifier.add(MaxPooling2D(pool_size = (2, 2)))  



We start by taking our classifier object and add the pooling layer. We take a 2x2 matrix we’ll 

have minimum pixel loss and get a precise region where the feature are located. We just reduced 

the complexity of the model without reducing it’s performance.  

It’s time for us to now convert all the pooled images into a continuous vector through Flattening. 

Flattening is a very important step to understand. What we are basically doing here is taking the 

2-D array, i.e pooled image pixels and converting them to a one dimensional single vector. 

classifier.add(Flatten())  

The above code is pretty self-explanatory. We’ve used flatten function to perform flattening, we 

no need to add any special parameters, keras will understand that the “classifier” object is 

already holding pooled image pixels and they need to be flattened.  

In this step we need to create a fully connected layer, and to this layer we are going to connect 

the set of nodes we got after the flattening step, these nodes will act as an input layer to these 

fullyconnected layers. As this layer will be present between the input layer and output layer, we 

can refer to it a hidden layer. classifier.add(Dense(units = 128, activation = 'relu'))  

As we can see, Dense is the function to add a fully connected layer, ‘units’ is where we define 

the number of nodes that should be present in this hidden layer, these units value will be always 

between the number of input nodes and the output nodes but the art of choosing the most optimal 

number of nodes can be achieved only through experimental tries. Though it’s a common 

practice to use a power of 2. And the activation function will be a rectifier function.  

Now it’s time to initialise our output layer, which should contain only one node, as it is binary 

classification. This single node will give us a binary output of either a benign or malignent. 

classifier.add(Dense(units = 1, activation = 'sigmoid'))  

We can observe that the final layer contains only one node, and we will be using a sigmoid 

activation function for the final layer.  

Now that we have completed building our CNN model, it’s time to compile it. 

classifier.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = ['accuracy'])  

From above :  

• Optimizer parameter is to choose the stochastic gradient descent algorithm.  

• Loss parameter is to choose the loss function.  

• Finally, the metrics parameter is to choose the performance metric.  

It’s time to fit our CNN to the image dataset that you’ve downloaded. But before we do that, we 

are going to pre-process the images to prevent over-fitting. Overfitting is when you get a great 

training accuracy and very poor test accuracy due to overfitting of nodes from one layer to 

another.  

So before we fit our images to the neural network, we need to perform some image 

augmentations on them, which is basically synthesising the training data. We are going to do this 

using keras.preprocessing library for doing the synthesising part as well as to prepare the 

training set as well as the test test set of images that are present in a properly structured 



directories, where the directory’s name is take as the label of all the images present in it. For 

example : All the images inside the ‘benign’ named folder will be considered as benign by keras.  

train_datagen = ImageDataGenerator(rescale = 1./255, 

shear_range = 0.2, zoom_range = 0.2, horizontal_flip = 

True)  

test_datagen = ImageDataGenerator(rescale = 1./255) 

training_set = 

train_datagen.flow_from_directory('training_set', target_size = 

(64, 64), batch_size = 32, class_mode = 'binary')  

test_set = test_datagen.flow_from_directory('test_set', 

target_size = (64, 64), batch_size = 32, class_mode = 

'binary')  

We can find the explanation of what each of the above parameters do,in the keras documentation 

page. As a whole of whats happening above is that we are creating synthetic data out of the same 

images by performing different type of operations on these images like flipping, rotating, 

blurring, etc.  

Now  fit the data to our model !  

classifier.fit_generator(training_set,  

steps_per_epoch = 8000, 

epochs = 25, 

validation_data = test_set, 

validation_steps = 2000)  

In the above code, ‘steps_per_epoch’ holds the number of training images, i.e the number of 

images the training_set folder contains.  

And ‘epochs’, a single epoch is a single step in training a neural network; in other words when a 

neural network is trained on every training samples only in one pass we say that one epoch is 

finished. So training process should consist more than one epochs. In this case we have defined 

25 epochs.  

Making new predictions from our trained model :  

import numpy as np  

from keras.preprocessing import image  

test_image  = 

 image.load_img('dataset/single_prediction/benign_or_malignent_1.jpg', target_size 

= (64, 64))  

test_image = image.img_to_array(test_image) 

test_image = np.expand_dims(test_image, axis = 0)  

result = classifier.predict(test_image) 

training_set.class_indices  

if result[0][0] == 1: 

prediction = 'Benign' 



else: prediction = 

'Malignent'  

The test_image holds the image that needs to be tested on the CNN. Once we have the test 

image, we will prepare the image to be sent into the model by converting its resolution to 64x64 

as the model only excepts that resolution. Then we are using ‘predict()’ method on our classifier 

object to get the prediction. As the prediction will be in a binary form, we will be receiving either 

a 1 or 0, which will represent a ‘benign’ or ‘Malignent’ respectively.  

  

Medical Image Analysis with CNN:-  

The complete code with outputs :  

import tensorflow as tf import keras 
from keras.models import Sequential 
from keras.layers import Conv2D from 
keras.layers import MaxPooling2D from 
keras.layers import Flatten from 
keras.layers import Dense  

classifier = Sequential()  

  

classifier.add(Conv2D(32, (3, 3), input_shape = (64, 64, 3), activation = 'relu'))  

classifier.add(MaxPooling2D(pool_size = (2, 2)))  

  

classifier.add(Conv2D(32, (3, 3), activation = 'relu')) 

classifier.add(MaxPooling2D(pool_size = (2, 2)))  

  

classifier.add(Flatten())  

  

classifier.add(Dense(activation = 'relu',units=128)) 

classifier.add(Dense(activation = 'sigmoid',units=1))  

  

classifier.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = ['accuracy'])  

  

classifier.summary() 

o/p:  

Layer (type)                 Output Shape              Param #     

================================================================= 

conv2d_1 (Conv2D)            (None, 62, 62, 32)        896         

_________________________________________________________________ 

max_pooling2d_1 (MaxPooling2 (None, 31, 31, 32)        0           

_________________________________________________________________  



conv2d_2 (Conv2D)            (None, 29, 29, 32)        9248        

_________________________________________________________________  

max_pooling2d_2 (MaxPooling2 (None, 14, 14, 32)        0           

_________________________________________________________________ 

flatten_1 (Flatten)          (None, 6272)              0           

_________________________________________________________________  

dense_1 (Dense)              (None, 128)               802944      

_________________________________________________________________  

dense_2 (Dense)              (None, 1)                 129         

=================================================================  

Total params: 813,217  

Trainable params: 813,217  

Non-trainable params: 0  

_________________________________________________________________  

from keras.preprocessing.image import ImageDataGenerator  

  

train_datagen = ImageDataGenerator(rescale = 1./255,  

                                   shear_range = 0.2,                                    
zoom_range = 0.2,                                    
horizontal_flip = True)  

  

test_datagen = ImageDataGenerator(rescale = 1./255)  

training_set= train_datagen.flow_from_directory('/home/avinash/Deep Learning Applications 

in/code/Brain_tumor/train/',  

                                                 target_size = (64, 64),                                                  
batch_size = 32,                                                  
class_mode = 'binary')  

  

test_set = test_datagen.flow_from_directory('/home/avinash/Deep      Learning 

Applications in/code/Brain_tumor/test/',  

      target_size=(64, 64),        

   batch_size = 32,  

               class_mode = 'binary')  

Found 44 images belonging to 2 classes. 

Found 14 images belonging to 2 classes.  

classifier.fit_generator(training_set,  steps_per_epoch=None,  epochs=100,  verbose=1, 

callbacks=None,  validation_data=test_set,  validation_steps=None, 

 class_weight=None, max_queue_size=10, workers=1, use_multiprocessing=False, 

shuffle=True, initial_epoch=0) o/p:  

Epoch 1/100  



2/2 [==============================] - 0s 147ms/step - loss: 0.0388 - acc: 1.0000 - 

val_loss: 3.0713 - val_acc: 0.4286  

Epoch 2/100  

2/2 [==============================] - 0s 151ms/step - loss: 0.0266 - acc: 1.0000 - 

val_loss: 3.1552 - val_acc: 0.4286  

.  

.  

.  

.  

Epoch 92/100  

2/2 [==============================] - 0s 111ms/step - loss: 0.0207 - acc: 1.0000 - 

val_loss: 3.9695 - val_acc: 0.4286  

Epoch 93/100  

2/2 [==============================] - 0s 153ms/step - loss: 0.0996 - acc: 0.9287 - 

val_loss: 4.0976 - val_acc: 0.4286  

Epoch 94/100  

2/2 [==============================] - 0s 123ms/step - loss: 0.0684 - acc: 0.9820 - 

val_loss: 3.6747 - val_acc: 0.4286  

Epoch 95/100  

2/2 [==============================] - 0s 135ms/step - loss: 0.0292 - acc: 1.0000 - 

val_loss: 3.1225 - val_acc: 0.5714  

Epoch 96/100  

2/2 [==============================] - 0s 149ms/step - loss: 0.0479 - acc: 0.9820 - 

val_loss: 2.8529 - val_acc: 0.5714  

Epoch 97/100  

2/2 [==============================] - 0s 121ms/step - loss: 0.0752 - acc: 0.9640 - 

val_loss: 2.8919 - val_acc: 0.5714  

Epoch 98/100  

2/2 [==============================] - 0s 142ms/step - loss: 0.0264 - acc: 0.9820 - 

val_loss: 3.1539 - val_acc: 0.5714  

Epoch 99/100  

2/2 [==============================] - 0s 111ms/step - loss: 0.1200 - acc: 0.9646 - 

val_loss: 3.7281 - val_acc: 0.5714  

Epoch 100/100  

2/2 [==============================] - 0s 140ms/step - loss: 0.1041 - acc: 0.9467 - 

val_loss: 3.9787 - val_acc: 0.5714  

<keras.callbacks.History at 0x7f3c680e7240>  

import numpy as np  

from keras.preprocessing import image  

test_image = image.load_img('/home/avinash/Deep Learning Applications in/mri-brain-image_ 

new/brain-tumors-fig2_large.jpg', target_size = (64, 64)) test_image  

   



test_image = image.img_to_array(test_image)  

  

test_image = np.expand_dims(test_image, axis = 

0) test_image o/p:  

array([[[[57., 57., 57.],          

[11., 11., 11.],  

         [11., 11., 11.],  

         ...,  

         [11., 11., 11.],  

         [11., 11., 11.],  

         [10., 10., 10.]],  

  

        [[14., 14., 14.],  

         [14., 14., 14.],  

         [11., 11., 11.],  

         ...,  

         [10., 10., 10.],  

         [10., 10., 10.],  

         [ 9.,  9.,  9.]],  

  

        [[12., 12., 12.],  

         [10., 10., 10.],  

         [11., 11., 11.],  

         ...,  

         [11., 11., 11.],  

         [11., 11., 11.],  

         [11., 11., 11.]],  

  

        ...,  

  

        [[63., 63., 63.],  

         [60., 60., 60.],  

         [93., 93., 93.],  

         ...,  

         [11., 11., 11.],  

         [11., 11., 11.],  

         [11., 11., 11.]],  

  

        [[23., 23., 23.],  

         [ 5.,  5.,  5.],  

         [ 8.,  8.,  8.],  

         ...,  

         [11., 11., 11.],  

         [11., 11., 11.],  

         [11., 11., 11.]],  



  

        [[13., 13., 13.],  

         [13., 13., 13.],  

         [15., 15., 15.],  

         ...,  

         [ 9.,  9.,  9.],  

         [ 9.,  9.,  9.],  

         [ 9.,  9.,  9.]]]], dtype=float32)  

result = 

classifier.predict(test_image) result 

o/p:array([[1.]], dtype=float32) 

training_set.class_indices 

o/p:{'Benign': 0, 'Malignant': 1}  

if result[0][0] == 0:     prediction = 'Benign' 

else:     prediction = 'Malignent' 

print("Detected tumor type 

is %s"%prediction) o/p: Detected tumor type 

is Malignent  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

 

 

 

 



OUTPUT SCREENSHOTS  
  

  

  

  

  

  

a.) In Jupyter Notebook  

  

  

  

  



b.) In user Interface  

  

  

  

 

 

  

           

  

                

  



  

fig2: after selecting the test image 

 

 

       fig3: Output for Benign(Non- Cancerous)  

  

  

  



 

  

➔ The above screenshots has come after the deployment of Machine Learning model in stand 

alone user interface for naive user who don’t have the technical knowledge. Model deployment 

of machine learning is a very tough task. 

 

 

 

 



CONCLUSION  
  

  

  

  

  

Challenges:-  
  

A recurring theme in machine learning is the limit imposed by the lack of labelled datasets, 

which hampers training and task performance. Conversely, it is acknowledged that more data 

improves performance, as Sun et al.  shows using an internal Google dataset of 300 million 

images. In general computer vision tasks, attempts have been made to circumvent limited data by 

using smaller filters on deeper layers ,with novel CNN architecture combinations , or 

hyperparameter optimization . In medical image analysis, the lack of data is two-fold and more 

acute: there is general lack of publicly available data, and high quality labelled data is even more 

scarce. Most of the datasets presented in this review involve fewer than 100 patients. Yet the 

situation may not be as dire as it seems, as despite the small training datasets, the papers in this 

review report relatively satisfactory performance in the various tasks. The question of how many 

images are necessary for training in medical image analysis was partially answered by Cho et 

al. . He ascertained the accuracy of a CNN with GoogLeNet architecture in classifying individual 

axial CT images into one of 6 body regions: brain, neck, shoulder, chest, abdomen, pelvis. With 

200 training images, accuracies of 88-98% were achieved on a test set of 6000 images. While 

categorization into various body regions is not a realistic medical image analysis task, his report 

does suggest that the problem may be surmountable. Being able to accomplish classification with 

a small dataset is possibly due to the general intrinsic image homogeneity across different 

patients, as opposed to the near-infinite variety of natural images, such as a dog in various 

breeds, colors and poses. VAEs and GANS, being generative models, may sidestep the data 

paucity problem, by creating synthetic medical data. This was done by Guibas and Virdi, who 

used a 2 stage GAN to segment and then generate retinal fundus images successfully . Their 

work was built on the research of Costa et al. , which first described using GANs to generate 

retinal fundus images. Aside from synthetic data generation, GANs have been used in brain MRI 

segmentation as well by Moeskops et al. , Kamnitsas et al. and Alex et al.  

  

Data or class imbalance in the training set is also a significant issue in medical 

image analysis. This refers to the number of images in the training data being skewed 

towards normal and non-pathological images. Rare diseases are an extreme example of 

this and can be missed without adequate training examples. This data imbalance effect 

can be ameliorated by using data augmentation to generate more training images of rare 

or abnormal data, though there is risk of overfitting. Aside from data-level strategies, 

algorithmic modification strategies and cost sensitive learning have also been studied . 

An important, non-technical challenge is the public reception towards their health results 

being studied by a non-human actor. This situation is not helped by the apocalyptic 

artificial intelligence scenarios painted by some. Machine learning algorithms have 

surpassed human performance in image recognition tasks, and it is likely that they will 

perform better than humans in medical image analysis as well. Indeed, some of the papers 

in this review report that dermatologists and radiologists have already been bested by 



machine learning. Yet the question regarding legal and moral culpability arises when a 

patient is misdiagnosed, or suffers morbidity as a result of AI or AI-assisted medical 

management. This is accentuated by our inability to fully explain how the black-box of 

machine algorithms work. However, it is likely that our relationship will continue evolve 

and recalibrate as AI-based technologies mature and inexorably permeate different facets 

of our lives.  

  

  

  

  

  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

FUTURE SCOPE  
  

The traditional applications for medical image analysis were discussed . New areas of research 

include prognostication , content-based image retrieval,image report or caption generation,and 

manipulation of physical objects with LSTMs and reinforcement learning, involving surgical 

robots .  

 A few innovative applications that span across traditional medical image analysis categories are 

described below. An interesting application was reported by Nie et al. in which GANs were used 

to generate CT brain images from MRI images. This is remarkable, as it means that patients can 

potentially avoid the ionizing radiation from a CT scanner altogether, lowering cost and 

improving patient safety. Nie also exploited the ability of GANs to generate improved, higher 

resolution images from native images and reduced the blurriness in the CT images. A useful 

extension of resolution improvement techniques would be applying them to generate MRI 

images of higher quality. High quality MRI images require high tesla (and correspondingly 

costlier) MRI scanners. Algorithmically generated high quality MRI images on a lower field-

strength scanner would thus lower healthcare costs. 
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