
A Thesis/Project/Dissertation Report

on

SECURING AND SIMPLIFYING FILE SHARING WITH BLOCKCHAIN

Submitted in partial fulfillment of the

 requirement for the award of the degree of

BTech Computer Science Engineering

Under The Supervision of

Dr. Shobha Tyagi: Associate Professor

Submitted By

Danish Jamal

18SCSE1180045, 18021180046

Ayush Tiwari

18SCSE1140036, 18021140082

SCHOOL OF COMPUTING SCIENCE AND ENGINEERING DEPARTMENT OF

COMPUTER SCIENCE AND ENGINEERING GALGOTIAS UNIVERSITY,

GREATER NOIDA

INDIA December, 2021

Table of Contents

Acronyms ... 3

Abstract .. 4

Introduction ... 5

1.2 Formulation of problem .. 6

1.2.1 Tools and technologies used... 6

Literature Survey... 8

List Of Tables .. 12

Main Table Design... 12

Local Secondary Index: .. 12

Global Secondary Index: .. 12

Use Case Diagram ... 13

Class Diagram .. 14

BPMN Diagram for file upload .. 15

BPMN Diagram for user authentication ... 16

Modules Description ... 17

1. AWS Lambda .. 18

2. AWS API Gateway ... 24

3. Database Design and Configuration ... 27

4. Client Application ... 31
Android Client .. 31
Web Client .. 36

Screenshot .. 39

Results and Conclusion .. 43

Reference ... 44

Acronyms

B.Tech. Bachelor of Technology

M.Tech. Master of Technology

BCA Bachelor of Computer Applications

MCA Master of Computer Applications

B.Sc. (CS) Bachelor of Science in Computer Science

M.Sc. (CS) Master of Science in Computer Science

SCSE School of Computing Science and Engineering

Abstract

In today’s world, where data is more valuable than anything, for an estimate 2.5

quintillion bytes of data is produced every day (that’s 2.5 followed by a staggering

18 zeros!) hence comes a responsibility of managing and securing it. Along with

the huge quantity of data comes a need of sharing it, and spreading information

securely over the internet. In most of the today’s technology all the sharing

services uses the on-premise database for storing users’ data and provide different

strategies for securing and avoiding file tampering which to some extent provide

user security but still has the big loop hole of single point of failure and doesn’t

guarantee 100% fault tolerance against file data.

We propose the idea of making the file sharing decentralized, where we don’t

need to focus on different strategies over securing user files and data because that

can be handled by blockchain. Our system will be responsible for user

identification and providing different filter and sharing options where user can

have full control over managing the files and related sharing options. With this

solution we can focus more over business logic and providing better user

experience without the need of designing the complex security mechanism.

With all those proposed solution comes a great responsibility of implementation

and choosing favorable tech stack to support our idea and deliver great user

experience without compromising the system performance. In the proposed

system, all files are decoupled from the blockchain and stored in the Inter

Planetary File System (IPFS) in a distributed manner. To further reduce storage

requirements on the user side, the proposed system contains a cloud storage for

managing and controlling users’ data.

As a result of the proposed system, user can experience the power of easiness

when sharing files over internet without compromising the security. Proposed

system will provide and android app and a website for clients to interact with our

system.

The proposed system addresses the need of securing files using decentralized

environment along with the easiness of file sharing and full control over file and

sharing management.

Introduction

In this modern era where technology has taken over most of our day to day

schedule, privacy and integrity remains a major concern. There is a race going

on between tech giants for the most important currency ie. data. It won’t be too

difficult to conclude that none of our data remains private and also we don’t

actually own our data. We use drives and drop-boxes to store our confidential

information on cloud, so that it can be accessible from anywhere. These data get

stored on centralised servers owned by tech giants like google, Microsoft , Apple

etc. Have you ever considered what would happen if these servers goes down?

Or if google denies the user to use its servers? Obviously there are legal actions

that could be taken but wouldn’t it be more better if all our data gets stored in

many different locations rather than at a single place.

A decentralised file sharing system could serve as an initial step to share data

using decentralised network. Decentralisation implies whatever data that’s

present on the network is held by all the participants of the network. There is no

central authority controlling the system. With the introduction of blockchain

technology, decentralisation is revolutionising the web 2.0 to web 3.0. The

blockchain has some inherent benefits such as decentralisation, immutability and

audibility. These properties allows the construction of decentralised file sharing

system. This system could also have the possibility of including liquidity and

tokenising the files. Cloud storage and distributed storage are considered as

appropriate storage options to store and share the files. A good alternative to

central cloud servers is IPFS(Inter Planetary File System) and we’ll be using IPFS

for our file sharing platform. IPFS is content addressable storage, with this we

can forget about 404 error. In brief, IPFS returns a hash value for every

information we upload on it. All the data is stored in decentralised way on IPFS

and using the hash value, we can access our data.

The project focuses on utilising IPFS to create a platform where user can quickly

upload and share a file, the file could be media, document or even a simple text.

On uploading a file, the user receives a short url which he can share with people

whom he want share his file. When the receiver opens the url, the corresponding

file will be automatically downloaded to his system. The best part of this system

is, there is an abstraction layer between IPFS and the user. The user can never

directly access the hash provided by IPFS. The platform will also monitor links

created by user, size of file uploaded and general queries to improve UX. It

removes the complexity of google drives and all the data that we have to provide

to google in-order to use their service. In our system, user just uploads the file,

gets a link and he is good to go.

1.2 Formulation of problem

As technology has progressed, the internet has become a vast and complex web

of data and files that communicate using the HTTP. Due to increased traffic, the

sheer volume of information transmitted has become enormous, HTTP has started

to crack under this strain. For example, each time we load a web page, HTTP is

used to retrieve content from centralized servers. If the content involves

transmitting large files, it may consume a lot of bandwidth. If a server is taken

down, a website might still exist but with missing pieces, such as images or

graphic files.

Furthermore, due to a reliance on centralized servers, HTTP makes it easy to

introduce censorship.

Torrenting is the best-known solution by the general public. Torrenting has been

used as a way of distributing much larger files, such as audio and video, over the

internet to overcome the challenges of using HTTP.

However, the earlier versions of file sharing protocols also have some limitations.

Nodes are generally run by volunteers. They can choose to stop volunteering their

services, meaning that there’s no guarantee there will always be enough people

to host files.

Moreover, we require login/signup to create new files for sharing and that

requires sending the user data to the central server. In other words, we are

exchanging our data in order to be able to access file sharing services.

Using blockchain technology is a way to create robust decentralized file sharing

networks where participants are incentivized to continue contributing. A token-

based reward system ensures there are always enough nodes providing their

services to the network. User does not have to create any sort of account for

uploading, accessing or sharing his files.

The major problems leading to development of decentralized sharing system

includes:

• Central servers controlling the storage of files in the existing system.

• Increasing importance of user data and concerns about privacy

• Data theft and cyber-attacks leading to data leaks

• Need of revolutionary technologies to provide more security to user data

on cloud

1.2.1 Tools and technologies used

We have used and worked on following technologies:

• IPFS :- To store the data of files uploaded by the user

• DynamoDb: To store user and file metadata and hash values received by

the IPFS

• React: For building client side web application

• Node.js : For writing lambda functions to handle queries and file

rederivation

• AWS Cognito :- To provide authentication interface and create user pool

• AWS API Gateway :- To server as a middleware for running lambda

functions based on API endpoints

• Android Native development using Kotlin: For building android client

application. Based on Google’s material guidelines and uses latest android

architecture pattern for optimal performance and modular development

Literature Survey

Blockchain technology has been introduced by an author using the alias of

Satoshi Nakamoto and lead to a series of developments that shaped decen-

tralized applications later on. Blockchain is a decentralized technology which is

built around a data structure that provides a verifiable, immutable, distributed

ledger mechanism. The second generation of Blockchain technology enabled

users

to build decentralized applications (dApps) using smart contracts running on

a decentralized virtual machine (Ethereum VM). dApps are verifiable,

autonomous, secure and stable applications. They lead to development of applica-

tions that does not need a third party to establish a trust mechanism between

the users of the application.

There are two major decentralized file sharing service providers. BitTorrent was

developed in 2001 as a peer-to-peer file sharing protocol and was acquired by

Tron in July 2018. By that time, BitTorrent had reached 100 million monthly

active users around the globe.

BitTorrent announced the launch of the BitTorrent File System, or BTFS, based

on the Tron network. The launch of BTFS addresses two needs within the

decentralized file storage segment. Firstly, it introduces incentivization to

BitTorrent’s peer-to-peer network, allowing participants to be rewarded in tokens

for their contributions.

Secondly, it provides a decentralized file storage solution to decentralized

applications running on a blockchain. File storage on a blockchain is expensive,

meaning that many developers default to centralized solutions. BTFS aims to

address this gap, introducing decentralized file storage that’s both cost-effective

and accessible. BTFS is live now.

IPFS

Interplanetary File System (IPFS) is a distributed file system which uses content-

addressable naming convention. The contents of a file are hashed that are used

to address them universally. The files can not be modified once they are created.

IPFS does not have an access management layer since it serves to the public

domain. A file can be accessed by anybody that know its content name. IPFS

provides an alternative for public services such as HTTP and FTP.

Blockchain frameworks such as Ethereum has limited capacity to store data

within their distributed ledgers. When a block is added to the ledger it will not

be deleted forever. Therefore for decentralized application that require storing

large amounts of data external solutions must be used. As the decentralized

applications should not depend on centrally control systems, using centalized

servers or privately owned distributed solutions such as cloud servers will com-

primise the privacy of the application. For this reason IPFS and similar systems

are the proper solutions for storing large amounts of data.

Access control of IPFS has not been implemented natively. Therefore applica-

tions that are going to use IPFS generally built custom mechanisms for access

control or use it as it is, meaning that their files are public. There are a number

of attempts to build frameworks over IPFS and blockchain such as IPFS

is also suggested to be used for storing transactions in a blockchain as in. The

A Decentralized File Sharing Framework for Sensitive Data 3

primary difference with our framework with earlier work is that our framework

is designed with the needs of private data

IPFS, aims to solve a similar need. Protocol Labs launched IPFS in 2015 as a

peer-to-peer file sharing protocol. Protocol Labs has also been developing

Filecoin, its own blockchain layer, to complement IPFS.

BTFS is integrated into decentralized video streaming network DLive, enabling

fast and censorship-resistant livestreaming. This marks yet another milestone and

example wherein decentralized file sharing proves to have unlimited potential.

Namecoin (Haferkorn and Quintana Diaz, 2015) is an open-source blockchain

technology that implements a decentralised version of DNS. The main benefits

of a decentralised DNS approach are security, censorship resistance, efficiency,

and privacy. Alexandria (The Decentralized Library of Alexandria, 2015) is an

open-source blockchain-based project that provides a secure and decentralised

library of any kind of media while allowing the freedom of speech. Both systems

may be enhanced utilising digital identity services which can confirm an

individual’s identities (e.g. using pseudonyms), enabling security and anonymity

in a standardised verification model (Swan, 2015, Zhang et al., 2017).

In Zyskind et al. (2015a) the authors propose a decentralised P2P blockchain-

based platform that comprises three types of entities: (i) users, which interact with

the applications; (ii) services, which provide such applications and process users’

personal data for operational and business-related reasons; and (iii) nodes, entities

that receive rewards in exchange for maintaining the blockchain. Since only hash

pointers are stored, users have control over their data.

In our user model, there are three user types: data owners,data creators, and

data requesters. The data owners are the owners of the sensitive data. For elec-

tronic health records, patients are the data owners. The information stored in

files are directly linked to the owners. Our model currently does not support

co-ownership. However there might be cases where a medical test contains sen-

sitive information for more than one person such as DNA compatibility test for

marriage. We plan to address co-ownership in the future, where access rights are

managed by more than one data owner. The second user type is data creator

who has the right to create files that contains sensitive information. These will

be mostly medical, financial or legal institutions where personal data are gener-

ated. The data owners can also be data creators as well. For example, by filling

up a questionaire, a data owner can create sensitive data which is not necessarily

require involvement of an institution. Data creators should interact with data

owners to create a file. They do not have any right after the creation of the file

accept the initial read access permission. The third user type is data requester.

Access to files are given to these users by the data owner. There is only one type

of permission: read. The permission can be given for a specific period of time

or it can be revoked by the data owner later on. Since the files are stored in a

public server, the access right is also combined with encryption to ensure that

the data is confidential to the rest of the world.

Access rights can be given by only data owner. There are basically three types

of permissions: read, revoke and create. When a data creator wants to create a

file, create permission is requested from the data owner. Once a file has been

created, it will never be deleted or its contents are modified. The files of a data

owner constitutes a history record of an individual. Hence it is essential to relate

all of the files owned by an individual. When an access right is given to a data

requester, all files of the data owner can be read by the requester. Partial sharing

of a user’s history is also possible. However in that case, the data requester is

notified that the data does not cover the full history. The current implementation

of the framework does not support partial sharing yet.

All permission requests and grants are recorded in blockchain. Therefore, for

an individual it is possible to keep track of the users who had read the sensitive

files. This will provide a full traceability of access history of users and enable a

transparent log of accesses. The permission requests and grants are handled by

smart contracts and recorded in blockchain. The request may have a timeout

period so the permission can be revoked automatically. If there is no timeout for

the grant, the permission can be revoked by the data owner by another smart

Contract.

There is no personal identity in Ethereum network. All entities in our frame-

work are represented by their digital signatures their wallets. The wallets in a

blockchain platform provides account information and history of all transactions

for a given individual. However the wallet addresses and real personalities are

not explicitly tied into each other. Therefore even tough all sharing history of

an individual are recorded on blockchain, it is not possible to reveal the real

identity of a person by third parties.

Our framework use Metamask browser extension as the wallet. The users

of the platform can login into their wallets and start using the framework over

browsers. The following diagram displays the general structure of the framework.

As see in the figure our framework acts as a layer over IPFS. Even though the

files are stored in IPFS users cannot access them directly. Each data owner can

see their history data, permission logs and access logs. The transaction regarding

the access permissions and actual reads are stored in Ethereum blockchain.

The proposed framework relies on IPFS and Ethereum network. The frame-

work is implemented as a higher level layer over IPFS and Ethereum.

shows the architectural components of the system. The users are identified by

their private keys in the framework. There are three modules that takes care of

access rights, logging and direct accesses.

When a new file is added into system or when a right is requested, users

interacts Access Control Module. Logging Module is used to report logs of the

file system. Direct Access Module is used when a data requester tries to read

a file. Interaction with each module is done through smart contracts that are

executed in Ethereum VM and file operations are performed in IPFS.

The files of a data owner shares a meta-data file which contains information

about the access rights, cryptographic keys, and other file related information.

When a data requester is granted a read right, a copy of the files are encrypted by

a secret key and the secret key is encrypted by public key of the data requester.

The resulting ciphertext stored in the meta-data file. When the requester wants

to read files, the secret key of the files are revealed through a smart contract as

well. Once a user gets the secret key, the files can be read until the read right of

the requester is revoked. When the right is revoked, the files are encrypted again

by a new secret key. As the content-names of files depend on their contents in

IPFS, once a file is encrypted with another key, the name of the file changes and

becomes unavailable to public.

List Of Tables

Main Table Design: Used for storing data to be accessed directly using entity id.

Local Secondary Index: Used for querying files with their name. Index the table

based on name of the file for faster access and optimum performance.

Global Secondary Index: Used for direct access to the URL. Creates a index for

short URL so that we can directly access file hash based on the short URL without

the need of entity id and any filtering options.

Use Case Diagram

Our system’s use case can be broadly divided into three parts:

1. File Related

2. Authentication

3. URL Related

Where each broader category contains CRUD use cases along with some custom

use cases.

Class Diagram

The proposed system mainly has 3 classes:

1. User

2. File

3. URL

Where the class relation can be defined as:

1. User to File -> 1 to Many

2. File to URL -> Many to Many

3. User to URL -> Many to Many (Indirect)

BPMN Diagram for file upload

This diagram shows the business flow for the file upload. Each of the boxes with

settings icon on it represents a service and boxes with plus icon on it represents

the sub-task within the group. As we can see in File Data Initialisation block we

have “Create File Data” microservice along with two sub task. Hence first the file

is uploaded in IPFS server which is part of “Upload File to IPFS” microservice

next if it succeeds the flow reaches to “Create File Data” block which is

responsible for creating file meta data and updating the local database.

BPMN Diagram for user authentication

This diagram shows the business flow for the user authentication. Each of the

boxes with settings icon on it represents a service and boxes with plus icon on it

represents the sub-task within the group. Since we are Cognito as our

authentication service we need not need to take care of JWT or any such strategies

hence this flow is pretty simple and straightforward. Once user send the

authentication request it is redirected to Cognito and once the user is

authenticated the request is send to “Create User” microservice which is

responsible for adding user meta data into our primary database. Since these data

will be frequently accessed in the client side application and these data are the

base for setting up the database index structure with proper configuration for

optimal performance of the database.

Modules Description

System Architecture

This is the high-level system architecture of our proposed solution. We are using

AWS cloud services since it is one of the widely used cloud provider and also it

provides free starter resource for dev testing and building.

We are using cloud watch for monitoring all the logs. All the logs of the system

go at one place and is organized in a topic fashion which makes it our ideal choice

for logging, hence in case anything goes wrong we can directly log into cloud

watch rather than monitoring each services individually in the system.

Apart form that we are using IAM(Identity Access Management) provided by

AWS for the interacting between different components withing the system. Hence

we don’t need to open any external port for accessing the services making the

system secure from external interference. Along with that all the request send to

API gateway is secured using HTTPs making the request secure.

All the user identification part is handled by Cognito hence we can focus more

on business logic rather than implementing authentication strategies and

managing user database.

Our system architecture has 4 major components:

1. IPFS: Responsible for storing files in decentralized network.

2. Cognito: Provide user identification and authentication.

3. API Gateway: Exposes services to client using rest endpoint.

4. Microservices: Different services having separate concerns.

a. May interact with database, in our case DynamoDB.

Our design architecture is divided into 4 modules.

1. AWS Lambda

“Serverless” has been the buzz word for several years now, with many

applications choosing to implement the serverless approach. The term originated

from the idea that the infrastructure used to run your backend code does not need

to be provisioned and managed by you and your team. This significantly lessens

the time it takes to get your application production-ready as well as the time and

effort required to maintain your infrastructure. In 2014, Amazon Web Services

released a product that would eventually become a gem in the wide pool of

serverless solutions; that product is known as Lambda. In this article, we’ll take

a look at why Lambda is worth your attention as well as the disadvantages you’ll

want to consider, we’ll walk through the most prominent features of this service

and explore its inner workings.

What is it?

As a brief overview, AWS Lambda is a function-based computing service that

takes the efforts of provisioning and maintaining its infrastructure out of your

hands. With Lambda, you don’t need to worry about scaling your infrastructure

and removing unnecessary resources as this is all handled for you. We’ll take a

deeper dive into how this service works, but first let’s take a look at why this tool

is a worthy addition to your stack.

Advantages

Many of the advantages of using AWS Lambda relates to the advantages of

adopting the serverless-approach in general. As mentioned in the intro, a major

benefit of going serverless is the time and effort saved from creating and

maintaining your infrastructure. AWS provisions and manages the infrastructure

your Lambda functions run on, scales the instances to handle times of excessive

load, and implements proper logging and error handling. Anyone that’s been

involved in the creation or maintenance of infrastructure will understand the

gravity of this advantage. Not only is there a large amount of time involved in

building a system that suits the needs of your application, there is also a

considerable amount of time required to maintain that system as your application

evolves. Time saved means quicker time to market for your application, greater

agility as your team is able to most faster, and more time spent on more important

tasks such as bug fixes or new features.

As for why AWS Lambda is one of the most popular serverless solutions, AWS

has done a very good job of ensuring Lambda accommodates for applications at

scale as well as applications in early stages. For applications with large amounts

of load, AWS allows you to run your Lambda function simultaneously with other

Lambda functions; meaning, you won’t need to worry about clogged up queues.

Not only that, multiple instances of the same Lambda function can be provisioned

and run at the same time. Both advantages ensures that no matter how much load

your application is under, Lambda will be able to handle it. Another advantage of

using AWS Lambda is that you only pay for what you need; accomodating for

applications that are not yet at scale or have widely differing loads. AWS charges

you for the number of requests your Lambda functions recieve and the time it

takes to execute those requests per 100ms. Despite its wide array of advantages,

there isn’t a single solution that exists without its share of disadvantages and

AWS Lambda is no exception.

Disadvantages

Moving the task of maintaining your infrastructure away from your team and in

the hands of a provider results in less control and flexibility, which is the biggest

disadvantage of the serverless approach. On top of that, services that help

implement the serverless approach come with their own set of infrastructure-

related limitations; in Lambda’s case, these limitations are the following:

• Functions will timeout after 15 minutes.

• The amount of RAM available ranges from 128MB to 3008MB with a

64MB increment between each option.

• The Lambda code should not exceed 250mb in size, and the zipped version

should be no larger than 50mb

• There is a limit of 1,000 requests that can run concurrently, any request

above this limit will be throttled and will need to wait for other functions

to finish running.

Whether or not these limitations will impact your application is dependant on the

nature of your Lambda functions; usually, the solution is to refactor your Lambda

functions to improve their efficiency. If any of these limitations begin to impact

your Lambda functions, the first thing to do is to investigate why and whether

your functions could be improved. For example, is the reason your function is

timing out is because there’s inefficient algorithms involved? Are there any

unnecessary dependencies in your Lambda code, causing its size to exceed the

limit?

Cost was mentioned in our list of advantages, but although you only pay for what

your application requires this does not necessarily result in a cost effective

solution; during times of high load, the cost of the same infrastructure on AWS

EC2 or other services may be cheaper. The price of other services based on your

application’s needs should be considered especially if your application

experiences consistently high load. The final disadvantage worth mentioning is

the small latency time between when an event occurs and when the function runs.

This small latency times only occurs in some cases — during a cold start. In most

cases, these latency times are so miniscule that it’s hardly an issue but it’s still

worth considering if your application is already bordering towards potential load

problems; I’ll talk about cold starts in more detail in a later section.

How does it work?

If you’ve decided that Lambda may be a worthy addition to your stack, the next

step is to understand the inner workings of a Lambda function. On a very basic

level, serverless applications are made up of 2 or 3 components; these are event

sources, functions and (in some cases) services. An event source encapsulates

anything that can invoke a function, such as uploads to an S3 bucket, changes to

data state or requests to an endpoint. When any one of the designated events

occurs, your Lambda function will run in its own container. The resources

allocated to that container and the number of containers used is determined by the

size of the data and the computational requirements of the function, this is all

handled by AWS. Once the request is completed, your Lambda function will

either return a result back to the invocation source or a connected service, or it

could make changes to a connected service (such as a database).

AWS Lambda Flow Chart Diagram | created by Author

Before you can run a Lambda function, you’ll need to create one and to

successfully do so, you’ll need a basic understanding of what’s involved. A

Lambda function consists of 3 or 4 parts; the handler function, the event object,

the context object and in some cases a callback function. The handler function is

the function that will be executed upon invocation, this can either be async or

non-async. Asynchronous functions take an event object and a context object

whereas non-asynchronous functions take both these objects and a callback

function. The event object contains data that was sent when the function’s event

was triggered, this includes information such as the request body and the uri; the

data that is passed through depends on the invocation service. The context object

contains runtime information such as the function name, function version and log

group. The callback function is only passed through to synchronous handlers and

it takes two arguments: an error and a response. Once the Lambda function is

created and pushed up to AWS, it is compressed along with its dependencies and

stored in an S3 bucket.

For non-async handlers, function execution continues until the event loop is

empty or the function times out.

Layers

Once you start to build your Lambda functions you’ll notice that there’s pieces

of logic that could be shared between multiple functions, this is when layers can

come in handy. Layers allow you to reuse code across several functions without

needing an additional invocation. Once you’ve identified a piece of code that

could be reused, implement it as a layer and attach it to the functions that need it.

A layer is created in the same fashion as a Lambda function, with slight

configuration changes which depend on the method you’ve chosen to deploy your

functions (via AWS’s GUI, using the serverless framework, or AWS’s CLI tool).

This is also true for adding a layer to a function; it can easily be done via AWS’s

GUI, by adding a few extra lines to the serverless.yml file if you’re using the

serverless framework, or with a single command using their CLI tool. The use of

layers can help improve the maintainability and cleanliness of your Lambda

functions as you’ll be able to significantly lessen the amount of code necessary

for each function as well as the amount of duplicate code across your application.

Versioning and Aliases

AWS not only allows you to save different versions of your Lambda functions

but also allows these versions to coexist and run at the same time, this gives

consumers of your functions the flexibility to upgrade to newer versions as they

please. Aliases are used as a pointer to a particular version of a Lambda function,

there is a long list of use cases in which they can be utilized in; two of which is

worth mentioning. Firstly, instead of updating the version of a function

everywhere it’s called, you could use an alias in these areas and update the version

that the alias points to. Secondly, aliases have the ability to point to two versions

and give you the flexibility to determine the percentage of traffic to be sent to

each version. This can be very useful if you and your team wanted to test a new

version of a function with a small percentage of your traffic before releasing the

new version universally.

Alias Use Cases Diagram | Created by Author

Permissions

Relatively speaking, your Lambda functions are considerably secure by default;

your function can’t talk to other services nor can it be invoked by any client,

you’ll have to enable it to do so. Permissions surrounding your Lambda functions

fall into two buckets: execution policies and resource-based policies. Execution

policies determine which services and resources a Lambda function has access

to, as well as which event sources can trigger a Lambda function to run. Resource-

based policies grant other accounts and AWS services access to your Lambda

resources, these include functions, versions, aliases and layer versions.

Resilience

AWS helps to ensure that your Lambda function is able to handle faults without

impacting your entire application using a set of features they’ve included into

Lambda. The most notable features have already been mentioned in this article

and those are Lambda’s scalability, versioning and ability to run concurrently. A

couple of other features that contribute to the service’s resilience is their use of

multiple availability zones and the ability to reserve concurrency. By default,

AWS runs your Lambda functions in multiple availability zones, this ensures that

your functions are not impacted if a single zone is down; the same cannot be said

for services such as EC2 where this behaviour must be set by the developer. With

Lambda, developers have the ability to set reserved concurrency for a particular

function which ensures that it can always scale to (but not exceed past) a set

number of concurrent invocations despite the number of requests other functions

are consuming — note that AWS will still adhere to the upper limit of 1,000

requests, which means requests for other functions will be throttled.

Cold Starts

Cold starts occur when a function has been idle for a long enough period of time

that its container has been completely terminated. A new container is provisioned

when the function is invoked resulting in a small amount of latency. At times, an

idle Lambda container is available to pick up new requests; if this is the case,

provisioning a new container isn’t necessary — this is called a warm start. The

period of time a Lambda function can be idle for before it gets terminated isn’t

well-documented but an experiment in 2017 found that most functions were

terminated after 45–60 minutes of inactivity; potentially earlier if resources are

needed by other customers. The amount of time it takes for a function to start up

is influenced by its scripting language, whether the function is outside of a VPC

(if it is, start up time will be faster), how big the package size is and how much

memory is allocated to the function. Whether or not your application will likely

experience cold starts depends on the amount of variation between your load

levels. A fairly constant amount of load will mean that your application will

require the same number of containers most of the time, which results in more

warm starts as a container will likely be available for most requests.

This module mainly focuses on getting the functionality of lambdas ready. Its

core part include 2 minor sub modules first is getting the list of lambdas required

for making the system resilient enough to handle all the request and also be

economical. Secondly get the functionality of all the services be ready. We have

built custom python script for building all the lambdas artifacts. The deploying

part is still done manually but we are looking for the solution to automate it.

Below is the link to the current progress over the lambdas.

https://github.com/code-gambit/VT-lambdas

https://read.acloud.guru/how-long-does-aws-lambda-keep-your-idle-functions-around-before-a-cold-start-bf715d3b810#:~:text=AWS%20Lambda%20will%20generally%20terminate,resources%20needed%20by%20other%20customers.
https://github.com/code-gambit/VT-lambdas

2. AWS API Gateway

In microservices architecture, there are several services running each designed

for a very specific component of the system. When clients (Mobile Apps, Web

Apps or Third party applications) communicates directly with these

microservices then many problems arise.

1. The granularity of APIs provided by microservices is often different than

what the client needs. Microservice API’s are very generic and granular in

nature where each returns only a portion of data for functionality. A single

operation might require call to multiple services. This can result in multiple

round trip network call between client and servers, adding significant

latency.

2. Network performance is different for different kind of clients, like the

mobile network is slower and high latency. WAN is slower than LAN.

Making multiple network calls from clients creates an inconsistent

experience.

3. It can result in complex client code. A client needs to keep track of

multiple endpoints (host + port) and handle failures from the services in a

resilient way.

4. It also creates a tight coupling between the client and the backend. The

client needs to know how individual services are decomposed. It becomes

harder to add a new service or refactor existing services.

5. Each client facing services must implement common functionalities like

authorization and authentication, SSL, API rate limiting, access control and

etc.

6. Services must only use client friendly protocols like HTTP or

WebSocket. This limits the choice of communication protocols for

services.

There comes an API gateway which can help to address these challenges. It

decouples clients from services. An API Gateway sits between clients and

services and a single entry point for all clients requests. It takes all requests from

clients and then routes them to the appropriate microservice with request routing,

composition and protocol translation.

Typically it handles requests by invoking multiple services and aggregating the

results and sending it back to the client. API Gateway provides the following

benefits:

1. Isolates the clients from how the applications are partitioned into

microservices and solve the problem of determining the locations of

service instances.

2. API gateway can aggregate multiple individual requests into a single

request. This pattern applies when a single operation requires calls to

multiple backend services. The client sends one request to the gateway.

The gateway dispatches requests to the various backend services, and then

aggregates the results and sends them back to the client. This helps to

reduce chattiness between the client and the backend.

3. It also improves client performance and user experience by avoiding

multiple round trips between client and server. Also, Multiple calls made

by API gateway are running in the same network, it will be more

performant than it was executed from the client.

4. Simplifies the client by moving the logic for calling multiple services from

the client to API Gateway.

5. Allow services to use non web friendly protocol by translating standard

web friendly API protocol to whatever protocols are used internally.

6. Gateway can be used to offload the common functionality from

individual services.It can be useful to consolidate these functions into one

place, rather than making every service responsible for implementing

them. This is particularly true for features that requires specialized skills to

implement correctly, such as authentication and authorization.

functionalities which can be offloaded are :

• SSL termination

• Authentication

• IP whitelisting

• Client rate limiting

• Logging and monitoring

• Response caching

It includes getting all the ingresses ready which will be responsible for

authentication and redirecting it to the respective microservice. API gateway also

has many security feature like API keys and stagging services. We are using

single API key at the gateway layer for dev testing once the testing is completed

we will be generating another production API key and it will be static long secret.

API model can be found at this (https://github.com/code-gambit/VT-

lambdas/blob/development/Api/model.md) link.

https://github.com/code-gambit/VT-lambdas/blob/development/Api/model.md
https://github.com/code-gambit/VT-lambdas/blob/development/Api/model.md

3. Database Design and Configuration

DynamoDB is a managed NoSQL database provided by AWS, and it is a highly

scalable and reliable database. We can scale from 10 to 1000 transactions per

second (tps) in couple of seconds. Since it is a managed service, we don’t need to

worry about the underlying hardware, servers or operating system. Data stored in

the DynamoDB is redundantly copied across multiple Availability Zones so by

default it provides protection for data loss due to underlying hardware failures.

DynamoDB organises data as tables and each table contains several items (rows)

and each item has Keys and Attributes (columns). The tables in the DynamoDB

are non relational and non schema based. This means table joins are not supported

at DB level. For most use cases, we don’t need table joins and those fit really well

with DynamoDB.

Now let us discuss DynamoDB terminology.

Tables

When we create the table we specify Partition Key and an optional Sort Key, we

can’t change these later but rest of the attributes (columns) of item (row) can

change. Also each item can have different set of attributes.

Example

Let us say we want to store articles from various authors in DynamoDB:

Article_Table

Table Keys

Partition Key : authorId

Sort Key : publicationDate

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html

Item 1 has mainImage but not mainVideo attribute, where as Item 2 has

mainVideo but not mainImage attribute. This is possible in DynamoDB as it is

non-schema based.

Item1 and Item3 have same partition key abc123 and with different sort keys,

which is possible in dynamoDB.

There is no limit on how many items can be stored in a table.

Item

A DynamoDB item is nothing but a row in the table. We can change any attribute

of an item except its keys: partition key or sort key, these keys are an

identification for an item; if we have to change these keys, then the only option

is to delete an item and create it again.

Data Types

DynamoDB supports different data types for attributes of an item, they can be

mainly categorised into the following:

• Scalar Types : Number, String, Binary, Boolean and Null.

• Document Types : List and Map

• Set Types : Number Set, String Set, and Binary Set.

Partition Key

This key is mandatory for the DynamoDB table and item. DynamoDB partitions

the items using this key, that’s why this key is also called as the partition key and

some times is also referred as a Hash Key.

Sort key

This key can be used in conjunction with the Partition key but it is not mandatory.

This is useful while querying the data relating a Partition key. We can use several

different filter functions on the sort key such as begins with, between etc. Some

times it is also referred to as a Range Key.

Primary Key

Primary key is just a combination of both Partition key and Sort Key.

Batch APIs

BatchGetItem : This can be used to fetch items from different tables using

Partition Key and Sort Key. In a single BatchGetItem call, we can fetch up to

16MB data or 100 items.

BatchGetItem can be performed only on tables not on secondary indexes.

BatchWriteItem: This can be used to delete or put items on one or more tables in

DynamoDB in one call. We can write up to 16 MB data, which can be 25 put and

delete requests.

BatchWriteItem cannot update items, for that use UpdateItem API call

Query

To query table we must pass partition key so selecting proper partition key for

the table is important. Query operation will return all items that are matched with

partition key of the table. Sort Key is further useful to filter and sort items but it

is optional.

Scan

Scan operation does’t require Partition Key or Sort Key to fetch results from the

table. As the name suggests, it scans an entire table to filter results based on

attribute values passed as filters.

Pagination

DynamoDB Query/Scan results return maximum of 1MB response size so if our

request matches an items of size more than 1MB, it gets automatically divided

into pages. In such cases DynamoDB returns a special response parameter

“LastEvaluatedKey” and this can be used to fetch next page results. Please note

we need to pass the value of “LastEvaluatedKey” as “ExclusiveStartKey” in the

next request to DynamoDB.

In some cases we might want to fix page size to number such as 10 or 20 results

per page. In those cases we can use the “Limit” parameter. Please note if the

results matching to the “Limit” is more than 1MB then DynamoDB only returns

subset of the results which fits to 1MB limit.

Sorting

When we use Query/Scan operation on a DynamoDB table, then by default the

results are sorted based on Sort Key value of the table. Incase we want that results

in reverse order then we need to pass “ScanIndexForward” as “false” in

query/scan request parameters. If the data type of Sort key is a number, then the

results will be in a numeric order, otherwise, results will be in UTF-8 bytes. By

default sort order is ascending. To get results in a descending order, pass

“ScanIndexForward” as “false”.

How to call DynamoDB APIs programmatically ?

AWS SDK for DynamoDB is supported for several languages, which can be used

to interact with DynamoDB API seamlessly. We can also use DynamoDB

using AWS CLI.

Pricing

Last but not least… let us see how is DyanamoDB is priced.

Free Tier :

Throughput limit : 200 million requests per month (25 read and 25 write capacity

units)

Stream limit : 2.5 million read requests per month.

Storage : 25GB of indexed data storage.

Note : Above free tier does not end after 12 months.

This module main motive is to get the database configuration ready. The high-

level database design is already discussed in List Of Tables.

We are using DynamoDB as our primary database since it is the part of the AWS

architecture. The most challenging part was to get the indexes ready since we

need to minimize the indexes along with achieving our system design

requirements. We have used NoSQL data modeler for modeling of the database

and tested it against the data and got the optimal performance and decent cost

graphs.

4. Client Application

Android Client

Android client is a android based client side application. It uses some of the latest

android libraries and features. The application in based on MVVM architecture,

what is MVVM architecture will be explained later. Apart from that the

application is based on latest googles latest material UI/UX guidelines. Some of

the key components on android application are listed below.

1. MVVM

There are mainly 3 components of MVVM architecture,

namely:

Activity/Fragment: These are the classes in which we place

the different views with which the user interacts. So, this is

a UI part or we can say View of this architecture.

ViewModel: A ViewModel class is a class where we perform

functions either which are related to the business logic or

independent of the UI.

But why do we need a ViewModel, I mean that there can

another class in which we put our business logic and then use

that class in our view (Activity/Fragment).

In the above case, the class will be bound to the View’s

lifecycle, and if a case occurs where the view is destroyed by

the user’s action or some device event that is out of the

developer’s hand. In that case, the data is will be destroyed

with that. For example, your app may include a list of users in

one of its activities. When the activity is re-created for a

configuration change, the new activity has to re-fetch the list

of users. To avoid this kind of scenarios, we make use

of ViewModel by storing such data in its variables.

Repository: In this class, we perform the tasks which are

related to the data sources which can be an API or a

local DataBase. Since we get the data that flows in the app

from the repository, we can say that this our Model.

2. Room Persistent Library

Room is a new way to create a database in your android apps, it is

much similar OrmLite.

The core framework provides built-in support for working with raw

SQL content. Although these APIs are powerful, they are fairly low-

level and require a great deal of time and effort to use:

There is no compile-time verification of raw SQL queries.

As your schema changes, you need to update the affected SQL

queries manually. This process can be time consuming and error

prone.

You need to write lots of boilerplate code to convert between SQL

queries and Java data objects.

Room takes care of these concerns for you while providing an

abstraction layer over SQLite.

Database, Entity, DAO

There are three major components in Room:

Entity represents data for a single table row, constructed using an

annotated java data object. Each entity is persisted into its own table.

DAO (Data Access Object) defines the method that access the

database, using annotation to bind SQL to each method.

Database is a holder class that uses annotation to define the list of

entities and database version. This class content defines the list of

DAOs.

3. Caching in Android

Whenever the user accesses the application in offline mode, the data

is dispatched into the view, it can either be a fragment or an activity.

If there is no data or the data is insufficient in the disk as a cache,

then it should fetch the data over the network. It checks if there is a

need to log in (if the user logouts, then re-login would be required).

It re-authenticates, if successful then it fetches the data, but it failed,

then it prompts the user to re-authenticate. Once the credentials are

matched, then it fetches the data over the network. If the fetch phase

is failed, then it prompts the user. Otherwise, if successful, then the

data is stored automatically into the local storage. It then refreshes

the view.

4. Retrofit

Retrofit is a REST Client for Java and Android. REST Client is a

method or a tool to invoke a REST service API that is exposed for

communication by any system or service provider. For example: if

an API is exposed to get real-time traffic information about a route

from Google, the software/tool that invokes the Google traffic API

is called the REST client. It makes it relatively easy to retrieve and

upload JSON (or other structured data) via a REST-based

webservice.

5. Dependency Inject with HILT

Dependency injection (DI) is a technique widely used in

programming and well suited to Android development, where

dependencies are provided to a class instead of creating them itself.

By following DI principles, you lay the groundwork for good app

architecture, greater code reusability, and ease of testing. Have you

ever tried manual dependency injection in your app? Even with

many of the existing dependency injection libraries today, it requires

a lot of boilerplate code as your project becomes larger, since you

have to construct every class and its dependencies by hand, and

create containers to reuse and manage dependencies.

By following DI principles, you lay the groundwork for good app

architecture, greater code reusability, and ease of testing.

The new Hilt library defines a standard way to do DI in your

application by providing containers for every Android class in your

project and managing their lifecycles automatically for you.

Hilt is built on top of the popular DI library Dagger so benefits from

the compile time correctness, runtime performance, scalability,

and Android Studio support that Dagger provides. Due to this,

Dagger’s seen great adoption on 30% of top 10k apps of the Google

Play Store. However, because of the compile time code generation,

expect a build time increase.

Since many Android framework classes are instantiated by the OS

itself, there’s an associated boilerplate when using Dagger in

Android apps. Unlike Dagger, Hilt is integrated with Jetpack

libraries and Android framework classes and removes most of that

boilerplate to let you focus on just the important parts of defining

and injecting bindings without worrying about managing all of the

Dagger setup and wiring. It automatically generates and provides:

Components for integrating Android framework classes with

Dagger that you would otherwise need to create by hand.

Scope annotations for the components that Hilt generates

automatically.

Predefined bindings and qualifiers.

Best of all, as Dagger and Hilt can coexist together, apps can be

migrated on an as-needed basis.

6. Timber

While developing android applications we as developers tend to put

in a lot of logs with in different different priorities for this sake

android sdk comes in with a utility class Log, which does have utility

methods to log our messages with different priorities the most

common methods that we use for different cases like we

uses Log.e(TAG,”message”) in the cases we want to show some

error (this usually appears in red color in the logcat window of

android studio), or Log.d(TAG, "message") when we want to print

some message for the purpose of debugging, like value of some data.

Usually when the application development is completed and its the

time to release the app on the play store, we need to remove

all Log statement from the app, so that none of the application data

such as user information, hidden application data, auth-

https://developer.android.com/training/dependency-injection/hilt-android
https://developer.android.com/training/dependency-injection/dagger-basics
safari-reader://medium.com/androiddevelopers/dagger-navigation-support-in-android-studio-49aa5d149ec9
https://developer.android.com/reference/android/util/Log

tokens are available to user in logcat as plain text and this becomes

a cumbersome task

There are several ways to tackle this problem

1. Condition based logging

In this we can make a public static boolean variable in Application

class like in the below code snippet.

ApplicationController.java

and use this variables value as check for logging like the code

snippet below

MainActivity.java

and use this boolean variable at every place where you want to put a

log message, and once you are ready to release the app, just

set isDebug = false in the application class, but this approach puts in

an extra line of code, which is completely unnecessary and can be

avoided.

This simply can be achieved using android’s in built build

configuration, BuildConfig.DEBUG can be used instead of that

boolean variable for checking if the build type is release or debug.

2. ProGuard

This approach is all also a solution to this problem, you can render

the Log class ineffective and can remove those statement in the

release build by putting in

into the proguard rules file.

7. Chucker

While we all have shifted to the new era of remote work, debugging

bugs and issues are becoming a pain to a lot of teams now, and hence

the QA is banging your head that there is some issue in your android

app.

Checking API logs is a bit difficult when you are doing a lot of

requests parallelly or when you do not have a logcat in front of you

but the APIs are failing due to some reason, that’s where Chucker

helps you.

Motivation behind

At Oye! Rickshaw, we were having too much effort in testing as

everybody is working remotely and the QA team has to reach out to

multiple developers/teams at the same time to understand why aren’t

features behaving as expected and what is the cause of issues?

We began searching for a tool which could provide a solution that

could solve this problem for everyone across the different teams

from wherever mobile app traverse before the final release, and

found ‘Chucker’ as a perfect solution to our problem and hence the

team could be self-dependent and get the issues resolved without

poking extra heads.

Chucker comes in with a lot of pros for us:

API Monitoring in real-time while using the app

QA Team can report more bugs too easily

Backend testing made easier

Web Client

Web client is a web based client side application. It uses some of the latest web

libraries and features. The application in based on flux architecture, what is flux

architecture will be explained later. Apart from that the application is build

using react and is based on googles latest material UI/UX guidelines. Some of

the key components on web application are listed below.

1. React

React is a JavaScript library (not a framework) that creates user

interfaces (UIs) in a predictable and efficient way using declarative

code. You can use it to help build single page applications and

mobile apps, or to build complex apps if you utilise it with other

libraries.

2. Context API

React Context API is a way to essentially create global variables that

can be passed around in a React app. This is the alternative to “prop

drilling”, or passing props from grandparent to parent to child, and

so on. Context is often touted as a simpler, lighter solution to using

Redux for state management.

But before moving forward, lets see why we even need a state

management tool and what state management is.

State Management:

In all applications, you have to keep the different parts of the UI in

sync. Now, what I mean by that is if there is a part of the UI with

which the user interacts, there can be a need for the other part of the

UI to change accordingly, and in a large application where you might

have several components, you will have to write a lot of code to get

all this set up. Say that you are making an e-commerce store, where

on clicking the add to basket, you want the basket count to go up by

one. To make all this possible, you have to maintain the state

properly, and this is where the state management tools come in

handy. If you are making a single page web application, for a basic

portfolio website or something, then you generally will not deal with

state management issues, but if you are making a really big

application, or even a relatively big application, then I am sure that

you should use some kind of state management tool. Some examples

here will be Redux, the Context API, Flux, or MobX.

3. Circle CI

Continuous integration is a practice that encourages developers to

integrate their code into a master branch of a shared repository.

Instead of building out features in isolation and integrating them at

the end of a development cycle, code is integrated with the shared

repository by each developer multiple times.

CircleCI is the continuous integration & delivery platform that helps

the development teams to release code rapidly and automate the

build, test, and deploy. CircleCI can be configured to run very

complex pipelines efficiently with caching, docker layer caching,

resource classes and many more. After repositories on GitHub or

Bitbucket are authorized and added as a project to circleci.com,

every code triggers CircleCI runs jobs. CircleCI also sends an email

notification of success or failure after the tests complete.

4. Flux

Flux is an architectural pattern proposed by Facebook for building SPAs. It

suggests to split the application into the following parts:

• Stores

• Dispatcher

• Views

• Action / Action Creators

The client application is the vital part of the proposed idea and need to be hosted

as a service which can be easily accessed by user across the globe. The client

application itself is divided into two sub modules first is web client and another

is android client. Links to both of the projects can be found below. In both the

client application we researched the recent trends and tried to implement them in

the UI. Both the application is based on material UI and uses latest dependencies.

https://github.com/code-gambit/VT-AndroidClient

https://github.com/code-gambit/VT-lambdas

https://github.com/code-gambit/VT-AndroidClient
https://github.com/code-gambit/VT-lambdas

Screenshot

Also below are some of the screenshots of the application.

This screenshot shows the option for search. Using this feature user can search

for the specific file name. Our search implementation matches the start of the text

rather than in between the text. But for searching user has to enter at least 3

alphabets. User can also type phrases or multiple words for searching.

This screenshot shows the date filter option. We have provided the user with full

customizable time series filter where user can filter the files based on the date

range. When user clicks on the filter icon on main page the bottom sheet open

ups with the date filters like, today, yesterday, last week, last month and custom

range. All the specific filters are generated in runtime, whereas Custom Range

provides user with a input field to enter start and end date.

 This is the detail view of single file with a collapsible bottom sheet. The

bottom list shows all the URLs corresponding to the current file. Along with that

it also has a different quick toggle for controlling the URLs accessibility and

visibility, these toggles provide features like edit click count, make URL

hidden/un-hidden, delete URL etc.

Apart from the URL related it also provide a quick information about the file like

file name, file size, date uploaded etc.

This is the home page of the Android application, which is responsible for

showing the recent uploaded files for the user to quickly access it. Along with

that bottom bar with minimalistic design provide user’s the scope to navigate

between different parts of the application. The plus icon in the center of the

navigation bar is the main highlight of the page as it is responsible for uploading

different types of files.

Results and Conclusion

In this paper, a blockchain-based paper review system is proposed to solve the

problems of current peer-review systems. The proposed framework provides a

decentralized solution addressing file-sharing systems, and the lowest level of

URL customization while sharing over the network. The paper also illustrates

AWS system architecture and BPMN(Business Process And Model Notation)

diagram for user authentication and file sharing workflow. Furthermore, In this

paper, we have attached all the necessary points and information or we can say

the workflow of the system. We have also explained the need and goods of the

system. So that every person can understand it easily. File sharing is the essential

demand of today’s internet-driven world and in this paper, we have

comprehensively discussed a different aspect of the file-sharing system along

with the system proposal which is efficient enough to fulfill users’ needs along

with security and user-friendliness.

Reference

[1]

https://www.researchgate.net/publication/335232056_A_Decentralized_File_Sh

aring_Framework_for_Sensitive_Data

Accessed on: 3rd Dec 2021

[2] https://cointelegraph.com/explained/decentralized-file-sharing-explained

Accessed on: 3rd Dec 2021

[3] https://medium.com/hackernoon/research-on-decentralized-file-storage-and-

sharing-on-the-blockchain-f3a224c4c85b

Accessed on: 3rd Dec 2021

[4] https://www.researchgate.net/publication/336372929_A_Blockchain-

based_File-sharing_System_for_Academic_Paper_Review

 Accessed on: 3rd Dec 2021

[5] “ International Journal of Advanced Research”, Volume 3, March 2015.

[6] “ Ian Somerville , Software Engineering ”, Third Edition, Pearson

Education.

[7] “ Object-Oriented System Development ”, Third Edition, Tata McGraw

Hill Edition.

[8] “Journal of network” , volume7 , no.10, October 2012.

[9]. https://medium.com/hackernoon/research-on-decentralized-file-storage-

and-sharing-on-the-blockchain-f3a224c4c85b

Accessed on: 3rd Dec 2021

[10] Decentralized File Storing and Sharing System using Blockchain and IPFS

 Journal: International Research Journal of Engineering and Technology (IRJET)

 Volume: 07 Issue: 05 | May 2020

[11]

https://www.researchgate.net/publication/330758943_Asterism_Decentralized_

File_Sharing_Application_for_Mobile_Devices

Accessed on: Dec 03 2021

[12] Decentralized file sharing application in a global approach

Author: K. Mohan Krishna, M. Kranthi Kiran, P. Kiran Kumar, M. Tejasmika,

K. Ravi Teja Reddy, K. Sandeep

Pub. Date19 March, 2019

Paper IDV5I2-1287

PublisherIJARIIT

EditionVolume-5, Issue-2, 2019

	Acronyms
	Abstract
	Introduction
	1.2 Formulation of problem
	1.2.1 Tools and technologies used

	Literature Survey
	List Of Tables
	Use Case Diagram
	Class Diagram
	BPMN Diagram for file upload
	BPMN Diagram for user authentication

	Modules Description
	1. AWS Lambda
	2. AWS API Gateway
	3. Database Design and Configuration
	4. Client Application
	Android Client
	Web Client

	Screenshot

	Results and Conclusion
	Reference

