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ABSTRACT 

 

Social media like Facebook and Twitter is full of opinions, emotions and feelings of people all over 

the world. Through this project, we are detecting, classifying and quantifying emotions of any form. 

We are considering text collected from social media platforms for opinion mining. Analyzing and 

classifying text one the basis of emotions comes under Sentiment Analysis. This project is aiming at 

classifying text into six different Emotion-Categories, which are Happiness, Sadness, Fear, Anger, 

Surprise and Disgust. To extract these emotions from text we are using two different approaches and 

combining them. The first approach is based on NLP (Natural Language Processing) and using several 

textual features such as parts of speech, negations, degree words and other grammatical analysis. The 

second approach is based on ML (Machine Learning) classification algorithms. Through this project 

to remove the need of manual annotation of large datasets we are also, devising a method to automate 

the creation of training set itself. In addition to that, we are creating a large collection of emotional 

words along with their intensities. 
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CHAPTER-1 

 

1.1 Introduction 

 

The manner in which humans explicit their perspective has been modified by the age of internet. 

Online dialogue, weblog post, product review websites and many more are used to clarify the human 

perspective. Nowadays people dependency on such platforms has increased in tiffini quantity. 

Now a typical buyer first tries to search for product and services online before making any final 

decision. The amount of date generated by user is increasing drastically and it’s very difficult to 

research on those huge data. Machine learning and symbolic strategies are two important strategies 

used for sentiment analysis. Expertise based approach requires a large database of pre-defined 

feelings and a green-expertise illustration for figuring out the sentiments. Machine Learning (ML) 

approach uses an educational set to expand sentiment classifier that classifies sentiments. Given that 

for system learning method, pre-defined database of entire emotions is not needed, it’s much easier 

than knowledge- based technique. 

The forefront of this project covers the assessment of substance at web covering bunches of zones 

which are wrapping in exponential numbers despite in volumes, for example Amazon. Twitter 

wherein the tweet conveys surveys, but it would be very time consuming for looking to get general 

comprehension of such un-structured records (audits). Customers see unstructured measurement on 

a particular site and afterwards expanding picture regarding the items and ultimately delivering 

beyond any uncertain judgement, at long last. After that the surveys are added together for securing 

criticisms for unprecedented purpose to offer many important audits in which we make use of 

assessment examination. A procedure under which date set includes mentalities, emotions or 

evaluation which ponder over the way a human think is called Slant Assessment. It’s totally hard 

endeavor, hoping to get the negative and positive segment. The capacities used for classifying the 

sentences have a completely sturdy modifier with the supposition to shorten the assessment. 

Those are composed into unmistakable strategies which aren’t without any issue summed up with the 

guidance of organization or clients making it troublesome to group them. Clients are influenced by 

Opinion assessment to classes whether the information regarding the item is fine or no longer needed 

before they gather. For catching items or administrations, organizations and advertisers utilize this 

investigation in a way that with regards to individual’s needs it might be furnished. Super vised and 



managed are two styles of machine information picking techniques which may be used for notion 

investigation. Unsupervised technique which does not consist of class and they don’t give any 

destinations and hence conduct bunching, are becoming more familiers. Managed learning is a kind 

of learning which is constructed completely with respect to dataset and therefore all through the 

strategy names are getting outfitted to the model. 

All those sorted dataset when experienced through fundamental leadership are made to supply yields. This 

project is based on supervised system learning as it helps to provide superior opinion examination. 

 

Emotions are described as intense feelings that are directed at something or someone in response to 

internal or external events having a particular significance for the individual. And the internet, today, 

has become a key medium through which people express their emotions, feelings and opinions. Every 

event, news or activity around the world, is shared, discussed, posted and commented on social media, 

by millions of people. Eg. “The Syria chemical attacks break my heart!! :’(” or “Delicious dinner at 

Copper Chimney! :D” or “OMG! That is so scary!”. Capturing these emotions in text, especially 

those posted or circulated on social media, can be a source of precious information, which can be 

used to study how different people react to different situations and events. Business analysts can use 

this information to track feelings and opinions of people with respect to their products. The problem 

with most of the Sentiment Analysis that is done today is that the analysis only informs whether the 

public reaction is positive or negative but fails to describe the exact feelings of the customers and the 

intensity of their reaction. With our emotional analysis, they can have a more profound analysis of 

their markets than the naive 2-way Sentiment Analysis, which itself has turned their businesses more 

profitable. Business leaders can analyse the holistic view of people in response to their actions or 

events and work accordingly. Also, health-analysts can study the mood swings of individuals or 

masses at different times of the day or in response to certain events. It can also be used to formulate 

the mental or emotional state of an individual, studying his/her activity over a period of time, and 

possibly detect depression risks. There are plenty of research works that have focussed on Sentiment 

Analysis and provide a 2-way classification of text. But few have actually focussed on mining 

emotions from text. However, machine analysis of text to classify and score it on the basis of emotions 

poses the following challenges : 

• Instead of the usual two categories in Sentiment Analysis, there are six Emotion-Categories in which 

we need to classify the tweets. 

• Lack of manually annotated data to train classifiers to label data into six categories. 



• Unavailability of a comprehensive bag of Emotion-words labeled and scored according to Emotion-

Categories (Happiness, Sadness, etc.) and their intensities, that can be used to detect Emotion-words 

in text. In order to address the aforementioned challenges, it was important to devise a system that 

could generate a good and reliable training-set for the classifier, a labeled bag of words, and an 

algorithm that could not only detect emotions, but also score and label the tweets according to those 

emotions. A lot of research has been done on classifying comments, opinions, movie/product reviews, 

ratings, recommendations and other forms of online expression into positive or negative sentiments. 

Emotions have also been studied, but in a limited extent, such as by asking specific questions and 

judging on the basis of replies, or an analysis done only on short one-lined headlines or a few others 

[1], [2], [3], all of which depended on the manual annotation of the training dataset of a small size 

and limited scope. In this paper, we propose a method to classify and quantify tweets according to 

six standard emotions suggested by Paul Ekman [4]. Here, we base our analysis on tweets posted on 

Twitter, but it can be easily extended to any kind of text whether it is one lined headlines, messages 

and posts on social media or larger chunks of writings, because of automatic 

development of our training set. Our main contributions are listed below: 

• We have developed a system that could score and label any piece of text, especially tweets and posts 

on social media according to six Emotion-Categories: Happiness, Sadness, Fear, Surprise, Anger and 

Disgust along with their intensity scores, making use of its textual features, a variety of NLP tools 

and standard Machine Learning classifiers. 

• Another significant contribution is that we have successfully devised a system that could 

automatically (without any manual effort) build an efficient training set for our ML Classifiers, 

consisting of a large enough set of labeled tweets from all Emotion-Categories. 

• We have created a large bag of words in English, that consists of words expressing a particular 

emotion along with the intensity of that emotion. 

• We were able to achieve an accuracy of about 91.7% and 85.4% using J48 and SMO classifiers 

respectively using the training set we built. 

 

 

 

 

 

 



1.2 Formulation of problem 

People like expressing sentiment. Happy or unhappy. Like or dislike. Praise or complain. Good or bad. 

That is, positive or negative. 

Sentiment analysis in NLP is about deciphering such sentiment from text. Is it positive, negative, both, 

or neither? If there is sentiment, which objects in the text the sentiment is referring to and the actual 

sentiment phrase such as poor, blurry, inexpensive, … (Not just positive or negative.) This is also 

called aspect-based analysis [1]. 

As a technique, sentiment analysis is both interesting and useful. 

First, to the interesting part. It’s not always easy to tell, at least not for a computer algorithm, whether 

a text’s sentiment is positive, negative, both, or neither. The cues can be subtle. Overall sentiment 

aside, it’s even harder to tell which objects in the text are the subject of which sentiment, especially 

when both positive and negative sentiments are involved. 

Next, to the useful part. This is easy to explain. People who sell things want to know about how 

people feel about these things. It is called customer feedback . Ignoring it is bad for business. 

There are other uses as well. Such as opinion mining, i.e. trying to figure out who holds (or held) what 

opinions. Such as, according to John Smith, the coronavirus will simply go away within six months. 

This task may be formalized as seeking (source, target, opinion) triples. In our 

example, source = John Smith, target = coronavirus, opinion = will simply go away within six 

months. 

(Many) Examples 

Sentiment analysis is what you might call a long-tail problem. Lots of varying scenarios and subtleties. 

Such problems are often best described by examples. 



First, let’s see some easy positives. 

Amazing customer service. 

Love it. 

Good price. 

Next, some positives and negatives a bit harder to discriminate. 

Positives: 

 What is not to like about this product. 

 Not bad. 

 Not an issue. 

 Not buggy. 

Negatives: 

 Not happy. 

 Not user-friendly. 

 Not good. 

Definitely not positive: 



Is it any good? 

The positives in the above list are not the strongest ones. That said, they are especially good for training 

ML algorithms to make key distinctions, as we definitely don’t want these positives to be predicted as 

negatives. 

Positives: 

 Low price. 

Negatives: 

  Low quality. 

These instances are especially good for training ML algorithms to make key distinctions. 

Positives: 

   Quick turn-around. 

Negatives: 

   Quick to fail. 

The same point applies here. 

Positives: 

  Inexpensive. 



Negatives: 

The same point applies here. 

Finally, some negatives which are a bit harder to decipher. 

Positives: 

 What is not to like about this product. 

 Not bad. 

 Not an issue. 

 Not buggy. 

Negatives: 

 Not happy. 

 Not user-friendly. 

 Not good. 

Definitely not positive: 

 Is it any good? 

1.3 Use Cases 



It’s easy to imagine many. Here are some of the main specific ones. 

1. Discover negative reviews of your product or service. On blog posts or eCommerce sites or social 

media. More broadly anywhere on the web. 

2. Aggregate sentiment on financial instruments. Such as specific stocks. What is the recent market 

sentiment on stock xyz? Also, aspect-based variants. Such as according to analysts at financial 

company xyz, stock abc is likely to grow 20% in the coming year. Discerning who’s opinion it is 

provides more information, which may be used to assess credibility or lack thereof. 

3. Identify which components of your product or service are people complaining about? Especially 

strongly. For prioritizing tactical or long-term improvements. 

4. Track changes to customer sentiment over time for a specific product or service (or a line of 

these). To check if things have been getting better … 

5. Track shifting opinions of politicians over time. Individuals or groups such as political parties. 

News media love to do this. To fuel nagging questions such as you said that then but now this!. 

1.4 Computational Problems 

What we’ve discussed thus far may be crystallized into two distinct computational problems. 

1. What is the text’s overall sentiment: positive, negative, both, or neither? 

2. Which sentiment applies to which portions of the text. This is also called aspect-based sentiment 

analysis. 

Let’s start with the first problem, which we will call sentiment classification. 

 



1.5 Sentiment Classification Problem 

The input is text. The output we seek is whether the sentiment is positive, negative, both or neither. In 

a variant of this problem, which we will not address here, we are interested in additionally predicting 

the strengths of the positive and negative sentiments. You can imagine why. xyz phone really sucks is 

way more negative than I’m a little disappointed with xyz phone. 

1.6 Dictionary-based Approach 

The simplest approach is to create two dictionaries, of terms carrying positive and negative sentiment 

respectively. By term, we mean a word or a phrase. A text is classified as positive or negative based 

on hits of the terms in the text to these two dictionaries. A text is classified as neutral if it hits neither 

dictionary. A text is classified as both positive and negative if it hits in both dictionaries. 

This approach is worth considering when one wishes to quickly get a somewhat effective sentiment 

classifier off-the-ground and one doesn’t have a rich-enough data set of text labeled with the sentiment. 

Simplicity is one reason. The more important reason is that the machine learning alternative has its 

own obstacles to be overcome. We’ll delve into these in detail when we discuss that topic. 

Machine-learning obstacles notwithstanding, a dictionary-based approach will run into quality issues 

sooner or later. So if high precision and high recall of the various sentiment classes are important in 

your use case, you should consider biting the bullet upfront and investing in ML. Your task will 

become much easier if you can find a rich-enough labeled data set or come up with some creative 

ways to get one, possibly after some additional lightweight NLP (discussed in an upcoming section). 

Supervised Learning Challenges 

The first challenge is the necessity of having a large and diverse data set of texts labeled with their 

sentiment classes: positive, negative, both, or neither. 



The issue is this. Think of the text as being represented by a vector. For now in the usual vector space 

model, i.e. as a bag of words. That said, the challenge applies, albeit to a somewhat lesser extent, even 

to word embeddings. 

The vector space is huge. Each word in the lexicon has a dimension. 

The vast majority of the words in this space carry no sentiment. To train a machine learning classifier 

would require a huge training set. Much of what it would be doing is learning which words are 

“nuisance” words. That is, unlearning biases it collected along the way (see example below). 

Let’s see an example from which the classifier can learn to wrongly associate neutral words with 

positive or negative sentiment. 

xyz phone sucks → negative 

It will learn to associate the word phone with the sentiment negative. Obviously we don’t want this. 

Unlearning this will require training set instances with the word phone in them that are 

labeled neither (i.e., neutral). 

That being said, breaking up a large and diverse corpus (such as Wikipedia) into sentences and labeling 

each neutral might alleviate this problem. The intuition here is this. All words will initially learn to be 

neutral. Words such as sucks that repeatedly occur in text labeled negative will eventually ‘escape’ 

from their neutral label. 

Beyond Bag-of-words Features 

From the labeled examples we saw in an earlier section, it seems that a ‘?’ is a predictor of sentiment. 

This makes sense intuitively. Skeptics ask questions. Not true believers. 

 



Leveraging Dictionaries as Features 

If we already have dictionaries of phrases correlated with positive or negative sentiment (or find them 

easy to construct), why not use them as additional features. They don’t have to be complete. Just 

curated. So we can take advantage of their quality. 

In more detail, here’s how. Say not good is in the dictionary of negatives. We would create a boolean 

feature for this entry. This feature’s value is 1 if not good appears in text and 0 if not. We might also 

add the entry (not good, negative) to our training set. Note that here we are thinking of not good as the 

full text. 

Use Part-of-speech? 

Sentiment-rich words are often adjectives. This makes one wonder whether using information about 

the part-of-speech of each word in the text might be useful? As additional features or for pruning 

features. 

Let’s start by looking at the parts-of-speech of the words in our various examples. This analysis was 

done using the online pos-tagger at [2]. 

 

 

Parts-of-speech of various words in sentiment-carry sentences 

What thoughts does this trigger? The POS-tag adjective seems significantly correlated with sentiment 



polarity (positive or negative). The POS-tag adverb also. Determiners, prepositions, 

and pronouns seem to predict the neutral class. 

How might we take advantage of this? We could gate bag-of-words features on their parts-of-speech. 

For example, filter out all words whose POS-tag is determiner, preposition, or pronoun. This may be 

viewed as an elaborate form of stop-words removal. 

Feature Engineering: Some Observations 

Whereas these observations are general, they especially apply to our problem (sentiment 

classification). 

First, we don’t need strong evidence before we add a new feature. Merely a weak belief that it might 

help. The machine learning algorithm will figure out how predictive this feature is, possibly in 

conjunction with other features. As the training set gets richer over time, the ML will automatically 

learn to use this feature more effectively if this is possible. Weak features can add up. 

The only downside to this is that if we go overboard, i.e. add too many features, the feature space 

explosion may come back to haunt us. More on that later. 

Let’s expand on “weak belief that it might help”. Here, ‘help’ just means that the feature is predictive 

of some sentiment class. We don’t need to know which. The ML will figure this out. That is, which 

feature value predicts which sentiment class. By contrast, when setting up a rule-based system (of 

which dictionaries are a special case) one has to specify which combinations of feature values predict 

which sentiment class. 

1.7 Does This Risk Feature Space Explosion? 

We have already accepted that using bag-of-words features will explode our feature space. For reasons 

discussed earlier, we have decided to bite the bullet on this front. The question is, will the additional 



features mentioned in this section make the matter worse? 

Actually they will make it better. Let’s reason through this. First the question-mark feature. It is 

boolean-valued. No explosion here. Next, the dictionary-based features. These in fact reduce the noise 

in the space of word vectors as they surface sentiment-rich words and phrases. Finally, the part-of-

speech features. Using them as suggested, for filtering (i.e. removing words), prunes the feature space. 

Word k-gram Features? 

We deliberately put this after the previous section because this does run a greater risk of exploding the 

feature space if not done right. The space of word k-grams even with k = 2 is huge. That said, pruning 

this space sensibly can potentially increase the benefit-to-cost ratio from these features. 

Below are some plausible ideas to consider. In the discussion, we limit ourselves to k=2, i.e. to 

bigrams, although it applies more generally. 

1. Prune away bigrams from the model that don’t have sufficient support in the training set. (By the 

support of a bigram we mean the number of times it occurs in the training set.) 

2. For additional pruning, consider parts-of-speech as well. 

Taking Stock … 

We’ll close this section by taking stock of what we have discussed here and its implications. First, we 

see that the ML approach can be empowered with a variety of features. We simply throw features into 

the mix. So long as there is a plausible case for each inclusion. We don’t worry about correlations 

among features. Too complicated to analyze. Let the ML sort it out. The end justifies the means. So 

long as we have a rich enough labeled data set which we can partition to train-and-test splits and 

reliably measure the quality of what we are referring to as ‘end’. 

We do need to think about the feature space explosion. We already did. 



Now a few words about the learning algorithm. We have lots of choices. Naive Bayes. Logistic 

Regression. Decision Tree. Random Forest. Gradient Boosting. Maybe even Deep Learning. The key 

point to bring to the surface is that these choices span varying levels of sophistication. Some can 

automatically discover multivariate features that are especially predictive of sentiment. The risk here 

is that many of the multivariate features they discover are also noisy. 

Okay so now we have lots of feature choices and lots of learning algorithm choices. Potentially very 

powerful. But also risky. As mentioned earlier, we can mitigate the risk by keeping in mind the feature-

space explosion. 

Ultimately though we should focus on building as rich of a labeled data set, even if only incrementally. 

Longer-term this has more value than tactically optimizing features to compensate for not having a 

great training set. This is the single most important aspect of this problem. Invest in this. 

1.8 Target Variants 

To this point, we’ve been thinking of sentiment classification as a 4-class 

problem: positive, negative, both, neither. In some settings, the class both can be ignored. In such 

settings, we interpret neither as neutral. 

In most use cases, we only care about the first two. So neutral is a nuisance class. ‘Nuisance’ means 

it needs to be accounted for, even though it’s not what we seek. Why does it need to be accounted for? 

Well, we don’t want text that is neutral to get classified as positive or negative. Said another way, 

including the neutral class (backed by a sufficiently rich training set for it), improves the precision of 

the positives and negatives. 

This is easy to illustrate with an example. Remember the instance 

xyz phone sucks → negative 

We wouldn’t want the inference phone → sucks. Meaning that every phone sucks. By adding the 

neutral class, along with a suitably rich training set for it, the risk of this type of unwarranted inference 



reduces greatly. 

1.9 Probabilistic Classification 

Regardless of which learning algorithm we end up choosing — Naive Bayes, Logistic Regression, 

Decision Tree, Random Forest, Gradient Boosting, … — we should consider leveraging the predicted 

probabilities of the various classes. For example, if the predicted probabilities on an input are roughly 

50% (positive), 50% (negative), 0% (0) then we can interpret the text as having both positive and 

negative sentiments. 

How to build a training set efficiently 

Okay, so it’s clear that the ML approach is powerful. Let’s now look to “feeding the beast”, i.e. 

building a rich training set. 

Here’s an idea of how to quickly assemble a large set of texts that can be manually labeled efficiently. 

1. Pick a suitable source of unstructured text. Such as product reviews at an e-commerce site. 

2. Create two columns in a spreadsheet, one for text, one for label. 

3. Put each document (e.g. each product review) in its own cell in the column labeled text. 

4. Manually add the labels. 

Let’s elaborate on step 4. Consider crowd-sourcing it. Or at least dividing up the work among team 

members. Plus adopt a convention that an empty cell in the label column denotes a specific label. A 

good choice is neither, i.e. neutral. 

You might be surprised at how quickly you can build up a rich training set using this process. 



If your product reviews data set comes with a star-rating attached to each review, you can use this 

rating to auto-label the positive and negative instances. This can speed up the labeling process. That 

said, you should make a manual pass after the auto-labeling to review it and correct those labels that 

are wrong. 

The assumption underlying this auto-labeling is that its quality is reasonably good. So that only a small 

proportion of the labels need fixing. You do have to look at them all. Still, visually scanning all labels 

has a much higher throughput than editing individual ones. 

1.10 Training Instance Granularity 

Generally speaking, to the extent possible, input instances should be more granular than coarser. 

Customer product reviews are generally granular enough. Especially if they are already tagged with 

the ratings, from which we might auto-derive the sentiment target. In this case, breaking longer reviews 

down to individual sentences and manually tagging them with an appropriate sentiment label might 

be too much work, whereas its benefit unclear. 

Next, consider starting points being longer documents. Such as full-length review articles of product 

classes. For example, The Best 10 Phones for 2020 or The Best 10 Stocks for 2020. 

The case for breaking these down into finer granularity such as paragraphs or even sentences is 

stronger. Clearly, if we can restrict the text to the region to which a specific sentiment is applicable, it 

can help improve the learning algorithm’s accuracy. 

As an extreme example, say you have a 20-page document, all of it neutral, except one sentence which 

has a strong sentiment. It makes sense to label this sentence with the sentiment and the rest of the text 

as neutral. That’ll likely work better than labeling the 20-page document with the sentiment in that 

one sentence. 

 



1.11 Granularity Of Instances In The Field 

As discussed above, for the training set, finer-grained instances in the training set are generally better 

than coarser-grained ones. This preference does not apply to classification time, i.e. the use of the 

classifier in the field. We should go ahead and predict the sentiment of whatever text we are given, be 

it a sentence or a chapter. 

Unlike during training, there is no downside to predicting the sentiment of a long document. It's just a 

question of expectations. If a user seeks a sentiment of a document longer than a paragraph, what she 

really means is she wants the overall general sentiment across the text. Is it positive overall, negative 

overall, both, or neither (neutral)? 

This is fine, sometimes that is what you want. And once you have discovered documents that carry 

some sentiment, you can always drill down to run the sentiment classifier on their individual sentences 

or paragraphs. 

In view of this, we should keep in mind that evaluation on a test set held-out from the labeled data set 

will not yield an accurate assessment of how well the classifier works in the field. The held-out test 

set is derived from the labeled data set, which is composed of granular instances for reasons discussed 

earlier. The field’s inputs are not necessarily always that granular. 

1.12 Aspect-based Sentiment Analysis 

Here, in addition to deciphering the various sentiments in the text we also seek to figure out which of 

them applies to what. 

Clearly such analysis can be very useful, as illustrated by the example below. 

xyz phone sucks → negative 



You clearly want to know what is being complained about and what is being liked. 

Often, we also care to extract the actual sentiment phrases. Consider the example below from a made-

up holistic review of a new TV. 

Good price. Sharp image. Vivid colors. Static in Audio. Motion lags a bit. 

Ideally, we’d like to extract (aspect, sentiment-phrase, polarity) triples from it. 

Good price. Sharp image. Vivid colors. Static in Audio. Motion lags a bit. 

The polarities may help derive an overall quality score (e.g., here 3 out of 5). May have other uses as 

well. 

Extracting Aspects And Sentiment Phrases 

Let’s run this text through the POS-tagger at [2]. 

Good price. Sharp image. Vivid colors. Static in Audio. Motion lags a bit. 

Recall that the POS-tag legend is 

 

Legend of POS tags 

What jumps out at you? As a first attempt, splitting the text into sentences, running a POS-tagger on 

each sentence, and if the tag sequence is 

 



 

Deem adjective as sentiment-phrase, noun as aspect 

deeming adjective to be the sentiment-phrase and noun to be the aspect works surprisingly well. In 

precision terms, that is. Not recall because this pattern is too-specific. For example, it doesn’t detect 

the aspect-sentiment phrase in Motion lags a bit. 

So how can we try to extend the idea of the previous paragraph to try to improve recall? Formulate 

this as a sequence labeling problem. See [3] for a detailed sequence-labeling formulation of a similar 

problem, named entity recognition. 

The text is tokenized as a sequence of words. Associated with this sequence is a label sequence, which 

indicates what is the aspect and what the sentiment-phrase. 

Below is our earlier example, reformulated in this convention, with A denoting aspect, S denoting 

sentiment-phrase, and N denoting neither. We’ve split the pair into two as it won’t fit in a horizontal 

line. 

words   Good price. Sharp image. Vivid colors. Static in Audio. 

labels   S    A      S     A      S     A        S    N    A words   Motion lags a bit. 

labels    A     S   S  S 

In [3] we focused on Hidden Markov models for sequence labeling. Here, it is more natural to work 

with conditional Markov models [4], for reasons we explain below. 

First, what is a conditional Markov model? Recall that our inference problem is to input a sequence of 



words and find the most likely sequence of labels for it. For the token sequence [Motion, lags, a, bit] 

we would expect the best label sequence to be [A, S, S, S]. 

A conditional Markov model (CMM) models this inference problem as one of finding the label 

sequence L that maximizes the conditional probability P(L|T) for the given token sequence T. The 

Markov model makes certain assumptions which make this inference problem tractable. 

Specifically, P(L|T) is assumed to be factorable as 

P(L|T) = P(L1|L0,T1)*P(L2|L1,T2)*…*P(Ln|L_{n-1},Tn) 

Rather than explain it, let’s illustrate it with our example. We have added a label B denoting begin. 

P( [B,A,S,S,S] | [B, Motion, lags, a, bit] ) = P(A|B, Motion)*P(S|A, lags)*P(S|S, a)*P(S|S, bit) 

We won’t describe the inference algorithm. It is too complex for this post. Besides, this is not our 

focus. However, we will explain the individual probabilities in the above example qualitatively. 

Equipped with such an explanation, we can imagine trying out all possible label sequences, computing 

the probability of each, and finding the one that has the highest probability. 

Let’s start with P(A|B, Motion). This is influenced by two factors and their interaction. First, the 

likelihood that the first word is part of the aspect. Second, the likelihood that Motion is an aspect word. 

The first factor’s likelihood is significantly greater than 0. We can imagine many real examples in 

which the first word is an aspect word. Such as camera is low-resolution. 

It is the second factor’s likelihood that we’d like to dwell more on. Consider P(A|Motion), ignoring 

the influence of the previous state B. The CMM allows us to model this probability as being influenced 

by any features of our choice derived from the combination of A and Motion. Possibly overlapping. 

The HMM, by contrast, would work in terms of P(Motion|A) instead. It would treat Motion and A as 

symbols, not letting us exploit any features we may deem useful. 



In effect, we can think of P(A|Motion) as a supervised learning problem in which (A, Motion) is the 

input and P(A|Motion) the output. The power of this approach lies in its ability to learn complex 

mappings P(Li|Ti) in which we can use whatever features from the pair (Li, Ti) that we deem fit. 

Two features especially come to mind. The word’s part-of-speech and whether the word is labeled as 

being in a recognized named entity. (See [3] which covers named entity recognition in NLP with many 

real-world use cases and methods.) 

The part-of-speech feature has already been suggested by the examples we saw, in which the POS-

tag noun seemed a predictor of the label aspect and adjective a predictor of sentiment-phrase. The 

named entity feature is motivated by the intuition that aspects are often objects of specific types. For 

instance, retail products. A NER that can recognize retail products and associated product features can 

be very useful to pick these out as aspects from sentiment-laden reviews. 

Typically we set up NER to recognize fine-grained entities. Such as product names. Not noun phrases. 

While in principle we could, noun phrases are too varied to model as NER. POS-tag is coarser-grained. 

In view of this, we can think of the benefit of combining the two features as follows. NER gives us 

precision. The POS feature helps with recall. 

1.2.1 Tools and technology used 

Natural language processing (NLP) is the branch of artificial intelligence (AI) that deals with training 

a computer to understand, process, and generate language. Search engines, machine translation 

services, and voice assistants are all powered by the technology. 

While the term originally referred to a system’s ability to read, it’s since become a colloquialism for 

all computational linguistics. Subcategories include natural language generation (NLG) — a 

computer’s ability to create communication of its own — and natural language understanding (NLU) 

— the ability to understand slang, mispronunciations, misspellings, and other variants in language. 

1.2.2 How natural language processing works 

NLP works through machine learning (ML). Machine learning systems store words and the ways 

they come together just like any other form of data. Phrases, sentences, and sometimes entire books 

https://www.cio.com/article/3223191/artificial-intelligence/a-practical-guide-to-machine-learning-in-business.html


are fed into ML engines where they’re processed using grammatical rules, people’s real-life linguistic 

habits, or both. The computer then uses this data to find patterns and extrapolate what comes next. 

Take translation software, for example: In French, “I’m going to the park” is “Je vais au parc,” so 

machine learning predicts that “I’m going to the store” will also begin with “Je vais au.” All the 

computer needs after that is the word for “store.” 

1.2.3 NLP applications 

Machine translation is a powerful NLP application, but search is the most used. Every time you look 

something up in Google or Bing, you’re feeding data into the system. When you click on a search 

result, the system interprets it as confirmation that the results it has found are correct and uses this 

information to better search in the future. 

0 seconds of 26 minutes, 50 secondsVolume 0% 

Chatbots work the same way: They integrate with Slack, Microsoft Messenger, and other chat 

programs where they read the language you use, then turn on when you type in a trigger phrase. Voice 

assistants such as Siri and Alexa also kick into gear when they hear phrases like “Hey, Alexa.” That’s 

why critics say these programs are always listening: If they weren’t, they’d never know when you 

need them. Unless you turn an app on manually, NLP programs must operate in the background, 

waiting for that phrase. 

1.2.4 Sequential Minimal Optimization 

Most machine learning libraries use the SMO algorithm or some variation. 

The SMO algorithm will solve the following optimization problem: 

 

https://www.cio.com/article/3214449/digital-transformation/what-makes-a-great-chatbot-laser-focus-on-customers.html


It is a kernelized version of the soft-margin formulation we saw in Chapter 5. The objective function 

we are trying to minimize can be written in Python (Code Listing 37): 

This is the same problem we solved using CVXOPT. Why do we need another method? Because we 

would like to be able to use SVMs with big datasets, and using convex optimization packages usually 

involves matrix operations that take a lot of time as the size of the matrix increases or become 

impossible because of memory limitations. The SMO algorithm has been created with the goal of 

being faster than other methods. 

The idea behind SMO 

When we try to solve the SVM optimization problem, we are free to change the values of as long as 

we respect the constraints. Our goal is to modify so that in the end, the objective function returns the 

smallest possible value. In this context, given a vector of Lagrange multipliers, we 

can change the value of any until we reach our goal. 

 

The idea behind SMO is quite easy: we will solve a simpler problem. That is, given a vector

, we will allow ourselves to change only two values of , for instance, and . We 

will change them until the objective function reaches its minimum given this set of alphas. Then we 

will pick two other alphas and change them until the function returns its smallest value, and so on. If 

we continue doing that, we will eventually reach the minimum of the objective function of the original 

problem. 

SMO solves a sequence of several simpler optimization problems. 

How did we get to SMO? 

This idea of solving several simpler optimization problems is not new. In 1982, Vapnik proposed a 

method known as “chunking,” which breaks the original problem down into a series of smaller 

problems (Vapnik V. , 1982). What made things change is that in 1997, Osuna, et al., proved that 

solving a sequence of sub-problems will be guaranteed to converge as long as we add at least one 

example violating the KKT conditions (Osuna, Freund, & Girosi, 1997). 



Using this result, one year later, in 1998, Platt proposed the SMO algorithm. 

Why is SMO faster? 

The great advantage of the SMO approach is that we do not need a QP solver to solve the problem 

for two Lagrange multipliers—it can be solved analytically. As a consequence, it does not need to 

store a huge matrix, which can cause problems with machine memory. Moreover, SMO uses several 

heuristics to speed up the computation. 

The SMO algorithm 

The SMO algorithm is composed of three parts: 

 One heuristic to choose the first Lagrange multiplier 

 One heuristic to choose the second Lagrange multiplier 

 The code to solve the optimization problem analytically for the two chosen multipliers 

Tip: A Python implementation of the algorithm is available in Appendix B: The SMO Algorithm. All 

code listings in this section are taken from this appendix and do not work alone. 

The analytical solution 

At the beginning of the algorithm, we start with a vector in which

. The idea is to pick two elements of this vector, which we will name and

, and to change their values so that the constraints are still respected. 

The first constraint   means that   and . That is why 

we are forced to select a value lying in the blue box of Figure 50 (which displays an example where

). 

The second constraint is a linear constraint . It forces the values to lie on the red diagonal, 

and the first couple of selected and should have different labels ( ). 



 

Figure 50: The feasible set is the diagonal of the box 

In general, to avoid breaking the linear constraint, we must change the multipliers so that: 

 

We will not go into the details of how the problem is solved analytically, as it is done very well 

in (Cristianini & Shawe-Taylor, 2000) and in (Platt J. C., 1998). 

Remember that there is a formula to compute the new : 

 

with   being the difference between the output of the hypothesis function and the 

example label. is the kernel function. We also compute bounds, which applies to ; it cannot be 

smaller than the lower bound, or larger than the upper bound, or constraints will be violated. So

is clipped if this is the case. 

Once we have this new value, we use it to compute the new using this formula: 



 

Understanding the first heuristic 

The idea behind the first heuristic is pretty simple: each time SMO examines an example, it checks 

whether or not the KKT conditions are violated. Recall that at least one KKT condition must be 

violated. If the conditions are met, then it tries another example. So if there are millions of examples, 

and only a few of them violate the KKT conditions, it will spend a lot of time examining useless 

examples. In order to avoid that, the algorithm concentrates its time on examples in which the 

Lagrange multiplier is not equal to 0 or , because they are the most likely to violate the conditions 

(Code Listing 38). 

Because solving the problem analytically involves two Lagrange multipliers, it is possible that a 

bound multiplier (whose value is between 0 and ) has become KKT-violated. That is why the main 

routine alternates between all examples and the non-bound subset (Code Listing 39). Note that the 

algorithm finishes when progress is no longer made. 

Understanding the second heuristic 

The goal of this second heuristic is to select the Lagrange multiplier for which the step taken will be 

maximal. 

How do we update ? We use the following formula: 

 

Remember that in this case that we have already chosen the value . Our goal is to pick the whose

will have the biggest change. This formula can be rewritten as follows: 

 

with: 

 



So, to pick the best amongst several , we need to compute the value of step for each and select 

the one with the biggest step. The problem here is that we need to call the kernel function three 

times for each step, and this is costly. Instead of doing that, Platt came with the following 

approximation: 

 

As a result, selecting the biggest step is done by taking the with the smallest error if is positive, 

and the with the biggest error if is negative. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER-2 Literature Survey 

There are fundamental recipes to exhume novelties from content. They represents methodologies and 

gimmick growing acquainted with systems (1). The accompanying two areas edit to these 

methodologies. A. Representative Tactics Tectonic of the examination in unsupervised conclusion 

characterization using symbolic procedures makes maltreatment of accessible wordy worth. Turney 

(2) utilized pack of- words approach for assessment examination. In that approach, connections 

between the individual words aren't considered and a report is spoken to as a minor gathering of 

words. To decide those grades are joined with some total capacities. 

He introduces the extremity of a review in view of the normal semantic prelude of tuples separated 

from the look-see where tuples are idioms having descriptors or verb modifiers. He introduces the 

semantic prelude of tuples harnessing the internet quest Altavista. Kampeska. (3) harnessed the 

vocabular database WordNet (4) to decide the passionate substance of a word along polychrome 

measures. They pieced up a separation metric on WordNet and decided the semantic proem of 

descriptors. WordNet database comprises of words associated by first word relations. Baronial. (5) 

raised up a shell operating word space show formalism that beats the trouble in wordy bargaining 

assignment. It speaks to the In setting of a word alongside its general disbandment. Balashur. (6) 

presented Emote Net, an applied delineation of content. that stores the structure and the semantics of 

genuine occasions for a particular space. Emogine applied the idea of Finite State Automata to 

distinguish the passionate replies cranked by exercise. One of the members of Sem Eval 2007 Task 

No. 14 (7) exercised coarse grained and fine grainy ways to deal with distinguish assessments in news 

features. In coarse grainy approach, they performed double characterization of passions and in fine 

granular approach they grouped passions into polychromatic reaches. Knowledge base approach is 

institute to be sensitive due to the necessary of a huge vocabular database. Since social network 

generates huge quantum of data every second, sometimes larger than the size of available lexical 

database, sentiment analysis got tedious and incorrect. 

 

 

 



B. Machine learning techniques widget acing strategies use an instruction set and a test set for order. 

Tutelage set contains input work vectors and their comparing class names. using this prep total set, a 

type display is developed which whacks to order the. information highlight vectors into comparing 

class names. at that point a test set is operated to ratify the adjustment by foreknowing 

the class names of unobtrusive element vectors. rainbow jigger picking up literacy of methodologies 

like credulous bayes (n b). Last extreme entropy (me), and bolster vector machines (s v m) are . 

applied to arrange heartstrings (8). Dominos etal. (9) introduce that real bayes works legitimately for 

specific issues with really settled capacities. that's shocking as the central supposition of innocent 

bayes is that the capacities are fair. zhenniu etal. (10) presented a fresh eluding of the box new model 

wherein effective methodologies are exercised for work determination, weight Calculus and class. 

the new form is construct absolutely with respect to Bayesian arrangement of tenets. ideal presently 

weights of the classifier are balanced by form for employing consigliere trademark and specific 

capacity.' consigliere highlight's the records that 

speaks to a class and' specific element's the information that encourages in feting directions. the 

application of the bones weights, they figured the liability of every class and henceforth . ventured 

forward the Bayesian arrangement of rules. Barbosa teal. (11) outlined a 2- step programmed opinion 

assessment form for arranging tweets. they employed a knockabout instruction set to lessen 

the marking crack in developing classifiers. above all else, hey sorted tweets into peculiar and 

objective tweets. from that point forward, peculiar tweets are named as gigantic and negative tweets. 

Celik Yilmaz teal. (12) propelled an oratory principally hung expression grouping approach for 

homogenizing boisterous tweets. in oratory rested word grouping, idioms having. suchlike 

articulation is bunched and doled out typical souvenirs. They likewise used content handling systems 

like doling out comparable souvenirs for reckoning, html joins, punter identifiers, and objective 

business undertaking names for standardization. later to doing standardization, they harnessed 

probabilistic models to distinguish extremity vocabularies. they performed class the perversion of the 

boos texter classifier with these extremity wordbooks as capacities and bagged a de-escalated bungles 

bring. Wu etal. (13) proposed an affect break show for twitter assessment. in the event that username 

is deposited inside the capsule of a tweet, it's. far impacting development and it adds to affecting Shot. 

any tweet that begins with username is a rewet that speaks to a motivated movement and it adds to 

empowered probability. they establish that there is a solid relationship among these chances. Pak 



etal.(14) made a twitter corpus through mechanically storing up tweets the misemployment of twitter 

programming interface and routinely noting on the bones the use of feelings. exercising that corpus, . 

they erected an estimation classifier constitutionally hung at the multinomial innocent bayes classifier 

that utilizations n-gram and Pos Tickets as faculties. in that Approach, there's a hazard of mistake for 

the reason that heartstrings of tweets in preparing set are arranged simply largely grounded at the 

extremity of chords. the instruction set is in like manner less ace since it contains most straightforward 

tweets having Chords. 

There is various type  of  information  uploaded  and  shared  on  social  media  in  the  form  of  text,  

videos,  photos  and  audio  [15].  Social  media is rich with raw and unprocessed data and the 

improvement in technology, especially in machine learning and artificial  intelligence,  allow  the  

data  to  be  processed  and  converted  it  into  a  useful  data  that  they  can  benefit  most  business 

organization [16].  This  paper  focuses  to  provide  a  better  understanding  of  the  application  of  

sentiment  analysis  in  social  media  platform by examining related literature published between 

2014 to 2019.  Sentiment analysis is an approach that uses Natural  Language  Processing  (NLP)  to  

extract,  convert  and  interpret  opinion  from  a  text  and  classify  them  into  positive,  negative  or  

natural  sentiment  [17].  Most  of  the  previous  study  applied  sentiment  analysis  into  a  product  

or  movie review to better understand their customer and make the necessary decision to improve 

their product or services [18]. Scholars have been conducting a study on sentiment analysis since the 

last decade which most papers started to appear and rapidly growing after the year 2004 [19]. 

Sentiment analysis is divided into three different levels which are sentence level, document level and 

feature level. The purpose is to classify the opinion either from sentence, document or features into 

positive and negative sentiment [20].  There are 2 main methods of sentiment analysis have been 

identified which is a machine learning approach and lexicon-based approach. Machine learning 

approach utilized algorithms to extract and detect sentiment from a data while lexicon-based 

approach works by counting the positive and negative words that related to the data. Scholars have  

been  developing  a  new  effective  and  accurate  model  in  sentiment  analysis.  But  there  is  a  

challenge  arise  in  developing a model where most of it is design for the English language. But a 

recent study shows that there is sentiment analysis model design in other languages such as Korean 

[21], Thailand [22], Arabic [23], Malay [24], Portuguese [25] and  Chinese  [26]. 

 



CHAPTER-3 

                                                 Functionality of Project 

3.1 Data 

To gather the data many options are possible. In some previous paper researches, they built 

a program to collect automatically a corpus of tweets based on two classes, “positive” and 

“negative”, by querying Twitter with two type of emoticons: 

 

● Happy emoticons, such as “:)”, “:P”, “:-)” etc. 

 

● Sad emoticons, such as “:(“, “:’(”, “=(“. 

 

Others make their own dataset of tweets my collecting and annotating them manually which very 

long and fastidious. 

 

Additionally to find a way of getting a corpus of tweets, we need to take of having a 

balanced data set, meaning we should have an equal number of positive and negative tweets, but 

it needs also to be large enough. Indeed, more the data we have, more we can train our classifier 

and more the accuracy will be. 

 

After many researches, I found a dataset of 1578612 tweets in english coming from two sources: 

Kaggle and Sentiment140. It is composed of four columns that are ItemID, Sentiment, 

SentimentSource and SentimentText. We are only interested by the Sentiment column 

corresponding to our label class taking a binary value, 0 if the tweet is negative, 1 if the tweet is 

positive and the SentimentText columns containing the tweets in a raw format. 

 



 

Table 3.1.1: Example of twitter posts annotated with their corresponding sentiment, 0 if it is 

negative, 1 if it is positive. 

 

In the Table 3.1.1 showing the first ten twitter posts we can already notice some 

particularities and difficulties that we are going to encounter during the preprocessing steps. 

 

● The presence of acronyms "bf" or more complicated "APL". Does it means apple ? Apple 

(the company) ? In this context we have "friend" after so we could think that he refers to 

his smartphone and so Apple, but what about if the word "friend" was not here ? 

 

● The presence of sequences of repeated characters such as 

"Juuuuuuuuuuuuuuuuussssst", "hmmmm". In general when we repeat several 

characters in a word, it is to emphasize it, to increase its impact. 

 

● The presence of emoticons, ":O", "T_T", ":|" and much more, give insights about user's 

moods. 

 

● Spelling mistakes and “urban grammar” like "im gunna" or "mi". 

 

● The presence of nouns such as "TV", "New Moon". 

 

Furthermore, we can also add, 

 

● People also indicate their moods, emotions, states, between two such as, *\cries*, 



*hummin*, *sigh*. 

 

● The negation, “can't”, “cannot”, “don't”, “haven't” that we need to handle like: “I don’t 

like chocolate”, “like” in this case is negative. 

 

We could also be interested by the grammar structure of the tweets, or if a tweet is 

subjective/objective and so on. As you can see, it is extremely complex to deal with languages and 

even more when we want to analyse text typed by users on the Internet because people 

don’t take care of making sentences that are grammatically correct and use a ton of acronyms and 

words that are more or less english in our case. 

 

We can visualize a bit more the dataset by making a chart of how many positive and negative 

tweets does it contains, 

 

Figure 3.1.1: Histogram of the tweets according to their sentiment 

 

We have exactly 790177 positive tweets and 788435 negative tweets which signify that the dataset 

is wellbalanced. There is also no duplicates. 

 

Finally, let’s recall the Twitter terminology since we are going to have to deal with in the 

tweets: 

 



● Hashtag: A hashtag is any word or phrase immediately preceded by the # symbol. When 

you click on a hashtag, you’ll see other Tweets containing the same keyword or topic. 

 

● @username: A username is how you’re identified on Twitter, and is always preceded 

immediately by the @ symbol. For instance, Katy Perry is @katyperry. 

 

● MT: Similar to RT (Retweet), an abbreviation for “Modified Tweet.” Placed before the 

Retweeted text when users manually retweet a message with modifications, for example 

shortening a Tweet. 

 

● Retweet: RT, A Tweet that you forward to your followers is known as a Retweet. Often 

used to pass along news or other valuable discoveries on Twitter, Retweets always retain 

original attribution. 

 

● Emoticons: Composed using punctuation and letters, they are used to express emotions 

concisely, ";) :) ...".Now we have the corpus of tweets, we need to use other resources to 

make easier the preprocessing step. 

3.2 Resources 

In order to facilitate the preprocessing part of the data, we introduce five resources which 

are, 

 

● An emoticon dictionary regrouping 132 of the most used emoticons in western with 

their sentiment, negative or positive. 

 

● An acronym dictionary of 5465 acronyms with their translation. 

 

● A stop word dictionary corresponding to words which are filtered out before or after 

processing of natural language data because they are not useful in our case. 

 

● A positive and negative word dictionaries given the polarity (sentiment outofcontext) 

of words. 



 

● A negative contractions and auxiliaries dictionary which will be used to detect 

negation in a given tweet such as “don’t”, “can’t”, “cannot”, etc. 

 

The introduction of these resources will allow to uniform tweets and remove some of their 

complexities with the acronym dictionary for instance because a lot of acronyms are used in tweets. 

The positive and negative word dictionaries could be useful to increase (or not) the accuracy score 

of the classifier. The emoticon dictionary has been built from wikipedia with each emoticon 

annotated manually. The stop word dictionary contains 635 words such as “the”, “of”, “without”. 

Normally they should not be useful for classifying tweets according to their sentiment but it is 

possible that they are. 

 

Also we use Python 2.7 (https://www.python.org/) which is a programming language 

widely used in data science and scikitlearn (http://scikitlearn.org/) a very complete and useful 

library for machine learning containing every techniques, methods we need and the website is 

also full of tutorials wellexplained. With Python, the libraries, Numpy (http://www.numpy.org/) 

and Panda (http://pandas.pydata.org/) for manipulating data easily and intuitively are just 

essential. 

https://www.python.org/
http://scikit-learn.org/
http://www.numpy.org/
http://pandas.pydata.org/


3.3 Pre-processing 

Now that we have the corpus of tweets and all the resources that could be useful, we can 

preprocess the tweets. It is a very important since all the modifications that we are going to during 

this process will directly impact the classifier’s performance. The pre-processing includes 

cleaning, normalization, transformation, feature extraction and selection, etc. The result of 

preprocessing will be consistent and uniform data that are workable to maximize the classifier's 

performance. 

 

All of the tweets are preprocessed by passing through the following steps in the same 

order. 

3.3.1 Emoticons 

We replace all emoticons by their sentiment polarity ||pos|| and ||neg|| using the emoticon 

dictionary. To do the replacement, we pass through each tweet and by using a regex we find out 

if it contains emoticons, if yes they are replaced by their corresponding polarity. 

 

Table 3.3.1.1: Before processing emoticons, list of tweets where some of them contain 

emoticons. 



 

Table 3.3.1.2: After processing emoticons, they have been replaced by their corresponding tag 

 

The data set contains 19469 positive emoticons and 11025 negative emoticons. 



3.3.1 URLs 

We replace all URLs with the tag ||url||. There is about 73824 urls in the data set and we 

proceed as the same way we did for the emoticons. 

 

Table 3.3.2.1: Tweets before processing URLs. 

 

Table 3.3.2.2: Tweets after processing URLs. 



3.3.2 Unicode 

For simplicity and because the ASCII table should be sufficient, we choose to remove any 

unicode character that could be misleading for the classifier. 

 

Table 3.3.3.1: Tweets before processing Unicode. 

 

Table 3.3.3.1: Tweets after processing Unicode. 



3.4.1HTML entities 

HTML entities are characters reserved in HTML. We need to decode them in order to 

have characters entities to make them understandable. 

 

Figure 3.3.4.1: A tweet before processing HTML entities. 

 

 

Figure 3.3.4.2: A tweet after processing HTML entities. 

 

 

2.3.1 Case 

The case is something that can appears useless but in fact it is really important for 

distinguish proper noun and other kind of words. Indeed: “General Motor” is the same thing that 

“general motor”, or “MSc” and “msc”. So reduce all letters to lowercase should be normally done 

wisely. In this project, for simplicity we will not take care of that since we assume that it should 

not impact too much the classifier’s performance. 

 

Table 3.3.5.1: Tweets before processing lowercase. 



 

Table 3.3.5.2: Tweets after processing lowercase 

3.3.1 Targets 

The target correspond to usernames in twitter preceded by “@” symbol. It is used to address 

a tweet to someone or just grab the attention. We replace all usernames/targets by the tag ||target||. 

Notice that in the data set we have 735757 targets. 

 

Table 3.3.6.1: Tweets before processing targets. 

 

Table 3.3.6.2: Tweets after processing targets. 



2.3.2 Acronyms 

We replace all acronyms with their translation. An acronym is an abbreviation formed 

from the initial components in a phrase or a word. Usually these components are individual letters 

(as in NATO or laser) or parts of words or names (as in Benelux). Many acronyms are used in 

our data set of tweets as you can see in the following bar chart. 

 

At this point, tweets are going to be tokenized by getting rid of the punctuation and using 

split in order to do the process really fast. We could use nltk.tokenizer but it is definitely much much 

slower (also much more accurate). 

 

Figure 2.3.7.1: Top 20 of acronyms in the data set of tweets 

 

As you can see, “lol”, “u”, “im”, “2” are really often used by users. The table below shows the top 

20 acronyms with their translation and their count. 



 

Table 2.3.7.1: Top 20 of acronyms in the data set of tweets with their translation and count 



2.3.3 Negation 

We replace all negation words such as “not”, “no”, “never” by the tag ||not|| using the 

negation dictionary in order to take more or less of sentences like "I don't like it". Here like should 

not be considered as positive because of the "don't" before. To do so we will replace "don't" by 

||not|| and the word like will not be counted as positive. We should say that each time a negation 

is encountered, the words followed by the negation word contained in the positive and negative 

word dictionaries will be reversed, positive becomes negative, negative becomes positive, we will 

do this when we will try to find positive and negative words. 

 

Figure 2.3.8.1: A tweet before processing negation words. 

 

Figure 2.3.8.2: A tweet after processing negation words. 

 

 

2.3.4 Sequence of repeated characters 

Now, we replace all sequences of repeated characters by two characters (e.g: "helloooo" 

= "helloo") to keep the emphasized usage of the word. 

 

Table 2.3.9.1: Tweets before processing sequences of repeated characters. 



 

Table 2.3.9.2: Tweets after processing sequences of repeated characters 

 

  3.2 Machine Learning 

Once we have applied the different steps of the preprocessing part, we can now focus on the 

machine learning part. There are three major models used in sentiment analysis to classify a 

sentence into positive or negative: SVM, Naive Bayes and Language Models (NGram). SVM is 

known to be the model giving the best results but in this project we focus only on probabilistic 

model that are Naive Bayes and Language Models that have been widely used in this field. Let’s 

first introduce the Naive Bayes model which is wellknown for its simplicity and efficiency for 

text classification. 

3.4.1 Naive Bayes 

In machine learning, naive Bayes classifiers are a family of simple probabilistic classifiers 

based on applying Bayes' theorem with strong (naive)independence assumptions between the 

features. Naive Bayes classifiers are highly scalable, requiring a number of parameters linear in 

the number of variables (features/predictors) in a learning problem. 

Maximumlikelihood training can be done by evaluating a closedform expression (mathematical 

expression that can be evaluated in a finite number of operations), which takes linear time. 

It is based on the application of the Baye’s rule given by the following formula: 

 

 

Formula 2.4.1.1: Baye’s rule 



 

where D denotes the document and C the category (label), d and c are instances of D and C 

 

and P (D = d) = ∑ 

c∈C 

P (D = d|C = c)P (C = c) . We can simplify this expression by, 

 

Formula 2.4.1.2: Baye’s rule simlifed 

 

In our case, a tweet d is represented by a vector of K attributes such as d = (w1, w2, ..., wk)  



Computing P (d|c) is not trivial and that's why the Naive Bayes introduces the assumption that 

all of the feature values wj are independent given the category label c . That is, for i =/ j , wi and 

wj are conditionally independent given the category label c . So the Baye's rule can be rewritten 

as, 

 

Formula 2.4.1.3: Baye’s rule rewritten 

Based on this equation, maximum a posterior (MAP) classifier can be constructing by seeking the 

optimal category which maximizes the posterior P (c|d) : 

 

 

Formula 2.4.1.4: Classifier maximizing the posterior probability P(c|d) 

 

Note that P (d) is removed since it is a constant for every category c . There 

are several variants of Naive Bayes classifiers that are: 

 

● The Multivariate Bernoulli Model: Also called binomial model, useful if our feature 

vectors are binary (e.g 0s and 1s). An application can be text classification with bag of 

words model where the 0s 1s are "word does not occur in the document" and "word 

occurs in the document" respectively. 

 

● The Multinomial Model: Typically used for discrete counts. In text classification, we 

extend the Bernoulli model further by counting the number of times a word $w_i$ 

appears over the number of words rather than saying 0 or 1 if word occurs or not. 



 

● the Gaussian Model: We assume that features follow a normal distribution. Instead of 

discrete counts, we have continuous features. 

 

 

 

The likelihood P (wj|c) is usually computed using the formula: 

 

 

Formula 2.4.1.6: Likelihood P (wj|c) 

 

where count(wj, c) is the number of times that word wj occurs within the training tweets of class 

c , and |V | = ∑wj the size of the vocabulary. This estimation uses the simplest smoothing 

j 

method to solve the zeroprobability problem, that arises when our model encounters a word 

seen in the test set but not in the training set, Laplace or addone since we use 1 as constant. We 

will see that Laplace smoothing method is not really effective compared to other smoothing 

methods used in language models. 

3.3.2 Baseline 

In every machine learning task, it is always good to have what we called a baseline. It 

often a “quick and dirty” implementation of a basic model for doing the first classification and 

based on its accuracy, try to improve it. 

 

We use the Multinomial Naive Bayes as learning algorithm with the Laplace smoothing 

representing the classic way of doing text classification. Since we need to extract features from 

our data set of tweets, we use the bag of words model to represent it. 

 



The bag of words model is a simplifying representation of a document where it is represented 

as a bag of its words without taking consideration of the grammar or word order. In text 

classification, the count (number of time) of each word appears is a document is used as a feature 

for training the classifier. 

 

Firstly, we divide the data set into two parts, the training set and the test set. To do this, 

we first shuffle the data set to get rid of any order applied to the data, then we from the set of 

positive tweets and the set of negative tweets, we take 3/4 of tweets from each set and merge them 

together to make the training set. The rest is used to make the test set. Finally the size of the 

training set is 1183958 tweets and the test set is 394654 tweets. Notice that they are balanced and 

follow the same distribution of the initial data set. 

 

Once the training set and the test set are created we actually need a third set of data called 

the validation set. It is really useful because it will be used to validate our model against unseen 

data and tune the possible parameters of the learning algorithm to avoid underfitting and 

overfitting for example. We need this validation set because our test set should be used only to 

verify how well the model will generalize. If we use the test set rather than the validation set, our 

model could be overly optimistic and twist the results.To make the validation set, there are two 

main options: 

 

● Split the training set into two parts (60%, 20%) with a ratio 2:8 where each part contains 

an equal distribution of example types. We train the classifier with the largest part, and 

make prediction with the smaller one to validate the model. This technique works well 

but has the disadvantage of our classifier not getting trained and validated on all examples 

in the data set (without counting the test set). 

 

● The Kfold crossvalidation. We split the data set into k parts, hold out one, combine 

the others and train on them, then validate against the heldout portion. We repeat that 

process k times (each fold), holding out a different portion each time. Then we average 

the score measured for each fold to get a more accurate estimation of our model's 

performance. 



 

 

Figure 3.4.2.1: 10fold crossvalidation 

 

 

We split the training data into 10 folds and cross validate on them using scikitlearn as 

shown in the figure 3.4.2.1 above. The number of Kfolds is arbitrary and usually set to 10 it is 

not a rule. In fact, determine the best K is still an unsolved problem but with lower K: 

computationally cheaper, less variance, more bias. With large K: computationally expensive, 

higher variance, lower bias. 



 

We can now train the naive bayes classifier with the training set, validate it using the hold 

out part of data taken from the training set, the validation set, repeat this 10 times and average the 

results to get the final accuracy which is about 0.77 as shown in the screen results below, 

 

Figure 3.4.2.2: Result of the naive bayes classifier with the score representing the average of 

the results of each 10fold crossvalidation, and the overall confusion matrix. 

 

Notice that to evaluate our classifier we two methods, the F1 score and a confusion matrix. 

The F1 Score can be interpreted as a weighted average of the precision and recall, where an F1 

score reaches its best value at 1 and worst score at 0. It a measure of a classifier's accuracy. The 

F1 score is given by the following formula, 

 

Formula 2.4.2.1: F1 score 

 

where the precision is the number of true positives (the number of items correctly labeled as 

belonging to the positive class) divided by the total number of elements labeled as belonging to 

the positive class, 

 

 

Formula 2.4.2.1: Precision 

 

and the recall is the number of true positives divided by the total number of elements that actually 

belong to the positive class, 



 

Formula 2.4.2.1: Recall 

 

A precision score of 1.0 means that every result retrieved was relevant (but says nothing about 

whether all relevant elements were retrieved)  whereas a recall score of 1.0 means that all relevant 

documents were retrieved (but says nothing about how many irrelevant documents were also 

retrieved). There is a tradeoff between precision and recall where increasing one decrease the 

other and we usually use measures that combine precision and recall such as Fmeasure or MCC. 

 

A confusion matrix helps to visualize how the model did during the classification and 

evaluate its accuracy. In our case we get about 156715 false positive tweets and 139132 false 

negative tweets. It is "about" because these numbers can vary depending on how we shuffle our data 

for example. 

 

Figure 2.4.2.3: Example of confusion matrix 

 

Notice that we still didn't use our test set, since we are going to tune our classifier for 

improving its results. 

 

The confusion matrix of the naive bayes classifier can be expressed using a color map where 

dark colors represent high values and light colors represent lower values as shown in the 

corresponding color map of the naive bayes classifier below, 

 



 

Figure 3.4.2.4: Colormap of the confusion matrix related to the naive bayes classifier used. 

 

Hopefully we can distinguish that the number of true positive and true negative classified tweets is 

higher than the number of false and positive and negative tweets. However from this result we 



try to improve the accuracy of the classifier by experimenting different techniques and we repeat the 

same process using the kfold cross validation to evaluate its averaged accuracy. 

3.4.2 Improvements 

From the baseline, the goal is to improve the accuracy of the classifier, which is 0.77, in 

order to determine better which tweet is positive or negative. There are several ways of doing this 

and we present only few possible improvements (or not). 

 

First we could try to removed what we called, stop words. Stop words usually refer to the 

most common words in the English language (in our case) such as: "the", "of", “to” and so on. 

They do not indicate any valuable information about the sentiment of a sentence and it can be 

necessary to remove them from the tweets in order to keep only words for which we are interested. 

To do this we use the list of 635 stopwords that we found. In the table below, you can see the 

most frequent words in the data set with their counts, 

 

Table 2.4.3.1: Most frequent words in the data set with their corresponding count. 

 

We can derive from the table, some interesting statistics like the number of times the tags used in 

the preprocessing step appear, 

 



Recall that ||url|| corresponds to the URLs, ||target|| the twitter usernames with the symbol “@” 

before, ||not|| replaces the negation words, ||pos|| and ||neg|| replace the positive and negative 

smiley respectively. After removing the stop words we get the results below, 

 

Figure 2.4.2.2: Result of the naive bayes classifier with stopwords removed. 

 

Compared to the previous result, we lose 0.02 in accuracy and the number of false positive goes 

from 126305 to 154015 . We conclude that stop words seem to be useful for our classification 

task and remove them do not represent an improvement. 

 

We could also try to stem the words in the data set. Stemming is the process by which 

endings are removed from words in order to remove things like tense or plurality. The stem form 

of a word could not exist in a dictionary (different from Lemmatization). This technique allows 

to unify words and reduce the dimensionality of the dataset. It's not appropriate for all cases but 

can make it easier to connect together tenses to see if you're covering the same subject matter. It 

is faster than Lemmatization (remove inflectional endings only and return the base or dictionary 

form of a word, which is known as the lemma). Using the library NLTK which is a library in 

Python specialized in natural language processing, we get the following results after stemming 

the words in the data set, 

 

Figure 2.4.2.2: Result of the naive bayes classifier after stemming. 

 

We actually lose 0.002 in accuracy score compared to the results of the baseline. We conclude 

that stemming words does not improve the classifier’s accuracy and actually do not make any 

sensible changes. 

 

 

 

 



3.1 PROJECT DESING DIAGRAMS 

Fig. 1: An overview of the first approach 

 

 

Our model consists of two completely different, yet interdependent approaches. The fifirst approach 

uses Natural Language Processing, Emotion-Words Set and several textual features. It  

attempts to classify and score text according to the emotions present in it. The second approach uses 

standard classififiers like SMO and J48 to classify tweets.  

 

Fig. 2: Combining the first and the second approach  

 

 

The above flowchart showing the flow diagram of our project approach. Here two different yet 

interdependent approach of (NLP & EWS) and Classifier approach is being used whose flow is 

described in above flow chart. 



Finally, we combine both these approaches to propose a Hybrid approach to detect emotions in text 

more effectively. Note that, even though we are extensively using the tweets example throughout 

this paper, this algorithm is very generic and can be used to detect and quantify emotions in any piece 

of text.  

 After this, the Emotion-Category with the maximum fifinal score is decided as the fifinal 

EmotionCategory of the tweet (or the piece of text). An overview of the combined approach is shown 

in Fig 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER-4 

 Modules Description 

 

import re 

The Python module re provides full support for Perl-like regular expressions in Python. The re 

module raises the exception re.error if an error occurs while compiling or using a regular expression. 

We would cover two important functions, which would be used to handle regular expressions. But 

a small thing first: There are various characters, which would have special meaning when they are 

used in regular expression. To avoid any confusion while dealing with regular expressions, we 

would use Raw Strings as r'expression'. 

import pandas as pd 

pandas (all lowercase) is a popular Python-based data analysis toolkit which can be imported 

using import pandas as pd. It presents a diverse range of utilities, ranging from parsing multiple file 

formats to converting an entire data table into a NumPy matrix array. This makes pandas a trusted 

ally in data science and machine learning. 

import numpy as np 

 

It also helps to avoid namespace issues. 

 

import matplotlib.pyplot as plt 

 

matplotlib is a package, essentially a collection of related modules. At its simplest, a package can be 

just a directory containing the module files with an empty __init__.py file that tells python that the 

directory is to be treated as a package. A module B within package A (i.e. in the file 

structure A/B.py is imported as import A.B 

Seaborn is a library for making statistical graphics in Python. It builds on top of matplotlib and 

integrates closely with pandas data structures 

import seaborn as sns 

 

.Seaborn helps you explore and understand your data. Its plotting functions operate on dataframes 

and arrays containing whole datasets and internally perform the necessary semantic mapping and 

https://www.educative.io/edpresso/how-to-create-an-array-in-numpy
https://github.com/matplotlib/matplotlib/blob/master/lib/matplotlib/__init__.py
https://matplotlib.org/
https://pandas.pydata.org/


statistical aggregation to produce informative plots. Its dataset-oriented, declarative API lets you 

focus on what the different elements of your plots mean, rather than on the details of how to draw 

them. 

import string 

 

The string module contains a set of useful constants, such as ascii_letters and digits, and the module 

is often still imported for that reason. 

 

import nltk 

 

NLTK is a set of libraries for Natural Language Processing. It is a platform for building Python 

programs to process natural language. NLTK is written in the Python programming language.  It 

supports research and teaching in NLP or closely related areas, including cognitive science, empirical 

linguistics, information retrieval, artificial intelligence, and machine learning. NLTK provides an 

easy to use interface. 

 

import warnings 

Warning messages are typically issued in situations where it is useful to alert the user of some 

condition in a program, where that condition (normally) doesn’t warrant raising an exception and 

terminating the program. For example, one might want to issue a warning when a program uses an 

obsolete module. 

Python programmers issue warnings by calling the warn() function defined in this module. (C 

programmers use PyErr_WarnEx(); see Exception Handling for details). 

 

 

 

 

 

 

 

https://docs.python.org/3.4/library/string.html?highlight=string%20module#string-constants
https://docs.python.org/3/library/warnings.html#warnings.warn
https://docs.python.org/3/c-api/exceptions.html#c.PyErr_WarnEx
https://docs.python.org/3/c-api/exceptions.html#exceptionhandling


CHAPTER-5 

Results and Discussion 

A. Testing Results 

Similar to the training-set, we have created a testing-set of tweets by extracting tweets using some 

seed words and then using the fifirst approach to fifilter and label these emotional tweets. This set 

consists of a total of 900 tweets, where each Emotion-Category has around 150 tweets, so as to 

maintain uniformity. Also, it is ensured that all tweets in the testing set are different from those in 

the training set. The two chosen classififiers, on testing with the testing-set, gave the results as shown 

in Table VI and VII. The correctly classifified instances are the tweets for which the expected 

Emotion Category matches the actual Emotion-Category. As can clearly be seen from the tables, we 

have achieved a remarkable accuracy of 91.7% for SMO and 85.4% for J48, which proves the merits 

of our Emotion-Detection Algorithm. 

 

 

 

B. Surety Factor (Sf ) 

The surety factor indicates how confifident and assertive our analysis and results are, on a given 

text/tweet. Its value is low, when there is a mismatch between the results of the two approaches or 

when the text seems to lack any emotions. OnFig. 2: Combining the fifirst and the second approach 

 



the other hand, its value is high when the two approaches concur with each other in results, there are 

too many hits or when one of the emotion-scores is very high. The surety factor is calculated on a 

scale of 6 and is dependent on several 

factors: 

• 

Classififier label match: Whether the classififier label matches the category of the maximum score 

of the fifirst 

approach. (Value: True/False). 

• 

Max score: The value of the maximum of all the six scores. 

• 

Max percent: The relative percentage of the Max score over all six scores. 

• 

Second diff: The difference between the maximum and second maximum score value as a percent of 

the maximum. 

• 

Hits: The number of Emotion-words matched in the text. Surety factor is calculated differently for 

the following two cases: 

• If the hits in the tweet/text belong to the same Emotion Category, then only the factors Classififier 

label match and Max score are used. 

• If the hits in the tweet/text belong to different Emotion Categories, all fifive factors are considered. 

 

C. Visualization of Results 

 

In order to demonstrate the usefulness of the proposed Emotion-Detection Algorithm, we have 

implemented the following applications: 

 

• One-user Analysis (twitter account): We have developed an interface, which takes as input, the 

username of any twitter-user, processes all his/her tweets till date and displays a time-varying mood-

swings plot as well as the relative and absolute emotional distribution in the form of  pie charts. Fig. 

3 is an example of the varying happiness of a twitter-user over time. 

 

• Location Analysis: Using Google Maps API, a world map is displayed and each circle on it 

represents the emotional analysis of that particular region. The radius of each circle is proportional 



to the area of the region. This analysis is done for around 20 major cities in India, using the Location-

Areas Set (See Fig. 4) 

 

• Document Analysis: Another interface takes as input, entire documents or blocks of text, processes 

it, and displays the relative and absolute emotional distribution of the document in the form of pie 

charts. (See Fig. 5 for an example sentence.) 

 

 

 

 

 

 

 

 

 



CHAPTER -5 

Conclusion and Future Scope 

 

In this project, we have addressed the problem of classifying text into the six basic Emotion-

Categories, rather than just labeling them as positive or negative. Through our research and a 

self-generated reliable bag of emotional words (EWS), we can now effectively quantify various 

emotions in any block of text. We have also automatically generated a labeled training-set (without 

manually labeling the tweets) of emotionally-biased tweets using a keyword-matching approach, 

which was then used to train various classififiers. Moreover, we have also introduced the concept of 

Surety Factor to suggest the reliability of our output and the degree of usefulness and correctness of 

our results. Finally, we visualized our results using pie-charts, bargraphs and maps, and demonstrated 

the various applications of our analysis. In future, a system could be established for automatically 

updating the bag-of-words which we created, on the basis of new tweets and data analysed. Using 

our approach, many interesting apps can be created, such as an add-on to a 

social-networking site displaying the recent mood of each of your friends. Also, our analysis of 

Twitter can be extended to the development of a real-time system, analyzing mood-swings 

and emotions on Twitter. 
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