
Vasu Gupta :- Ph No. 8140046063
Shubham Bharadwaj :- Ph No. 8840794209

TABLE OF CONTENTS

1. INTRODUCTION - 5

 1.1. OVERALL DESCRIPTION - 6-7

 1.2. PURPOSE - 7

 1.3. MOTIVATIONS AND SCOPE - 8

2. LITERATURE SURVEY - 9

3. PROPOSED MODEL - 12

4 IMPLEMENTATION - 15

 4.1. SOFTWARE USED - 16

 4.1.1 PYTHON - 16

 4.1.2. OPEN CV - 24

 4.1.3. NUMPY - 26

 -

5. RESULTS AND DISCUSSIONS -

6. CONCLUSION AND FUTURE WORK -

7. REFERENCES -

4.2 STEPS & SOURCE CODE

39

45

47

31

 ABSTRACT

Gesture recognition, along with facial recognition, eye tracking and lip movement
recognition are components of what developers refer to as a perceptual user
interface (PUI). The goal of PUI is to enhance the efficiency and ease of use for the
underlying logical design of a stored program, a design discipline known as usability.

In personal computing, gestures are most often used for input commands.
Recognizing gestures as input allows computers to be more accessible for the
physically-impaired and makes interaction more natural in a gaming or 3-D virtual
reality environment. Hand and body gestures can be amplified by a controller that
contains gyroscopes to sense tilting, rotation and acceleration of movement or the
computing device can be outfitted with a camera so that software in the device can
recognize and interpret specific gestures. A wave of the hand, for instance, might
terminate the program.

In addition to the technical challenges of implementing gesture recognition, there are
also social challenges. Gestures must be simple, intuitive and universally
acceptable. The study of gestures and other nonverbal types of communication is
known as kinesics.

Gesture Recognition cases the level of handling a broad range of devices such as
personal navigation devices, computers, laptops and mobile handsets. A growing
trend towards touchless gesture recognition in niche applications including gaming is
likely to amplify the growth of the touchless sensing market over the projected
period.

Gesture recognition was implemented extensively in gaming consoles, with the
segment accounting for over 50% share in 2016. Increasing sales of gaming
consoles such as Xbox and PlayStation is expected to bolster the growth of the
market over the projected period.

Smartphones are expected to witness the highest growth over the projected period
on account of increasing implementation of the technology for safety & security

purposes. Moreover, the high adoption of digitalization coupled with ease of use of
mobile phones is expected to fuel the growth of the market over the forecast period.

Smart televisions are expected to witness above average growth on account of high
disposable income of consumers and an increasing trend towards purchasing
televisions with the latest technology. The segment is expected to grow at a CAGR
of over 28% from 2017 to 2024.

Applications of gesture recognition in the hospitality sector, which accounted for a
comparatively modest 8.1% revenue share of the market in 2015, are expected to
witness expansion at the highest, 17.0% CAGR, across other application areas over
the said period. The flourishing travel industry and the rising numbers of high-end
hotels across the globe will favor the adoption of systems such as touchless
biometric recognition, hand dryers, and automated faucets and flushes.

ACKNOWLEDGEMENT

In the accomplishment of this project successfully, many people have best owned
upon us their heart pledged support and well wishes. We as a group would like to
utilize this time to thank all the people who have been concerned with this project.
Primarily we would like to thank our University to present us with the opportunity to
work on such a wonderful project.

Next, we would like to thank our very supporting Dean of our concerned department
who was extremely supportive in helping us with choosing our projects on time and
letting us know about due deadlines well in advance.

 Further we would like to thank all our teachers throughout our academic years who
taught us extremely well and made us able to understand and execute the needs of
the concerned project.

We further thank our mentor Dr. Kavita Ma'am for helping us choose the project and
guiding us constantly on how to execute it. We thank our evaluators who constantly
monitored and evaluated our projects and helped us identify the shortcomings and
made us work on it.

Lastly, we would like to thank each other (team members) for staying and working
together on the project and helping each other out in every way possible.

CHAPTER 1

INTRODUCTION

Computer is used by many people either at their work or in their spare-time. Special
input and output devices have been designed over the years with the purpose of
easing the communication between computers and humans, the two most known are
the keyboard and mouse. Every new device can be seen as an attempt to make the
computer more intelligent and making humans able to perform more complicated
communication with the computer. This has been possible due to the result oriented
efforts made by computer professionals for creating successful human computer
interfaces. As the complexities of human needs have turned into many folds and
continues to grow so, the need for Complex programming ability and intuitiveness
are critical attributes of computer programmers to survive in a competitive
environment. The computer programmers have been incredibly successful in easing
the communication between computers and human. With the emergence of every
new product in the market; it attempts to ease the complexity of jobs performed. For
instance, it has helped in facilitating tele operating, robotic use, better human control
over complex work systems like cars, planes and monitoring systems. Earlier,
Computer programmers were avoiding such kind of complex programs as the focus
was more on speed than other modifiable features. However, a shift towards a user
friendly environment has driven them to revisit the focus area. The idea is to make
computers understand human language and develop a user friendly human
computer interfaces (HCI). Making a computer understand speech, facial
expressions and human gestures are some steps towards it. Gestures are the
non-verbally exchanged information. A person can perform innumerable gestures at
a time. Since human gestures are perceived through vision, it is a subject of great
interest for computer vision researchers. The project aims to determine human
gestures by creating an HCI. Coding of these gestures into machine language
demands a complex programming algorithm. An overview of gesture recognition
system is given to gain knowledge.

1.1. OVERALL DESCRIPTION

A hand gesture recognition system provide a natural, innovative and modern way of
non verbal communication. It has a wide area of application in human computer
interaction and sign language. The intention of this project is to discuss a novel
approach of hand gesture recognition based on detection of some shape based
features. The setup consist of a single camera to capture the gesture formed by the
user and take this hand image as an input to the proposed algorithm. The overall
algorithm divided into four main steps, which includes segmentation, orientation
detection, feature extraction and classification. It is independent of user
characteristics. It does not require any kind of training of sample data It takes a less
computation time as compare to other approaches.

Gesture recognition has been a very interesting problem in Computer Vision
community for a long time. This is particularly due to the fact that segmentation of
foreground object from a cluttered background is a challenging problem in real-time.
The most obvious reason is because of the semantic gap involved when a human
looks at an image and a computer looking at the same image. Humans can easily
figure out what's in an image but for a computer, images are just 3-dimensional
matrices. It is because of this, computer vision problems remains a challenge.

As per the context of the project, gesture is defined as an expressive movement of
body parts which has a particular message, to be communicated precisely between
a sender and a receiver. A gesture is scientifically categorized into two distinctive
categories: dynamic and static. A dynamic gesture is intended to change over a
period of time whereas a static gesture is observed at the spurt of time. A waving
hand means goodbye is an example of dynamic gesture and the stop sign is an
example of static gesture. To understand a full message, it is necessary to interpret
all the static and dynamic gestures over a period of time. This complex process is
called gesture recognition. Gesture recognition is the process of recognizing and
interpreting a stream continuous sequential gesture from the given set of input data.

1.2. PURPOSE

We are going to recognize hand gestures from a video sequence. To recognize
these gestures from a live video sequence, we first need to take out the hand region
alone removing all the unwanted portions in the video sequence. After segmenting
the hand region, we then count the fingers shown in the video sequence to instruct a
robot based on the finger count. Thus, the entire problem could be solved using 2
simple steps -

1. Find and segment the hand region from the video sequence.

2. Count the number of fingers from the segmented hand region in the video
sequence.

1.3. MOTIVATION AND SCOPE

This project is related to two significant fields, computer vision and machine learning.
Both of these field are of immense importance in contemporary times due to their
widespread use in various disciplines. Computer vision can be defined as a field that
incorporates methods for acquiring, processing, understanding and using images
and in general any high dimensional real-world data in order to produce useful
information. Computer vision has been extensively used in various fields like Human
computer Interaction, Medicine, Physics, Image reconstruction etc. over the past
years and lately it has gained much more traction as it has been used in mainstream
devices like Xbox, PS4, smart phones, Tablets, medical devices etc. Machine
Learning on the other hand is a subfield of Computer Science that evolved from
studying pattern recognition and computational learning in Artificial Intelligence.
Machine learning is closely related to computational statistics, prediction making and
mathematical optimization has been widely used for applications like spam filtering,
Computer Vision, OCR, search predictions and other prediction-based applications.

This project focuses on gesture recognition and it uses computer vision and machine
learning techniques to achieve this goal. Gesture recognition is important in the field
of HCI and HCI plays an important role in applications like Gaming, User Interaction
with software systems and accessibility support. We can use various body parts like
hand, fingers, head and other objects to perform gestures, but this project focuses
on hand gestures.

CHAPTER 2

LITERATURE SURVEY

Research has been limited to small scale systems able of recognizing a minimal
subset of a full sign language. Christopher Lee and Yangsheng Xu developed a
glove-based gesture recognition system that was able to recognize 14 of the letters
from the hand alphabet, learn new gestures and able to update the model of each
gesture in the system in online mode, with a rate of 10Hz, Over the years advanced
glove devices have been designed such as the Sayre Glove, Dexterous Hand
Master and PowerGlove. The most successful commercially available glove is by far
the VPL DataGlove as shown in figure 1.2 It was developed by Zimmerman during
the 1970's. It is based upon patented optical fiber sensors along the back of the
fingers. Star-ner and Pentland developed a glove-environment system capable of
recognizing 40 signs from the American Sign Language (ASL) with a rate of 5Hz.
Hyeon Kyu Lee and Jin H. Kim presented work on real-time hand-gesture
recognition using HMM (Hidden Markov Model). Kjeldsen and Kendersi devised a
technique for doing skin-tone segmentation in HSV space, based on the premise that
skin tone in images occupies a connected volume in HSV space. They further
developed a system which used a backpropagation neural network to recognize
gestures from the segmented hand images. Etsuko Ueda and Yoshio Matsumoto
presented a novel technique a hand-pose estimation that can be used in this
method, the hand regions are extracted from multiple images obtained by a
multiviewpoint camera system, and constructing the "voxel Model." Hand pose is
estimated. Chan Wah Ng, Surendra Ranganath presented a hand gesture
recognition system, they used image furrier descriptor as their prime feature and
classified with the help of RBF network. Their system's overall performance was 90.9
%. Claudia Nõlker and Helge Ritter presented a hand gesture recognition modal
based on recognition of finger tips, in their approach they find full identification of all
finger joint angles and based on that a 3D modal of hand is prepared and using
neural network.

Model based Segmentation and recognition of dynamic gestures in continuos video
stream:

In this paper the authors mainly concentrated on the segmentation and recognition of
continuos gestures which effect from the spatiotemporal variations. The authors
used two types of gestures one is two arm movements for contour extraction, and
another one includes a single hand movement hands contour used as the feature
vector. They proposed a Multi scale Gesture Model. This model proposes 3
approaches which mainly differs in end point Localization. First proposed approach
is used to find the end points with Multi scale search and Motion detection strategy.
Second proposed approach is used to locate the end points of the fingers roughly
with Dynamic Time wrapping. Third approach is based on Dynamic programming.
Using these three approaches the recognition of the hand ranges from the 88% to
96%.

Improved Adaptive Gaussian Mixture Model for Background Subtraction:

Background subtraction is a common computer vision task. We analyze the usual
pixel-level approach. We develop an efficient adaptive algorithm using Gaussian
mixture probability density. Recursive equations are used to constantly update the
parameters and but also to simultaneously select the appropriate number of
components for each pixel.

CHAPTER 3

PROPOSED MODEL

Hand Movements are recorded using a web cam, the web cam captures the images
and sends them as input image for the image pre-processing.

First of all, we will create a binary mask of the hand in order to compute the hand
contour. Furthermore, we will convert our frames, which are in BGR format by default
as you read them from a file or capture in OpenCV, to HLS (Hue, Lightness,
Saturation) color space. The Hue channel encodes the actual color information. By
this we only have to figure out the proper Hue value range of the skin and then
adjust the values for Saturation and Lightness. Next, we will tell OpenCV to find all
contours in the mask. We will return the largest contour in case segmentation did not
work out as well and still contains noise.Now that we have detected the contour, we
start to discuss the actual algorithm for:detecting the fingertips and the number of
fingers shown.

To achieve this, we will compute the convex hull as well as the convexity defect
regions of the hand contour. Lastly, we count the hull points to find out the number of
fingers being pointed at the camera to get our final result.

Background Subtraction

First, we need an efficient method to separate foreground from background. To do
this, we use the concept of running averages. We make our system to look over a
particular scene for 30 frames. During this period, we compute the running average
over the current frame and the previous frames

After figuring out the background, we bring in our hand and make the system
understand that our hand is a new entry into the background, which means it
becomes the foreground object

After figuring out the background model using running averages, we use the current
frame which holds the foreground object (hand in our case) in addition to the
background. We calculate the absolute difference between the background model
(updated over time) and the current frame (which has our hand) to obtain a
difference image that holds the newly added foreground object (which is our hand).
This is what Background Subtraction is all about.

 Fig 3.1. Background Subtraction

CHAPTER 4

 IMPLEMENTATION

4.1. SOFTWARE USED

The project is build using Python, OpenCV and Numpy as the basic components.
The architecture of the project consists of the following components:

4.1.1. PYTHON

Python is a high-level, interpreted, interactive and object-oriented scripting language.
Python is designed to be highly readable. It uses English keywords frequently where
as other languages use punctuation, and it has fewer syntactical constructions than
other languages.

· Python is Interpreted-Python is processed at runtime by the interpreter. You
do not need to compile your program before executing it. This is similar to
PERL and PHP.

· Python is Interactive - You can actually sit at a Python prompt and interact
with the interpreter directly to write your programs.

· Python is Object-Oriented - Python supports Object-Oriented style or
technique of programming that encapsulates code within objects.

· Python is a Beginner's Language - Python is a great language for the
beginner-level programmers and supports the development of a wide range of
applications from simple text processing to WWW browsers to games.

4.1.1.1. Features

Python comes with the following features -

· Easy-to-learn - Python has few keywords, simple structure, and a clearly
defined syntax. This allows the student to pick up the language quickly.

· Easy-to-read-Python code is more clearly defined and visible to the eyes.

· Easy-to-maintain - Python's source code is fairly easy-to-maintain.

· A broad standard library Python's bulk of the library is very portable and cross
platform compatible on UNIX, Windows, and Macintosh.

· Interactive Mode-Python has support for an interactive mode which allows
interactive testing and debugging of snippets of code.

· Portable - Python can run on a wide variety of hardware platforms and has the
same interface on all platforms.

· Extendable You can add low-level modules to the Python interpreter. These
modules enable programmers to add to or customize their tools to be more
efficient.

· Databases - Python provides interfaces to all major commercial databases.

· GUI Programming - Python supports GUI applications that can be created and
ported to many system calls, libraries and windows systems, such as
Windows MFC, Macintosh, and the X Window system of Unix.

· Scalable - Python provides a better structure and support for large programs
than shell scripting.

4.1.1.2. Python Installation

STEP 1: Visit the link https://www.python.org/downloads/ to download the
latest release of Python. In this process, we will install Python 3.9.0 on our
Windows operating system.

 STEP 2: Then click on windows x84-64 web based installer.

STEP 3: Double-click the executable file which is downloaded; the following window
will open Select Customize installation and proceed.

STEP 4: The following window shows all the optional features. All the feat installed
and are checked by default; we need to click next to continue.

STEP 5: The following window shows a list of advanced options. Check all the
options which you want to install and click next. Here, We must noticed that the first
checkbox (install for all user) must be checked.

STEP 6: Now, we are ready to install python-3.9.0. Let's install it

STEP 7: Once python is installed we will get this window

4.1.2. PIP

Pip (package manager) is a package management system used to install and
manage software packages written in Python. Many packages can be found in the
default source for packages and their dependencies -Python Package Index (PyPI).

Python 2.7.9 and later (on the python2 series), and Python 3.4 and later include pip
(pip3 for Python 3) by default. Pip is a recursive acronym for "Pip Installs Packages"

4.1.2.1. Command-line interface

Most distributions of Python come with pip preinstalled. If pip is missing, it can be
installed through the system package manager or by invoking URL, a client-side data
transfer tool: curl https://bootstrap-pypa.io/get-pip.py | python

One major advantage of pip is the case of its command-line interface, which makes
installing Python software packages as easy as issuing a command:

Most importantly pip has a feature to manage full lists of packages and
corresponding version numbers, possible through a "requirements" file. This permits
the efficient re-creation of an entire group of packages in a separate environment
(e.g. another computer) or virtual environment. This can be achieved with a properly
formatted requirements.txt file and the following command

pip install -r requirements.txt

Install some package for a specific version python, where $(version) is replaced for
2, 3,3.4. etc.:

pip$ (version) install some-package-name

4.1.2.2. Installation of Pip

STEP 1: For installation of pip we need to type pip in command prompt and get the
following result which show pip is installed.

STEP 2: Next we need to upgrade the pip. So, to update pip we type the the
following command: pip3 install-upgrade pip.

4.1.2. OpenCV

OpenCV (Open Source Computer Vision) is a library of programming functions
mainly aimed. at real time computer vision. Originally developed by Intel, it was later
supported by Willow Garage then Itseez (which was later acquired by Intel). The
library is cross platform and free for use under the open-source BSD license.

OpenCV supports the deep learning frameworks TensorFlow, Torch/PyTorch and
Caffe.

OpenCV (Open Source Computer Vision Library) is released under a BSD license
and hence it's free for both academic and commercial use. It has C++, Python and
Java interfaces and supports Windows, Linux, Mac OS, iOS and Android. OpenCV
was designed for computational efficiency and with a strong focus on real-time
applications. Written in optimized C/C++, the library can take advantage of multi-core
processing. Enabled with OpenCL, it can take advantage of the hardware
acceleration of the underlying heterogeneous compute platform.

Adopted all around the world, OpenCV has more than 47 thousand people of user
community and estimated number of downloads exceeding 14 million. Usage ranges
from interactive art, to mines inspection, stitching maps on the web or through
advanced robotics.

General description

· Open source computer vision library in C/C++.

· Optimized and intended for real-time applications.

· OS/hardware/window-manager independent. Generic image/video loading,
saving, and acquisition.

· Both low- and high-level API.

· Provides interface to Intel's Integrated Performance Primitives (IPP) with
processor specific optimization (Intel processors).

Features

· Image data manipulation (allocation, release, copying, setting, conversion).

· Image and video I/O (file and camera based input, image/video file output).

· Matrix and vector manipulation and linear algebra routines (products,
solvers,eigenvalues, SVD).

· Various dynamic data structures (lists, queues, sets, trees, graphs).

· Basic image processing (filtering, edge detection, corner detection, sampling
and interpolation, color conversion, morphological operations, histograms,
image pyramids). Structural analysis (connected components, contour
processing, distance transform, various moments, template matching, Hough
transform, polygonal approximation, line fitting, ellipse fitting, Delaunay
triangulation).

· Camera calibration (finding and tracking calibration patterns,
calibration,fundamental matrix estimation, homography estimation, stereo
correspondence).

· Motion analysis (optical flow, motion segmentation, tracking).

· Object recognition (eigen-methods, HMM).

· Basic GUI (display image/video, keyboard and mouse handling, scroll-bars).

· Image labeling (line, conic, polygon, text drawing)

4.1.3. NumPy

Numpy is a library for the Python programming language, adding support for large,
multi-dimensional arrays and matrices, along with a large collection of level
mathematical functions to operate on these arrays. The ancestor of NumPy,
Numeric, was originally created by Jim Huguninwith contributions from several other
developers. In 2005, Travis Oliphant created NumPy by incorporating features of the
competing Numarray into Numeric, with extensive modifications. NumPy is
open-source software and has many contributors.

 NumPy is the fundamental package for scientific computing with Python. It contains
among other things:

· a powerful N-dimensional array object

· sophisticated (broadcasting) functions

· tools for integrating C/C++ and Fortran code

· useful linear algebra, Fourier transform, and random number capabilities

Besides its obvious scientific uses, NumPy can also be used as an efficient
multi-dimensional container of generic data. Arbitrary data-types can be defined.
This allows NumPy to seamlessly and speedily integrate with a wide variety of
databases.

NumPy is licensed under the BSD license, enabling reuse with few restrictions.

STEPS TO DOWNLOAD INSTALL
 AND RUN THE PROJECT

Step 1

Go to this link https://www.jetbrains.com/pycharm/download/#section=windows
And Download the community version of PyCharm

Step 2
Go to File and Click of settings

https://www.jetbrains.com/pycharm/download/#section=windows
https://www.jetbrains.com/pycharm/download/#section=windows
https://www.jetbrains.com/pycharm/download/#section=windows

Step 3
Go to python interpreture

Step 4
Go to Plus(+) icon

Step 5
Type OpenCv-python and select OpenCv from the drop down menu and click on install package

Step 6
Type NumPy and select NumPy from the drop down menu and click on install package

Step 7
Type Imutils and select Imutils from the drop down menu and click on install package

Step 8
Now Type the Source Code and then Click on run , you will get the output

4.2 SOURCE CODE

import traceback
import cv2
import numpy as np
import math

cap = cv2.VideoCapture(0)

while (1):

 try: # an error comes if it does not find anything in window as it cannot find contour of max area
 # therefore this try error statement

 ret, frame = cap.read()
 frame = cv2.flip(frame, 1)
 kernel = np.ones((3, 3), np.uint8)

 # define region of interest
 roi = frame[100:300, 100:300]

 cv2.rectangle(frame, (100, 100), (300, 300), (0, 255, 0), 0)
 hsv = cv2.cvtColor(roi, cv2.COLOR_BGR2HSV)

 # define range of skin color in HSV
 lower_skin = np.array([0, 20, 70], dtype=np.uint8)
 upper_skin = np.array([20, 255, 255], dtype=np.uint8)

 # extract skin colur imagw
 mask = cv2.inRange(hsv, lower_skin, upper_skin)

 # extrapolate the hand to fill dark spots within
 mask = cv2.dilate(mask, kernel, iterations=4)

 # blur the image
 mask = cv2.GaussianBlur(mask, (5, 5), 100)

 # find contours
 contours, hierarchy = cv2.findContours(mask, cv2.RETR_TREE,
cv2.CHAIN_APPROX_SIMPLE)
 print(contours)
 print(hierarchy)
 # find contour of max area(hand)
 cnt = max(contours, key=lambda x: cv2.contourArea(x))

 # approx the contour a little
 epsilon = 0.0005 * cv2.arcLength(cnt, True)

 approx = cv2.approxPolyDP(cnt, epsilon, True)

 # make convex hull around hand
 hull = cv2.convexHull(cnt)

 # define area of hull and area of hand
 areahull = cv2.contourArea(hull)
 areacnt = cv2.contourArea(cnt)

 # find the percentage of area not covered by hand in convex hull
 arearatio = ((areahull - areacnt) / areacnt) * 100

 # find the defects in convex hull with respect to hand
 hull = cv2.convexHull(approx, returnPoints=False)
 defects = cv2.convexityDefects(approx, hull)

 # l = no. of defects
 l = 0

 # code for finding no. of defects due to fingers
 for i in range(defects.shape[0]):
 s, e, f, d = defects[i, 0]
 start = tuple(approx[s][0])
 end = tuple(approx[e][0])
 far = tuple(approx[f][0])
 pt = (100, 180)

 # find length of all sides of triangle
 a = math.sqrt((end[0] - start[0]) ** 2 + (end[1] - start[1]) ** 2)
 b = math.sqrt((far[0] - start[0]) ** 2 + (far[1] - start[1]) ** 2)
 c = math.sqrt((end[0] - far[0]) ** 2 + (end[1] - far[1]) ** 2)
 s = (a + b + c) / 2
 ar = math.sqrt(s * (s - a) * (s - b) * (s - c))

 # distance between point and convex hull
 d = (2 * ar) / a

 # apply cosine rule here
 angle = math.acos((b ** 2 + c ** 2 - a ** 2) / (2 * b * c)) * 57

 # ignore angles > 90 and ignore points very close to convex hull(they generally come due to
noise)
 if angle <= 90 and d > 30:
 l += 1
 cv2.circle(roi, far, 3, [255, 0, 0], -1)

 # draw lines around hand
 cv2.line(roi, start, end, [0, 255, 0], 2)

 l += 1

 # print corresponding gestures which are in their ranges
 font = cv2.FONT_HERSHEY_SIMPLEX
 if l == 1:
 if areacnt < 2000:

 cv2.putText(frame, 'Put hand in the box', (0, 50), font, 2, (0, 0, 255), 3, cv2.LINE_AA)
 else:
 if arearatio < 12:
 cv2.putText(frame, '0', (0, 50), font, 2, (0, 0, 255), 3, cv2.LINE_AA)
 elif arearatio < 17.5:
 cv2.putText(frame, 'Best of luck', (0, 50), font, 2, (0, 0, 255), 3, cv2.LINE_AA)

 else:
 cv2.putText(frame, '1', (0, 50), font, 2, (0, 0, 255), 3, cv2.LINE_AA)

 elif l == 2:
 cv2.putText(frame, '2', (0, 50), font, 2, (0, 0, 255), 3, cv2.LINE_AA)

 elif l == 3:

 if arearatio < 27:
 cv2.putText(frame, '3', (0, 50), font, 2, (0, 0, 255), 3, cv2.LINE_AA)
 else:
 cv2.putText(frame, 'ok', (0, 50), font, 2, (0, 0, 255), 3, cv2.LINE_AA)

 elif l == 4:
 cv2.putText(frame, '4', (0, 50), font, 2, (0, 0, 255), 3, cv2.LINE_AA)

 elif l == 5:
 cv2.putText(frame, '5', (0, 50), font, 2, (0, 0, 255), 3, cv2.LINE_AA)

 elif l == 6:
 cv2.putText(frame, 'reposition', (0, 50), font, 2, (0, 0, 255), 3, cv2.LINE_AA)

 else:
 cv2.putText(frame, 'reposition', (10, 50), font, 2, (0, 0, 255), 3, cv2.LINE_AA)

 # show the windows
 cv2.imshow('mask', mask)
 cv2.imshow('frame', frame)
 except Exception:
 traceback.print_exc()
 pass
 # break

 k = cv2.waitKey(5) & 0xFF
 if k == 27:
 break

cv2.destroyAllWindows()
cap.release()

CHAPTER 5

 RESULT AND DISCUSSION

· By Gaussian blurring, we create smooth transition from one color to another
and reduce the edge content. Then we use thresholding to create binary
images from grayscale images.

· We now need to find out the hand contour from the binary image we created
before and detect fingers (or in other words, recognize gestures)

· Below figure shows the number of finger in the region

CHAPTER 6

 CONCLUSION AND FUTURE WORKS

CONCLUSION AND FUTURE WORKS
In recent years a lot of research has been conducted in gesture recognition. The aim
of this project was to develop an offline Gesture recognition system. We have shown
in this project that offline gesture recognition system can be designed using SVM. It
is determined that contour is very important feature and can be used for
discrimination between two gesture. The processing steps to classify a gesture
included gesture acquisition, segmentation, morphological filtering, contour
representation and classification using different technique.

In this project firstly the original image is been processed by contours for finding the
number of fingers using background deletion and taking only the feasible region of
our interest, then the feasible part is made white and rest part is all black using the
binary masking technique. After this segmentation is done and hence the number of
fingers is counted as output.

Future work of the project is that it can be used in gaming consoles, it can be used
for controlling the applications of laptop desktop and other devices. It can also be
used in smart Tv for controlling the volume and other functions using the hand
gestures. The other field where this can be used is in controlling the robots for
working according to our commands.

 REFERENCES

1. https://gogul09.github.io/software/hand-gesture-recognition -pl

2. https://gogul09.github.io/software/hand-gesture-recognition -p2

3. https://medium.com/@muchler.v/simple-hand-gesture-recognition-using-openev
and-javascript-eb3d6ced28a0

4. http://www.cs.cornell.edu/courses/cs4670/2010fa/projects/final/resul
ts/group_of_jah477_rhs229/Writeup.pdf

5.https://www.youtube.com/watchv=7JhjINPwfYQ&list-PLEIEAq2VkUULYYgi13YHU
WmRePqiu8Ddy

6.https://pdfs.semanticscholar.org/fe14/7092dbfb0c5ddb6a956cd98c13fcacc56alf.pd
f

7. https://www.academia.edu/17775220/Hand Gesture_Recognition A_Literature
Review

8. https://web.stanford.edu/class/cs231a/prev_projects 2016/CS231A Project
Final.pdf
9.https://pdfs.semanticscholar.org/4651/b6a9fc9d4dba7dac347ee76274ab6c05c8e6.
pdf

10.http://www.ijfresce.org/download/browse/Volume_4/June_18Volume_4_Issue_6/1
530176523 28-06-2018 .pdf

11. https://github.com/rpmcginty/hand-gesture-recognition project/blob/master/Hand
Gesture Recognition Project Report.pdf

12. https://www.diva-portal.org/smash/get/diva2:519237/

FULLTEXTO1.pdf

13.
https://pdfs.semanticscholar.org/01fa/619ef31e45c5838d06651539128ef254b030
.pdf

14. http://www.massey.ac.nz/- albarcza ResearchFiles/Maria_Abastillas
Project_2011.pdf

15. Amiraj Dhawan, Vipul Honraolimplementation of hand detection based
techniques for human computer interactionl, in International Journal of Computer
Applications (0975-8887)

16. L. R. Rabiner, A tutorial on hidden Markov models and selected applications in
speech recognition, Proceedings of The IEEE 77 (2), 1989, pp.257-285.

17. OpenCV usage documentation http://docs.opencv .org

https://gogul09.github.io/software/hand-gesture-recognition
https://gogul09.github.io/software/hand-gesture-recognition
https://gogul09.github.io/software/hand-gesture-recognition
https://gogul09.github.io/software/hand-gesture-recognition
https://gogul09.github.io/software/hand-gesture-recognition
https://gogul09.github.io/software/hand-gesture-recognition
https://medium.com/@muchler.v/simple-hand-gesture-recognition-using-openev
https://medium.com/@muchler.v/simple-hand-gesture-recognition-using-openev
https://medium.com/@muchler.v/simple-hand-gesture-recognition-using-openev
https://github.com/rpmcginty/hand-gesture-recognition
https://github.com/rpmcginty/hand-gesture-recognition
https://www.diva-portal.org/smash/get/diva2:519237/
https://www.diva-portal.org/smash/get/diva2:519237/
https://www.diva-portal.org/smash/get/diva2:519237/
https://pdfs.semanticscholar.org/01fa/619ef31e45c5838d06651539128ef254b030
https://pdfs.semanticscholar.org/01fa/619ef31e45c5838d06651539128ef254b030
https://pdfs.semanticscholar.org/01fa/619ef31e45c5838d06651539128ef254b030
https://pdfs.semanticscholar.org/01fa/619ef31e45c5838d06651539128ef254b030
http://www.massey.ac.nz/-
http://www.massey.ac.nz/-
http://www.massey.ac.nz/-
http://www.massey.ac.nz/-
http://docs.opencv
http://docs.opencv

18. http://inside.mines.edu/~whoff/courses/EENG512/projects/2015/Rodriguez .pdf
19. Hand gesture recognition system by Prof. Praveen D. Hasalkar1, Rohit S.
Chougule2,Vrushabh B. Madake3, Vishal S. Magdum4,2015

20. Vision Based Hand Gesture Recognition for Human Computer Interaction by
Radhika Bhatt, Nikita Fernandes, Archana Dhage, 2013

21. Implentation of Hand Gesture Recognition Technique for HCI Using OpenCV

Nayana P, Sanjeev Kubakaddi 2014

22. REAL TIME HAND GESTURE RECOGNITIONSYSTEM FOR DYNAMIC

APPLICATIONS. Siddharth S. Rautarayl, Anupam Agrawal2

23. Gesture recognition -A Review by miss kawade Sonam PI, Prof VS. Ubale.

24. Yikai Fang. "A real time Hand Gesture method

25. M.Correra, "Real time Hand gesture method for Human Robot Interaction.

26. V.L. Pavlovic, R. Sharma, T.S. Huang, Visual interpretation of hand gestures for
human-computer interaction, A Review, IEEE Transactions on Patter Analysis and
Machine Intelligence 19(7): 677-695, 1997.

27. M.Young, The Technical Writer'sHandbook MillValley,CA:University Science,
1989.

28. Stammer, T. and Pentland. Real-Time American Sign Language Recognition
from Video Using Hidden Markov Models, TR-375,MITMedialab, 1995.

http://inside.mines.edu/~whoff/courses/EENG512/projects/2015/Rodriguez
http://inside.mines.edu/~whoff/courses/EENG512/projects/2015/Rodriguez
http://inside.mines.edu/~whoff/courses/EENG512/projects/2015/Rodriguez

