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Project Title: DATA  ANALYSIS  USING ML ON GEOLOCATIONAL 

DATA  

 

ABSTRACT: 

Machine learning allows us to feed computer algorithms with large amounts of 

data and make computers analyze and make data-driven decisions and 

recommendations based solely on input data. This project will utilize ML to 

analyze geolocational data and user preferences to make smart recommendations to 

the user . In the fast-paced and busy environment that the average person lives in, it 

often happens that one is too tired to prepare a home-cooked meal. And of course, 

even if you get home cooked meals every day, it is not uncommon for you to want 

to have a good meal every now and then for social / recreational purposes. Now, 

imagine a scenario where someone has just moved to a new location. They already 

have certain preferences, certain tastes. It will save a lot of trouble for the student 

and food suppliers if the student lives near his favorite outlet. The convenience of 

the means better sales and time savings for customers. This project involves the 

utilization of K-Means Clustering to seek out the simplest accommodation for 

students in Bangalore (or the other city of your choice) by classifying 



accommodation for incoming students on the idea of their preferences on 

amenities, budget and proximity to the location. 
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Introduction: 

 

 

In the fast-paced and busy environment where the average person lives, it is 

common for people to be too tired to prepare home-cooked meals. And of course, 

even if you eat homemade food every day, it's not unusual if you want to go out to 

eat once in a while for social/recreational purposes. However, it is a commonly  

understood idea that no matter where you live, the food you eat is an important 

aspect  of the lifestyle you live. Now, imagine a scenario where someone has just 

moved to a new location. They already have certain preferences, certain tastes. 

This will save students  a lot of trouble and food suppliers if the student lives near 



his or her favorite outlet. This project involves using K-Means Clustering to find 

the best accommodation for  

 students in Bangalore (or another city of your choice) by rating accommodation 

for incoming students based on  their preferences on facilities, budget and 

proximity to location. 

 

 

 

Literature Review: 

 

There are many algorithms  derived above to determine k automatically. Most of 

these methods are wrappers around kmeans or some other clustering algorithm  for 

fixed k. Use the wrapper method divide and combine the rules for centers to 

increase or decrease the value of k  as the algorithm progresses.After calculating 

the BIC or Bayesian Information Criterion(BIC is a method for scoring and 

selecting a model ) for each clustering model. Apart from BIC, other scoring 

functions are also available. Some researchers use the MDL method to find the 

best  

k. The researchers also used the Minimum Description Length (MDL) framework, 

where the description length is the measurement value that tells us  how well the 

data  fit  the model. This algorithm starts with a large value for k and removes the 



center (reduces k) each time that selection reduces the length of the description. 

Among the k reduction steps, they used the kmeans algorithm to optimize the fit of 

the model  to the data. 

 

Activity Diagram: 

 

 

Required tools: 



 

● Python 

●  For data - numpy and pandas package. 

●  For plotting - matplotlib package & seaborn packages 

● For geospatial - geopy, folium. 

● For machine learning - sklearn (preprocessing and cluster) scipy, 

● For deep learning - minisom 

 

 

Feasibility Analysis: 

 

The project  Data Analysis using ML on Geolocational Data is a simple software 

application which is supported on a personal computer  , just like any native 

application. It is a python  based project with the renowned python libraries to 

manage the application.  For an application  as complex as an recommendation 

system using machine learning and AI , this software has simplistic approach and 

does not have many complex features therefore, it can be used at the bare-bones 

level. Sklearn (preprocessing and cluster) , scipy , matplotlib &  seaborn packages , 

pandas packages for python are the other packages that we will be using in this 

application. Python provides us with many different features and services to 



complete our project.The convenient  design of the geopy package for the plotting 

on map and the simple user experience will provide smooth and good experience to 

the user.  

 

Complete work plan layout: 

 

The development of this application software will follow an iterative software 

development model in which the base product is first implemented as a small set of 

software requirements, then iterative enhancements and development releases are 

made until the entire system is implemented and ready for deployment. The first 

step would be collection of data set followed by visualizing the data. Then 

imposing K-Means clustering algorithm on the data. Get geolocational data from 

the resulting data-set and further plotting it on the map. 

 

 

Modeling and Prediction with Machine Learning -  

 



The main goal of the entire project is to predict the occurrence of heart disease 

with the highest accuracy. To achieve this, we will test several classification 

algorithms. This section covers all the results obtained from the study and 

introduces the best performer according to the accuracy metric. We have chosen a 

number of specific algorithms to solve supervised learning problems across 

classification methods. 

First, let's arm ourselves with a handy tool that benefits from the coherence of the 

SciKit Learn library and creates a common task for training our models. The 

reason we display accuracy on both the train and test sets is to allow us to evaluate 

whether the model overfits or underfits the data. 

 

Logistic regression –  

Logistic regression is a classification algorithm used to assign observations to a 

discrete set of classes. Unlike linear regression, which outputs continuous number 

values, logistic regression uses the logistic sigmoid function to transform its output 

to return a probability value that can then be mapped to two or more discrete 

classes. 

  

Types of Logical Regression: 



• binary (pass/fail) 

• multi (cats, dogs, sheep) 

 

Process - 

1. Split the problem into an n+1 binary classification problem (+1 because the 

index starts at 0). 

2. For each class… 

3. Estimate the probability that the observations will be in that single class. 

4. prediction = <math>max (probability of classes) 

 

Accuracy score of Logistic Regression is: 85.25% 

Random Forest –  

Random Forest is a supervised learning algorithm. Random forest can be used for 

both classification and regression problems, by using random forest regressor we 

can use random forest on regression problems. But we have used random forest on 

classification in this project so we will only consider the classification part.  

 



Random Forest pseudocode –  

 

• Randomly select “k” features from total “m” features.  

          Where k << m 

• Among the “k” features, calculate the node “d” using the best split point.  

• Split the node into daughter nodes using the best split.  

• Repeat 1 to 3 steps until “l” number of nodes has been reached.  

• Build forest by repeating steps 1 to 4 for “n” number times to create “n” 

number of trees.  

 

Random forest prediction pseudocode –  

 

1. Takes the test features and use the rules of each randomly created decision tree 

to predict the outcome and stores the predicted outcome. 

2. Calculate the votes for each predicted target.  

3. Consider high voted predicted target as final prediction from random forest algo.  

Accuracy score of Random Forest is 86.9% 



 

Naïve Bayes -  

Bayes’ Theorem is stated as:  

P(h|d) = (P(d|h) * P(h)) / P(d) 

 

• P(h|d) is the probability of hypothesis h given the data d. This is called the 

posterior probability.  

 

• P(d|h) is the probability of data d given that the hypothesis h was true. 

 

• P(h) is the probability of hypothesis h being true (regardless of the data). 

This is called the prior probability of h.  

 

• P(d) is the probability of the data (regardless of the hypothesis). 

 

Here, we are interested in calculating the posterior probability of P(h|d) from the 

prior probability p(h) with P(D) and P(d|h). After calculating the posterior 



probability for a number of different hypotheses, we will select the hypothesis with 

the highest probability. This is the maximum probable hypothesis and may 

formally be called the (MAP) hypothesis.  

This can be written as: 

MAP(h) = max(P(h|d)) 

Or 

 

MAP(h) = max((P(d|h) * P(h)) / P(d)) 

Or 

MAP(h) = max(P(d|h) * P(h)) 

 

The P(d) is a normalizing term which allows us to calculate the probability. We 

can drop it when we are interested in the most probable hypothesis as it is constant 

and only used to normalize. Back to classification, if we have an even number of 

instances in each class in our training data, then the probability of each class (e.g., 

P(h)) will be equal. Again, this would be a constant term in our equation, and we 

could drop it so that we end up with - 

 



MAP(h) = max(P(d|h)) 

 

Naive Bayes is a classification algorithm for binary (two-class) and multi-class 

classification problems. The technique is easiest to understand when described 

using binary or categorical input values. It is called naive Bayes or idiot Bayes 

because the calculation of the probabilities for each hypothesis are simplified to 

make their calculation tractable. Rather than attempting to calculate the values of 

each attribute value P (d1, d2, d3|h), they are assumed to be conditionally 

independent given the target value and calculated as P(d1|h) * P(d2|H) and so on. 

This is a very strong assumption that is most unlikely in real data, i.e. that the 

attributes do not interact. Nevertheless, the approach performs surprisingly well on 

data where this assumption does not hold.  

 

MAP(h) = max(P(d|h) * P(h)) 

 

Gaussian Naïve Bayes -  

 

mean(x) = 1/n * sum(x) 



 

Where n is the number of instances and x are the values for an input variable in 

your training data. We can calculate the standard deviation using the following 

equation - 

standard deviation(x) = sqrt (1/n * sum(xi-mean(x)^2)) 

This is the square root of the average squared difference of each value of x from 

the mean value of x, where n is the number of instances, sqrt() is the square root 

function, sum() is the sum function, xi is a specific value of the x variable for the 

ith instance and mean(x) is described above, and ^2 is the square. Gaussian PDF 

with a new input for the variable, and in return the Gaussian PDF will provide an 

estimate of the probability of that new input value  

for that class.  

 

pdf (x, mean, sd) = (1 / (sqrt (2 * PI) * sd)) * exp (-((x-mean^2) / (2*sd^2)))  

 

Where pdf(x) is the Gaussian Probability Density Function (PDF), sqrt () is the 

square root, mean and sd are the mean and standard deviation calculated above, Pi 



is the numerical constant, exp () is the numerical constant e or Euler’s number 

raised to power and x is the input value for the input variable. 

 

K-Nearest Neighbor – 

 

We can implement a KNN model by following the below steps:  

1. Load the data  

2. Initialize the value of k  

3. For getting predicted class, iterate from 1 to total number of training data points. 

• Calculate the distance between test data and each row of training data. Here 

we will use Euclidean distance as our distance metric since it’s the most 

popular method. The other metrics that can be used are Chebyshev, cosine, 

etc. 

• Sort the calculated distances in ascending order based on distance values. 

• Get top k rows from the sorted array. 

• Get the most frequent class of these row. 

• Return the predicted class. 



 

Pseudocode - 

• Place the best attribute of the dataset at the root of the tree.  

 

• Split the training set into subsets. Subsets should be made in such a way that 

each subset contains data with the same value for an attribute.  

 

• Repeat step 1 and step 2 on each subset until you find leaf nodes in all the 

branches of the tree.  

 

 

Assumptions while creating Decision Tree –  

 

• At the beginning, the whole training set is considered as the root. 

 

• Feature values are preferred to be categorical. If the values are continuous 

then they are discretized prior to building the model.  

 



• Records are distributed recursively on the basis of attribute values.  

 

• Order to placing attributes as root or internal node of the tree is done by 

using some statistical approach.  

 

• The popular attribute selection measures -  

1. Information gain  

2. Gini index 

 

Minimum System Requirements – 

 

Processors - Intel Atom® processor or Intel® Core™ i3 processor  

Disk space - 3 GB or more 

Operating systems - Windows 7 /8.1/ 10, OSX-10.8+ 

Python* versions - 2.7.X, 3.6.X  

HDD: 3 GB free space / May vary for different data-sets 

 



Source Code: 

<a href="https://colab.research.google.com/github/AKG1301/Exploratory-Data-

Analysis-on-Geolocational-

Data/blob/main/Exploratory_Data_Analysis_on_Geolocational_Data.ipynb" 

target="_parent"><img src="https://colab.research.google.com/assets/colab-

badge.svg" alt="Open In Colab"/></a> 

#Exploratory Analysis of Geolocational Data 

## Data Collection  

import pandas as pd 

data=pd.read_csv("/content/drive/MyDrive/  Exploratory Analysis of 

Geolocational Data/food_coded.csv") 

data 

 

#Data Cleaning 

The process of Extracting the features, (and dealing with different kinds of values 

as well as NaN values) is known as Data Cleaning. 

data.columns 

column=['cook','eating_out','employment','ethnic_food', 

'exercise','fruit_day','income','on_off_campus','pay_meal_out','sports','veggies_day'

] 



d=data[column] 

d 

## Data Exploration and Visualisation 

 

 

 

import seaborn as sns 

sns.pairplot(d) 

#Boxplot of Dataset 

import numpy as np   

import pandas as pd   

import matplotlib.pyplot as plt   

% matplotlib inline  

ax=d.boxplot(figsize=(16,6)) 

ax.set_xticklabels(ax.get_xticklabels(),rotation=30) 

d.shape 

s=d.dropna() 

## Run KMeans Clustering on the data 

## for data 

import numpy as np 



import pandas as pd 

## for plotting 

import matplotlib.pyplot as plt 

import seaborn as sns 

## for geospatial 

import folium 

import geopy 

## for machine learning 

from sklearn import preprocessing, cluster 

import scipy 

## for deep learning 

import minisom 

f=['cook','income'] 

X = s[f] 

max_k = 10 

## iterations 

distortions = []  

for i in range(1, max_k+1): 

    if len(X) >= i: 



       model = cluster.KMeans(n_clusters=i, init='k-means++', max_iter=300, 

n_init=10, random_state=0) 

       model.fit(X) 

       distortions.append(model.inertia_) 

## best k: the lowest derivative 

k = [i*100 for i in np.diff(distortions,2)].index(min([i*100 for i  

     in np.diff(distortions,2)])) 

## plot 

fig, ax = plt.subplots() 

ax.plot(range(1, len(distortions)+1), distortions) 

ax.axvline(k, ls='--', color="red", label="k = "+str(k)) 

ax.set(title='The Elbow Method', xlabel='Number of clusters',  

       ylabel="Distortion") 

ax.legend() 

ax.grid(True) 

plt.show() 

 

## Get Geolocational Data 

from pandas.io.json import json_normalize 

import folium 



from geopy.geocoders import Nominatim  

import requests 

CLIENT_ID = 

"KTCJJ2YZ2143QHEZ2JAQS4FJIO5DLSDO0YN4YBXPMI5NKTEF" # your 

Foursquare ID 

CLIENT_SECRET = 

"KNG2LO22BPLHN1E3OAHWLYQ5PQBN14XYZMEMAS0CPJEJKOTR" # 

your Foursquare Secret 

VERSION = '20200316' 

LIMIT = 10000 

url = 

'https://api.foursquare.com/v2/venues/explore?&client_id={}&client_secret={}&v

={}&ll={},{}&radius={}&limit={}'.format( 

    CLIENT_ID,  

    CLIENT_SECRET,  

    VERSION,  

    17.448372, 78.526957, 

    30000,  

    LIMIT) 

results = requests.get(url).json() 



results 

venues = results['response']['groups'][0]['items'] 

nearby_venues = json_normalize(venues) 

## Adding two more Columns Restaurant and Others 

1.   Restaurant: Number of Restaurant in the radius of 20 km 

2.   others:Number of Gyms, Parks,etc in the radius of 20 km 

 

resta=[] 

oth=[] 

for lat,long in 

zip(nearby_venues['venue.location.lat'],nearby_venues['venue.location.lng']): 

    url = 

'https://api.foursquare.com/v2/venues/explore?&client_id={}&client_secret={}&v

={}&ll={},{}&radius={}&limit={}'.format( 

      CLIENT_ID,  

      CLIENT_SECRET,  

      VERSION,  

      lat,long, 

      1000,  

      100) 



    res = requests.get(url).json() 

    venue = res['response']['groups'][0]['items'] 

    nearby_venue = json_normalize(venue) 

    df=nearby_venue['venue.categories'] 

 

    g=[] 

    for i in range(0,df.size): 

      g.append(df[i][0]['icon']['prefix'].find('food')) 

    co=0 

    for i in g: 

      if i>1: 

        co+=1 

    resta.append(co) 

    oth.append(len(g)-co) 

 

nearby_venues['restaurant']=resta 

nearby_venues['others']=oth 

nearby_venues 

## Changing the Column Name 

lat=nearby_venues['venue.location.lat'] 



long=nearby_venues['venue.location.lng'] 

## Install the minisom library using pip 

 

MiniSom is a minimalistic and Numpy based implementation of the Self 

Organizing Maps (SOM). SOM is a type of Artificial Neural Network able to 

convert complex, nonlinear statistical relationships between high-dimensional data 

items into simple geometric relationships on a low-dimensional display. Minisom 

is designed to allow researchers to easily build on top of it and to give students the 

ability to quickly grasp its details. 

pip install minisom 

## Run K Means clustering on the dataset, with the optimal K value using Elbow 

Method 

 

A fundamental step for any unsupervised algorithm is to determine the optimal 

number of clusters into which the data may be clustered. The Elbow Method is one 

of the most popular methods to determine this optimal value of k. 

f=['venue.location.lat','venue.location.lng'] 

X = nearby_venues[f] 

max_k = 10 

## iterations 



distortions = []  

for i in range(1, max_k+1): 

    if len(X) >= i: 

       model = cluster.KMeans(n_clusters=i, init='k-means++', max_iter=300, 

n_init=10, random_state=0) 

       model.fit(X) 

       distortions.append(model.inertia_) 

## best k: the lowest derivative 

k = [i*100 for i in np.diff(distortions,2)].index(min([i*100 for i  

     in np.diff(distortions,2)])) 

## plot 

fig, ax = plt.subplots() 

ax.plot(range(1, len(distortions)+1), distortions) 

ax.axvline(k, ls='--', color="red", label="k = "+str(k)) 

ax.set(title='The Elbow Method', xlabel='Number of clusters',  

       ylabel="Distortion") 

ax.legend() 

ax.grid(True) 

plt.show() 

city = "Hyderabad" 



## get location 

locator = geopy.geocoders.Nominatim(user_agent="MyCoder") 

location = locator.geocode(city) 

print(location) 

## keep latitude and longitude only 

location = [location.latitude, location.longitude] 

print("[lat, long]:", location) 

nearby_venues.head() 

nearby_venues.columns 

##Data Cleaning Process for Extracting Necessary Columns in the Dataset 

n=nearby_venues.drop(['referralId', 'reasons.count', 'reasons.items', 'venue.id', 

       'venue.name',  

       'venue.location.labeledLatLngs', 'venue.location.distance', 

       'venue.location.cc',  

       'venue.categories', 'venue.photos.count', 'venue.photos.groups', 

       'venue.location.crossStreet', 'venue.location.address','venue.location.city', 

       'venue.location.state', 'venue.location.crossStreet', 

       'venue.location.neighborhood', 'venue.venuePage.id', 

       'venue.location.postalCode','venue.location.country'],axis=1) 

n.columns 



 

## Dropping Nan Values from Dataset 

n=n.dropna() 

n = n.rename(columns={'venue.location.lat': 'lat', 'venue.location.lng': 'long'}) 

n 

###Convert Every Row of Column ***'venue.location.formattedAddress'*** from 

List to String 

n['venue.location.formattedAddress'] 

spec_chars = ["[","]"] 

for char in spec_chars: 

  n['venue.location.formattedAddress'] = 

n['venue.location.formattedAddress'].astype(str).str.replace(char, ' ') 

#Plot the clustered locations on a map 

x, y = "lat", "long" 

color = "restaurant" 

size = "others" 

popup = "venue.location.formattedAddress" 

data = n.copy() 

 

## create color column 



lst_colors=["red","green","orange"] 

lst_elements = sorted(list(n[color].unique())) 

 

## create size column (scaled) 

scaler = preprocessing.MinMaxScaler(feature_range=(3,15)) 

data["size"] = scaler.fit_transform( 

               data[size].values.reshape(-1,1)).reshape(-1) 

 

## initialize the map with the starting location 

map_ = folium.Map(location=location, tiles="cartodbpositron", 

                  zoom_start=11) 

## add points 

data.apply(lambda row: folium.CircleMarker( 

           location=[row[x],row[y]],popup=row[popup], 

           radius=row["size"]).add_to(map_), axis=1) 

X = n[["lat","long"]] 

max_k = 10 

## iterations 

distortions = []  

for i in range(1, max_k+1): 



    if len(X) >= i: 

       model = cluster.KMeans(n_clusters=i, init='k-means++', max_iter=300, 

n_init=10, random_state=0) 

       model.fit(X) 

       distortions.append(model.inertia_) 

## best k: the lowest derivative 

k = [i*100 for i in np.diff(distortions,2)].index(min([i*100 for i in 

np.diff(distortions,2)])) 

## plot 

fig, ax = plt.subplots() 

ax.plot(range(1, len(distortions)+1), distortions) 

ax.axvline(k, ls='--', color="red", label="k = "+str(k)) 

ax.set(title='The Elbow Method', xlabel='Number of clusters',  

       ylabel="Distortion") 

ax.legend() 

ax.grid(True) 

plt.show() 

 

k = 6 

model = cluster.KMeans(n_clusters=k, init='k-means++') 



X = n[["lat","long"]] 

## clustering 

dtf_X = X.copy() 

dtf_X["cluster"] = model.fit_predict(X) 

## find real centroids 

closest, distances = scipy.cluster.vq.vq(model.cluster_centers_,  

                     dtf_X.drop("cluster", axis=1).values) 

dtf_X["centroids"] = 0 

for i in closest: 

    dtf_X["centroids"].iloc[i] = 1 

## add clustering info to the original dataset 

n[["cluster","centroids"]] = dtf_X[["cluster","centroids"]] 

n 

## plot 

fig, ax = plt.subplots() 

sns.scatterplot(x="lat", y="long", data=n,  

                palette=sns.color_palette("bright",k), 

                hue='cluster', size="centroids", size_order=[1,0], 

                legend="brief", ax=ax).set_title('Clustering (k='+str(k)+')') 

th_centroids = model.cluster_centers_ 



ax.scatter(th_centroids[:,0], th_centroids[:,1], s=50, c='black',  

           marker="x") 

model = cluster.AffinityPropagation() 

 

k = n["cluster"].nunique() 

sns.scatterplot(x="lat", y="long", data=n,  

                palette=sns.color_palette("bright",k), 

                hue='cluster', size="centroids", size_order=[1,0], 

                legend="brief").set_title('Clustering (k='+str(k)+')') 

x, y = "lat", "long" 

color = "cluster" 

size = "restaurant" 

popup = "venue.location.formattedAddress" 

marker = "centroids" 

data = n.copy() 

## create color column 

lst_elements = sorted(list(n[color].unique())) 

lst_colors = ['#%06X' % np.random.randint(0, 0xFFFFFF) for i in  

              range(len(lst_elements))] 

data["color"] = data[color].apply(lambda x:  



                lst_colors[lst_elements.index(x)]) 

## create size column (scaled) 

scaler = preprocessing.MinMaxScaler(feature_range=(3,15)) 

data["size"] = scaler.fit_transform( 

               data[size].values.reshape(-1,1)).reshape(-1) 

## initialize the map with the starting location 

map_ = folium.Map(location=location, tiles="cartodbpositron", 

                  zoom_start=11) 

## add points 

data.apply(lambda row: folium.CircleMarker( 

           location=[row[x],row[y]],  

           color=row["color"], fill=True,popup=row[popup], 

           radius=row["size"]).add_to(map_), axis=1) 

## add html legend 

legend_html = """<div style="position:fixed; bottom:10px; left:10px; border:2px 

solid black; z-index:9999; font-size:14px;">&nbsp;<b>"""+color+""":</b><br>""" 

for i in lst_elements: 

     legend_html = legend_html+"""&nbsp;<i class="fa fa-circle  

     fa-1x" style="color:"""+lst_colors[lst_elements.index(i)]+""""> 

     </i>&nbsp;"""+str(i)+"""<br>""" 



legend_html = legend_html+"""</div>""" 

map_.get_root().html.add_child(folium.Element(legend_html)) 

## add centroids marker 

lst_elements = sorted(list(n[marker].unique())) 

data[data[marker]==1].apply(lambda row:  

           folium.Marker(location=[row[x],row[y]],  

           draggable=False,  popup=row[popup] ,        

           icon=folium.Icon(color="black")).add_to(map_), axis=1) 
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