
A Project Report

On

Study and Development of Fully

Functional Ecommerce Website Using MERN Stack

Submitted in partial fulfilment of the

Requirement for the award of the degree of

BACHELOR OF TECHNOLOGY

(COMPUTER SCIENCE & ENGINEERING)

Under the Supervision of

Dr. S. Jerald Nirmal Kumar

(Associate Professor)

Submitted by

SONU SHARMA

(Admission No: 18SCSE1010481)

SCHOOL OF COMPUTER SCIENCE AND ENGINEERING,

GALGOTIAS UNIVERSITY, GREATER NOIDA

UTTAR PRADESH, INDIA

DECEMBER-2021

SCHOOL OF COMPUTING SCIENCE AND
ENGINEERING

GALGOTIAS UNIVERSITY, GREATER NOIDA

CANDIDATE’S DECLARATION

I hereby certify that the work which is being presented in the project entitled “STUDY AND

DEVELOPMENT OF ECOMMERCE WEBSITE USING MERN STACK” in partial fulfilment

of the requirements for the award of the BACHELOR OF TECHNOLOGY IN COMPUTER

SCIENCE AND ENGINEERING submitted in the School of Computing Science and Engineering

of Galgotias University, Greater Noida, is an original work carried out during the period of JULY-

2021 to DECEMBER-2021, under the supervision of Dr. S. Jerald Nirmal Kumar, Department of

Computer Science and Engineering Galgotias University, Greater Noida, Uttar Pradesh.

The matter presented in the project has not been submitted by me/us for the award of any other

degree of this or any other places.

SONU SHARMA (18SCSE1010481)

This is to certify that the above statement made by the candidates is correct to the best of my

knowledge.

 Supervisor

Dr. S. Jerald Nirmal Kumar

 (Associate Professor)

CERTIFICATE

The Final Project Viva-Voce examination of SONU SHARMA – 18SCSE1010481

has been held on _________________ and his work is recommended for the award of

BACHELOR OF TECHNOLOGY IN COMPUTER SCIENCE AND

ENGINEERING

Signature of Examiner(s) Signature of Supervisor(s)

Signature of Project Coordinator Signature of Dean

Date: December 2021

Place: Greater Noida

Statement of Project Report Preparation

1. Thesis title: STUDY AND DEVELOPMENT OF ECOMMERCE WEBSITE USING

MERN STACK

2. Degree for which the report is submitted: BACHELORS OF TECHNOLOGY.

3. Project Supervisor was referred to for preparing the report.

4. Specifications regarding thesis format have been closely followed.

5. The contents of the thesis have been organized based on the guidelines.

6. The report has been prepared without resorting to plagiarism.

7. All sources used have been cited appropriately.

8. The report has not been submitted elsewhere for a degree

 Name : Sonu Sharma

 (Admission No : 18SCSE1010481)

Abstract

Over the last few years, web development and web technologies have evolved

significantly. The advancements in the space of tools and technologies have enhanced

developers’ experience, user experience and other aspects of web applications. The rise

in popularity of React and Single Page Applications concept has made the MERN stack

(MongoDB, Express, React and Node) a popular tech stack to build web applications.

The thesis's goals were to describe and examine the concepts and functionalities of the

MERN stack and implement an online shop application based on the MERN stack. Each

technology comprising the MERN stack was explained in detail, along with assistive

packages and libraries to build the application, such as Redux and JWT.

In the end, a functional and production-ready online shop application was built and

deployed. The assessments and possible improvements of the application were also

mentioned. The thesis can be used as a comprehensive tutorial about the MERN stack,

which targets beginners and people wanting to learn more about the tech stack.

Keywords: MERN stack, React, Redux, Node, Express, MongoDB, JWT, online shop,

web development

Table of Content

Title Page No

Candidate Declaration I

Acknowledgement II

Abstract III

Contents IV

List of Tables V

List of Figures VI

List of Abbreviation VII

Chapter 1 Introduction 1

Chapter 2 Theoretical background 2

 2.1 MERN 2

 2.1.1 MongoDB 3

 2.1.2 Express 4

 2.1.3 React 5

 2.1.3.1 React Components 7

 2.1.3.2 React Hooks 6

 2.1.4 Node 9

 2.1.5 Relevance of MERN stack 11

 2.2 Mongoose 12

 2.3 Redux 13

 2.4 Authentication and authorization with JWT 14

Chapter 3 Application requirements and project setup 15

 3.1 Application requirements 15

 3.2 Development environment setup 16

 3.2.1 Git 17

 3.2.2 Visual Studio Code 18

 3.2.3 Node 19

 3.3 Application setup 20

 3.3.1 Frontend initialization 21

 3.3.2 Backend initialization 22

 3.3.3 Frontend and backend communication 23

 3.3.4 Mongoose connection 24

Chapter 4 Application implementation 25

 4.1 Backend development 26

 4.1.1 Mongoose models 27

 4.3.1.1 User model 28

 4.3.1.2 Product model 29

 4.3.1.3 Order model 30

 4.1.2 Backend user authentication and authorization 31

 4.1.3 Routing and APIs 32

 4.2 Frontend development 33

 4.2.1 Redux integration 34

 4.2.2 Home page 36

 4.2.3 User authentication 37

 4.2.3.1 Login page and login functionality 37

 4.2.3.2 Logout functionality 39

 4.2.3.3 Private routes and Admin routes 41

 4.2.4 Sign up page 43

 4.2.5 Product page and Cart page 44

 4.2.6 Checkout page and PayPal integration 45

 4.2.7 Admin pages 46

 4.3 Deployment on Heroku 47

Chapter 5 Discussion & Conclusion 48

 5.1 Conclusion and Future Scope 48

 References 49

List of Figures

S. No. Caption Page No.
1 3-Tier architecture 3
2 middleware 4
3 Functional component 6
4 Mongoose Map 10
5 JWT Auth 13
6 React Folder Structure 18
7 Server.js file 21
8 Updated Folder Structure 22
9 Mongoose Connection 24
10 User Model 26
11 Product Model 27
12 Order Model 29
13 Auth User 30
14 Protected Middleware 31
15 Admin middleware 32
16 Routers 32
17 Redux Store 33
18 Redux Integration 34
19 Home Page 35
20 Reducer Action 36
21 Data Flow 37
22 Logic of home page 38
23 Login Page 39
24 Logic of Login Page 40
25 Login Function 41
26 Logout Functionality 42
27 Route 43
28 Sign Up Page 44

List of Abbreviations

 API Application program interface

 CSS Cascading Style Sheets

 DOM Document Object Model

 HTML Hypertext Markup Language

 HTTP Hypertext Transfer Protocol

 HOC Higher-order components

 JSON JavaScript Object Notation

 MEAN MongoDB, Express, Angular, Node

 MERN MongoDB, Express, React, Node

 NPM Node Package Manager

 ODM Object Document Mapping

 ORM Object-relational mapping

 SEO Search Engine Optimization

 SPA Single Page Application

 SQL Structured Query Language

 VCS Version Control Systems

 VDOM Version Control Systems

 Virtual DOM Virtual Document Object Model

Chapter – 1 Introduction

In recent years, web development has advanced rapidly. Many tools and technologies

have been introduced to improve developers' experience, user experience, and web

application performance. Every web application can be constructed with numerous

different technologies. The term "stack", which indicates the combination of different

technologies used to create an application, received attention since the creation of

LAMP stack (Linux, Apache, MySQL and PHP). Nowadays, many options exist for

developers to choose when forming a stack to develop new applications.

With the recent developments in web technologies, the concept of Single Page

Applications (SPAs) has become popular. The idea which SPAs rely on is to avoid

reloading the application and re-fetching an entire web page's content from the server

to update the user interface of the application. Compared to the traditional way of

reloading the web page to get new data, SPAs improve the user experience by avoiding

constant reloads and enhancing application performance by only fetching related data.

The rise in popularity of SPAs has increased the usage of frontend frameworks and

libraries, since a lot of the work is carried out on the frontend. One of the earliest stacks

that embodied the adoption of SPAs was the MEAN stack; which consists of MongoDB

as a database, AngularJS as the frontend framework, Express as a web server and Node

as a runtime environment; was one of the most familiar stacks to build web applications

a couple of years back. React, an alternative to AngularJS, was introduced and quickly

gained traction in the frontend community, thus replacing the "A" in MEAN to form the

MERN stack.

Chapter – 2 Theoretical Background

In general, the term “stack” refers to a combination of different technologies to build

web applications, and MERN (MongoDB, Express, React, and Node) stack is one of the

most popular options. In this section, different technologies combining to form the

MERN stack were explained in detail of what they demonstrate, how they function and

connect. Furthermore, other tools that help to handle application data management, error

handling and user authentication and implement the end application were discussed and

examined.

 2.1 MERN

 MERN is one of the formations based on MEAN stack, which was first

introduced by an engineering team working at MongoDB in 2013. MEAN stack

abbreviates the combination of these languages and frameworks: M for

MongoDB, E for Express, A for AngularJS, and N for Node. By replacing the

popular framework AngularJS with the library React to cover the frontend and

combined as MERN stack, React can accompany the other technologies to create

JavaScript and JSON oriented applications. [2.]

Within the MERN stack, MongoDB acts as a document database, Express is a

web framework and web server, React works as a client-side library, and Node is

a runtime environment. Figure 1 below explains the architecture of the MERN

stack.

Figure 1. The 3-tier architecture (frontend, backend, database) of MERN stack [1].

 Based on Figure 1, it is evident that the MERN stack is a full-stack application

development solution, which employs the idea of the long-established 3-tier

architecture. The MERN stack consists of the client display tier with React,

application tier with Express and Node, and database tier with MongoDB. [1.]

 2.1.1 MongoDB

 Initially introduced publicly in 2007, MongoDB gradually stood out to be a handy

database technology for developers [3]. Unlike SQL, which is known as

Structured Query Language, MongoDB is a representative of the NoSQL family

generally and document- based language trees specifically. [4.] The terminology

for NoSQL is sometimes mentioned as non SQL or not only SQL. Nonetheless,

the majority concluded that NoSQL databases store data flexibly in a format of

JSON-like documents instead of those collected by relational databases [4].

While a SQL database will gather data in a combination of rows and columns, a

NoSQL database will organize information in terms of a document containing

arrays and objects. Small-scale projects might not reflect well the difference in

utilization of these two databases; nevertheless, a medium-sized program could

feasibly demonstrate the team members who directly manage and develop the

program, the benefits and difficulties of each database type. [5.]

2.1.2 Express

As stated in the documentation on Express's official website, Express is a minimal

Node framework that can deliver a robust set of functionalities for both web and

mobile applications [6]. Express is truly minimal by itself as it does little but relies

on middleware and implements an elementary layer on the application features

[4].

Middleware frankly demonstrates the software running in the middle way of the

request- response lifecycle. One or multiple pieces of middleware are executed to

perform precise tasks, such as authenticating requests or parsing the request body.

The task pipeline could be commonly started with the first middleware called to

process the request. That first middleware can end the request and send the

response to users or invoke the next middleware to continue the request. The same

process will go on as each followed middleware takes the result of the previous

one as arguments until the last middleware of the pipeline. [7.]

The figure below describes the process from running the request to the final

function sending out the response.

Figure 2. Request-response journey via middleware [7].

Referring to middleware, more specifically, it relates not only to functions that

are able to access not only to HTTP requests and return objects but also to sequent

actions in the request-response cycle of the application [4]. Precisely determined

above, a routing and middleware framework such as Express can execute any

lines of code, alter the request and result objects, unsubscribe to the request-

response cycle, and call the next middleware method queueing in the stack. If

there is such a case that the current middleware function is not capable of ending

the cycle, users can follow the instruction guided on Express's website, which is

to call a function written as next() to pass control to the next middleware approach

to avoid an unfinished cycle [8].

There are different types of middleware. One of the worth noting types of

middleware is router-level middleware can be used to handle routing in Express.

It is similar to any other middleware, but it is constrained to only be an instance

of express router. [28.]

2.1.3 React

React is a Javascript library released in 2013 by Facebook. [9.] Originally

composed to resolve complex, large-scale user interfaces with real-time changing

data and data binding, React keeps growing even stronger in developing a single-

page application and advancing frontend utilities for all levels of programmers.

One feature of React's rich feature set that satisfies large production applications,

which are required to be fast and performant, is virtual DOM or VDOM. This

concept presents a virtual representation of a user interface that React can

manipulate quickly without touching the real interface, using that virtual object

to determine what needs to be done with the real DOM tree and sync these virtual

and real trees to match [10].

Coming with React core ideas, other sturdy features introduced by Facebook

engineering team got welcomed as well by developers globally to tackle the other

problems of any web or mobile applications requiring responsive layout and

scalability of growing user data. Within this thesis's scope, only some of the major

React attributes are mentioned below in the list of React Components and React

Hooks.

2.1.3.1 React Component

Components are the core concept of React, where developers are encouraged to

break the user interface into independent and reusable sections. A React

component could be written in two ways: functional or class component and the

most effortless approach to compose a component is to write a functional one,

either as a Javascript function or using ES6 class to illustrate the component. In

React's viewpoint, these two techniques, which are demonstrated below, are

identical. [11.]

Figure 3. Functional component versus class component in React [11].

As depicted in Figure 3, functional components and class components can have

the same output. The h1 component with the word “Hello ...” is displayed, along

with the “name” props passed into the component.

Components can reference each other, as one component could be a parent

component that contains many other child components without any limit to any

level of whatever details. Whether it is a class or functional component, they both

follow one strict rule set by React: all React components are pure functions that

do not modify their props. Props are a set of inputs passed as parameters to a

component, while pure function illustrates the case the function executes the logic

without altering the arguments. Therefore, a React component operates as a pure

function, which respects its inputs and always returns the same outcome for the

same props. [11.]

2.1.3.2 React Hooks

Handling the global state with Redux is seemingly efficient and effective,

notwithstanding, managing local state within a component with Redux is

considered excessive and unnecessary. Classes from React have been doing their

job well in maintaining local states with a clear syntax structure since the

beginning, and it still does nowadays when applied regardless of project scale.

Moreover, an additional option to do the same thing as React classes, React

Hooks, was introduced by Sophie Alpert and Dan Abramov at React Conf 2018.

[12.]

 This change is a smooth transition from classic React classes, as

Hooks do not replace and involve any new React concepts, for example relating

to props, state, component life cycles. Hooks' introduction does not mean

goodbye to React classes either; developers and project managers are free to

decide whether they want to try something new and move forward or stay with

the same syntax they have been working. Hooks at first might initiate a confusing

impression, but in the end, the logic and objectives are not anywhere far away

from the core ideas of classes. In practice, one can say that React Hooks have

diminished the number of coding lines as well as temporarily removed the use of

the keyword "this". There are indeed more dissimilarities than just the appearance

and the total number of lines.

React Hooks introduces State Hook, which is also known as the useState hook,

which handles component level state management. To be more precise, useState

is a hook that hooks into React's state by initializing a state variable, which is

preserved by React. This hook receives and sends two values as results: current

state and a function to change it. With useState hook, the component state can be

initialized, used, and updated easily. [13.]

Another key hook that needs attention is Effect Hook, which is better known as

useEffect. While useState deals with state, useEffect helps programmers handle

component life cycles. The issue of breaking related logic and data into several

class life cycles, for instance, componentDidMount, componentDidUpdate,

componentWillUnmount, has been well covered in Effect Hook. A React

component can embrace multiple effects to separate data manipulation concerns.

[13.]

One thing that React classes miss while Hooks have the answer is sharing

functionality logic. To share stateful, visual, or non-visual logic previously before

Hooks, programmers either choose higher-order components (HOC) or render

props patterns, which expects adjusting the component hierarchy accordingly and

makes the application more troublesome to follow. Hooks, on the other hand,

allow developers to reuse logic without reshaping the component structure. [12.]

2.1.4 Node

Despite being a newly-born technology from 10 years ago, Node. (or Node.js)

has proven itself to be a vital JavaScript runtime environment that leverages the

popularity of server- side JavaScript [14]. A runtime environment is neither a

language nor a framework; nevertheless, it is a powerful tool built on Chrome's

V8 engine, which also runs with Javascript [4]. Using an event-driven,

asynchronous, and non-blocking I/O (input/output) model, Node supports

developers with another option to build lightweight and real-time applications

besides the standard path of waiting and serving requests [4].

For developers who focus heavily on Javascript, NodeJS brings them the perks of

building an application written in their favorite programming language in both

backend and frontend [15]. To tell further about what other benefits Node also

delivers, programmers feasibly highlight the Node package manager or npm,

which gives access to not thousands but hundreds of thousands of packages

registered in Node's system [4]. The npm registry was considered one of the

world's largest package registry with more than 350,000 packages noted in 2017,

which many of them are open source and developed by developers around the

globe [16].

2.1.5 Relevance of MERN Stack

MERN stack is not the only name in the list of combined technologies to develop

web applications. To name a few, MEAN (using MongoDB, Express, Angular,

NodeJS), LAMP (using Linux, Apache, MySQL or MongoDB, PHP), Django

(using Python, Django, Apache, MySQL) [17].

There are different reasons why MERN stack is a popular and well-adopted tech

stack to build web applications. MERN stack focuses on a single code base using

Javascript and JSON, enabling developers to dwell more profoundly in a specific

programming language with and enhancing team communication and workflow

throughout various pieces of the whole web application. Stack consistency also

indicates less time to build a working product, less struggle to further progress,

extend, and maintain the application. Last but not least, each piece of the MERN

stack is associated with a large community supporting behind, adding

contribution to help grow the technologies and support for programmers at any

level. Plenty of open source materials are available such as documentations,

customized packages, add-on libraries. [4.]

2.2 Mongoose

Mongoose is not a part of MongoDB, but rather an object document mapping

(ODM) library to enhance working with Node and MongoDB [18]. Not only does

it deliver schema validation and data relationship management, but it also

connects the objects in code and objects in MongoDB [19]. Figure 4 below

describes the connection between Mongoose and others within an application:

Figure 4. Mongoose maps objects between Node and MongoDB [19].

As depicted in Figure 4, Mongoose is usMed for Node to connect to MongoDB

via object mapping. Mongoose is then connected with MongoDB via a Mongo

Driver. Because of the connection between Mongoose, Node and MongoDB, data

flow capability is ensured. [19.]

Similar to other ODM libraries, the first step to kick off with Mongoose is a

schema [20]. A schema clarifies the data structure and property casting and other

practices listed by Mongoose's documentation page: instance methods, compound

index, static Model methods, and middlewares [20]. When the first step is

completed, those created schemas will map to MongoDB collections and shape

each collection's data documents [20]. The second step that programmers need to

follow is to produce a Mongoose model. Models are schema's compiled

constructors, whose primary duties are generating and scanning Mongo database's

documents. Other abilities of models worth mentioning are querying, removing,

and updating documents in the database [21].

2.3 Redux

State management perhaps is not a big or the most prioritized issue to small-scale

projects where data from users, server responses, and cached data do not slow

down or break the limit that the web browser can handle. Notwithstanding, when

the application grows, managing state becomes a real pain for further developing

and debugging, especially when two concepts of asynchronicity and mutation are

mixed. Asynchronicity defines several changes in an asynchronous sequence,

even though the mutation clarifies application state changes. These two concepts

are usually put together, in which unpredictable events or response waiting time

come into play and might likely show unexpected behaviors. [22.]

Constructed and developed by Dan Abramov in 2015, Redux was proposed to

solve the above problem by turning mutation predictable without affecting the

asynchronicity's advantages [22]. To be more detailed, Redux stores state in a

single source of truth and requires a strict structure on how state modification can

occur, where reusable and pure functions are in play. Instead of altering the given

object's value, pure functions return the same new values based on the provided

arguments wherever they are called. Therefore, Redux allows a more

straightforward debugging process, testing, code maintenance, and a smoother

developing experience personally or in teamwork [23].

Another outstanding factor that Redux was chosen is its simplicity in utilizing

plainly Javascript objects and functions. It could combine well with React and

other frontend libraries or frameworks, for instance, AngularJS, Angular, VueJS,

Polymer, Ember. To add more points to its flexibility, Redux runs on various

environments like browser, server, and native. [23]

Redux's core concept spins around two words: reducer and action. To simplify

the terms, every mutation of the state is called an action, and reducer is the pure

function where it ties the state and related actions. To start the Redux process,

developers need to dispatch an action to mutate the state, which is written as a

Javascript object, involving the action name and other information, if necessary,

to describe the action in more detail. The second thing to handle is to write a

reducer that accepts state and action as parameters and returns the new state. As

a result of a pure function, reducers' returned outcome is always the same

expected value, making state immutable and following the strict guidelines

proposed by Redux. [24.]

2.4 Authentication and authorization with JWT

Authentication is the procedure of finding out who the user is, whereas

authorization is the procedure of permitting what the user can access.

Authentication is typically done before authorization. After identifying who the

user is, access to some resource is either allowed or rejected. [25.]

There are different ways to implement authentication and authorization for web

applications, where the most battle-tested and standard technique is to use

sessions to handle user status both on client and server [4]. However, a later

published technology called JSON Web Token (JWT) has implemented a new

concept of a stateless mechanism in which the user status is stored [4]. Figure 5

below explains the general flow of the mechanism:

Figure 5. JWT Auth Flow [4].

As depicted in Figure 5, firstly, when a upser logs in, the server creates a JWT

token signed using the user detail entered and a secret key. Afterward, the token

will be sent to the client to be kept in a cookie or local storage, thus handing user

state maintenance to the client. After signing in successfully, in any request to

protected endpoints, the token must be attached to the Authorization request

header following the format of “Authorization: Bearer <JSON Web Token>".

When the server handles the requests to protected endpoints, it will verify the

token to check if it is valid. If that is the case, access is given to the user.

Otherwise, an error occurs. [4.]

Chapter 3 Application requirements and project setup

The thesis aimed to create an online shop application to examine and explore the

MERN stack’s modern practices and core concepts. This section was dedicated

to identifying and clarifying the requirements for the online shop application, an

explaining the development environment setup and the initial application setup.

After carefully researching a list of online shopping websites and interviewing

his network on ecommerce, the thesis author has come up with a list of

requirements for his application. Based on the principal concerns regarding an

ecommerce website's functionalities, the application performance is divided into

three categories of users based on their needs and level of access: visitor, logged

user, and admin.

First of all, any visitors who pay a visit to the application should be able to view

the list of products together with each item's details, including images, description

and price, while also being able to search for products by product name.

Meanwhile, not only can logged in users do what visitors are capable of, but also

have access to more views such as logging in and out screens and the page to

change contact details. They could add products to the shopping cart, pay the

shopping receipt via Paypal, view their orders, and check the order delivery

process. Lastly, admin is the user role holding the full access to the application.

On top of all views and functionalities that visitors and logged in users can

approach, the admin manages the application by adding, removing, editing the

product database, or the user database.

3.2 Development environment setup

Before using the MERN stack to build the application, it was necessary to set up

the development environment so that technologies and tools work well together,

in association with helping to improve the development flow.

3.2.1 Git

A development workflow needs to contain a version control system that facilitates

collaboration, code sharing, and reviewing code changes [26]. A version control

system (VCS) monitors the changes' history and allows developers to contribute

code and fix bugs to assure that it is always possible to go back to any previous

version [26]. Based on the latest Stack overflow developer survey, Git is the most

popular VCS in the world[26]. As a result, Git was installed and used for version

control while developing this application.

3.2.2 Visual Studio Code

In choosing the most suitable text editor, Visual Studio Code (VS Code) stands

out to be a free and open-source option that operates on macOS, Linux, and

Windows, which Microsoft released in 2015. [27.] In a few years, VS Code has

quickly acquired fame in the developer community with many outstanding

features. Those can be listed as built- in support for Javascript and Node

development, support for hundreds of languages, Intellisense, syntax

highlighting, and a built-in terminal to ease the development process [27]. VS

Code was then chosen as the text editor for the development of this application.

3.2.3 Node

The backbone of the backend server of the application is Node. Node needs to be

installed locally in the system to develop the application. At the time of writing,

Node has the latest stable version of 12.19.0, and the current version with the

latest features is 15.0.1. The latest version of 15.0.1 was installed locally to take

advantage of the latest features of Node, such as the usage of ES Module.

3.3 Application setup

After setting up the development environment, the basic setup of the application

was built. The frontend of the application was initialized, followed by the setup

of the backend. The connection between the frontend and the backend of the

application was then formed correspondingly.

3.3.1 Frontend initialization

Setting up a typical working React application from scratch might be a daunting

task, which often consists of configuring and setting up the Webpack build

pipeline besides Babel to trans pile the code. Create React App is a tool created

to quickly establish a React application boilerplate to ease the frontend

development with React. For the application, a Create React App boilerplate was

formed by using the command in Listing 1.

npx create-react-app frontend

Listing 1. Command to create the Create React App boilerplate

After running the above command, the frontend boilerplate was set up without

configuration and generated in the folder named "frontend" of the application.

The folder's structure is precisely demonstrated in the following Figure 6:

 Figure 6. Structure of the React frontend folder.

In the React frontend folder, as shown in Figure 6, the structure includes the

"node_modules" folder, which has the installed dependencies, and the "public"

folder that contains all the static files. The structure continues with the "src" folder

that covers the application components. Besides, the package.json file that lists

dependencies and their respective versions, stores metadata of the frontend, and

runs defined scripts, is instantiated.

The package.json file contains scripts that can be executed to run, build or develop

the application. Listing 2 illustrates the possible commands that come built-in

with Create React App:

"scripts": {

"start": "react-scripts start", "build": "react-scripts build", "test":

"react-scripts test", "eject": "react-scripts eject"

},

 Listing 2. Built-in commands of Create React App in package.json folder.

Listing 2 illustrated commands to start, build, test, or eject the frontend. To start

the application on http://localhost:3000 as the default port of the boilerplate,

developers can simply change the directory to go inside the "frontend" folder and

run "npm start" on the terminal, which will run the "start" command. Inside the

src folder, the index.js file is the main Javascript entry point of the application's

frontend. On the other hand, the index.html file inside the "public" folder is the

page template for the React frontend of the application.

import React

from 'react'

import ReactDOM

from 'react-

dom' import

'./index.css'

import App from './App'

ReactDOM.render(<App />, document.getElementById('root'))

Listing 3. Content of index.js file.

According to Listing 3's file content, the App component is rendered by the

ReactDOM.render method in place of the element that has the id of "root", which

is an empty HTML div element inside the index.html file. Initially, the browser

reads the index.html file with the id of "root", then it will render the App

component, which is the main component of the frontend of the application.

Since React is a library following the Single Page Application (SPA) paradigm,

it is crucial to have the ability to navigate between pages without reloading the

page to improve user experience. Taking care of the same concern, React Router

shows up to be a useful and popular package for React to handle routing and

navigation throughout the frontend. The "react-router-dom" package needs to be

installed using the "npm install react-router- dom" command to use React Router.

More details on using React Router in the frontend of the application are

displayed in the listing below.

import { Route }

from "react-router-

dom"; const

HomeScreen = () =>

<div>Home</div>

const ProductScreen = () => <div>Product A</div>

const App = () => (

<BrowserRouter>

<Route path='/' component={HomeScreen} exact />
<Route path='/product/:id'
component={ProductScreen} />

</BrowserRouter>
);

 Listing 4. Usage of React Router package.

As can be seen from Listing 4, React Router operates with the BrowserRouter

component, which covers multiple Route components carrying a separate React

component passed in. The BrowserRouter component provides all the context of

routing to the React Router components declared inside it, where the Route

component renders a component if the URL path matches the route's path. To test

that React Router is working well, it is possible to navigate to

“http://localhost:3000/”, which is the "/" path that matches the first route, then the

"Home" text inside the HomeScreen component will be shown.

3.3.2 Backend initialization

To start the work on the backend, a package.json file was created to keep track of

dependencies, document the project, run commands, and initialize the backend.

The command in Listing 5 was run from the root folder to prompt a series of

questions to gather the project's information, such as the author, license, and

project name. Then a package.json was generated automatically.

 npm init

Listing 5. Command to initialize the backend.

Subsequently, a file called server.js was added to be the entry of the application's

backend, whereas "express" and "dotenv" packages were installed as

dependencies. The content of the initial server.js file assembled at the beginning

of setting up the backend is demonstrated in Figure 7.

Figure 7. Content of initial server.js file.

From Figure 7, the "express" module was imported using CommonJS import

syntax on the line 1, followed by the express() function initiating the server

application on line 4. On line 2, the “dotenv” package was also imported and

initialized so that application secrets such as tokens or API keys in the ".env" file

can be stored and kept out of the git history for security reasons. The application

starts the server that connects to port 4000, then logs "Server is running on port

4000" from the console. The application responds with "API is running" for the

requests coming to the root URL afterward.

For Node and Express development, in the expectation of putting ESModule

syntax into service, as shown in the commented out line 3 of Figure 7, which is a

more modern way of importing and exporting files instead of CommonJS syntax,

the update in Listing 6 was added to the root package.json file.

{

...

"type": "module",

...

}

Listing 6. Update to enable ESModule syntax for Node and Express development.

As shown in Listing 6, the "type" of "module" was set in the package.json file,

which enabled ESModule for Node and Express development. After creating a

working server, some folders were created in the root of the project, illustrated in

Figure 8.

 Figure 8. The updated folder structure of the application.

Based on Figure 8, the project's root remained the backend of the application and

backend related dependencies would be installed in the root package.json file.

The "config" folder hosts the file containing the MongoDB connection, the

"controllers" folder was added to contain controllers for the backend, the

"models" folder contains models, and so on.

3.3.3 Frontend and backend communication

The proxy from Create React App was used for the frontend to communicate with

the backend in a different port. Listing 7 shows the configuration installed to the

frontend package.json file.

"proxy": "http://localhost:4000"

 Listing 7. Proxy to enable communication from frontend to backend.

From Figure 7, proxy from Create React App is connected to the backend server,

which runs on port 4000. As a result, the frontend and backend communication is

then formed. Furthermore, it was necessary to create scripts to run the application

seamlessly. The "nodemon" module was added to continually watch changes to

the server code so that it is not necessary to keep resetting the server. The

upcoming Listing 8 presents the commands to run the frontend and the backend

of the application:

"scripts": {

"server": "nodemon server",

"client": "npm start --prefix frontend",

"start": "concurrently 'npm run client' 'npm run server'"

},

Listing 8. Commands to run the application.

In Listing 8, the command to start the backend is "npm run server", and the

command to start the frontend is "npm run client". It is critical to run both the

backend and the frontend of the application simultaneously in order for the

application to work. Therefore, the "concurrently" package is employed to run

both the backend and the frontend starting commands simultaneously.

3.3.4 Mongoose connection

For the sake of connecting the MongDB database to the application, a tool called

Mongoose is utilized. As discussed in section 2.2, Mongoose is an Object Data

Modelling package for Node which lets developers construct a Model and a

schema for different database resources. Figure 9 below displays how Mongoose

connection is formed:

Figure 9. Mongoose connection.

According to Figure 9, the connectDatabase is first created, which will form the

Mongoose connection using the MONGO_URI environment variable. After that,

the function is imported into the server.js file and ran to connect the application

to MongoDB and Mongoose. After trying to run the server, if the connection is

successful, the success message will include "MongoDB Connected: ..." and

displayed on the command line. Otherwise, an error message will be shown along

with the error returned from Mongoose.

Chapter 4 Application implementation

The online shop application's implementation process consisted of three steps.

First, backend development was conducted. Afterward, the frontend development

took place, and finally, the deployment of the application took place. All those

steps were explained in detail in this section.

4.1 Backend development

The backend development of the application consisted of creating Mongoose

models creation, backend user authentication and authorization, and the creation

of routing and APIs.

4.1.1 Mongoose models

A Mongoose schema specifies the document structure stored in MongoDB,

whereas a Mongoose model is formed by wrapping a Mongoose schema to create

an interface to the MongoDB database for querying, creating, deleting, or

updating the records. There are three models in total in the application: user,

product, and order models.

4.3.1.1 User model

Figure 10 below displays the details of the user model. The instance of Mongoose

schema is instantiated and called userSchema, which includes the schema

definition and business logic to create the user model. The user schema has four

required fields: name, email, password, and isAdmin. Email is set to be unique

because there must not be many people having the same email address. The

“timestamps” second argument to mongoose schema is set to true so that

Mongoose generates createdAt and updatedAt fields automatically so that it is

convenient to check when the data is changed or constituted if necessary. The

"isAdmin" field has a boolean value and indicates whether the user is admin or

not, and it is defaulted to false.

Figure 10. User model.

The schema in Figure 10 is later modeled to formulate the user model, which is

exported for the rest of the server code to reuse. On line 13, a "pre-save" hook

that will run before saving a document to the database is attached to the user

schema. For security reasons, passwords must not be stored in the database as

plain texts and must always be encrypted. The bcryptjs library was installed to

handle encryption and comparison of passwords in this application. On line 18, a

salt (random characters) to add to the hashed password was drawn by using the

genSalt() method of bcrypt, which took in a number of generation rounds. At a

subsequent time, the salt was passed to bcryptjs's hash() function, and the

encrypted password was assigned to the password that would be saved to the

database. In spite of that, the password field's encryption is only handled if the

password has been modified or has only been sent for the first time. Therefore, a

check method was introduced from line number 14 to 16 of Figure 10 to examine

if the password is not changed. For instance, if a user updates only the name field

or email field but not the password, the next() function will be called, and the

application moves on and does not update the password. Otherwise, the

application will create a new hash, and the user will not be able to login.

From line number 22 to 24 of Figure 10, an instance method called

"matchPassword" is attached to the user schema. The method provides a

comparison between the password that the user enters when logging in and the

encrypted password in the database by using the compare() method of bcryptjs.

Since password encryption is a one-way flow for security reasons, meaning that

it is impossible to decrypt an encrypted password to be plain text, the compare()

method enables comparing the passwords to assess if the user entered the correct

password.

4.3.1.2 Product model

Figure 11 explains the details of the product model. The instance of the Mongoose

schema called productSchema was initialized, which encapsulated the product

model's business logic.

 Figure 11. Product model.

The product schema contains numerous fields related to the product, as shown in

Figure11. It contains name, image, brand, category, product description, price, and

the product count in stock. Furthermore, it contains the user who created that

product, in the form of a Mongoose Schema ObjectId with a direct reference to the

User model. All fields in the product schema are required.

4.3.1.3 Order model

Compared to the user and product schemas, the order schema has more fields and

looks more complicated. Figure 12 indicates the structure of the order schema

alongside the exporting of the order model.

 Figure 12. Order model.

As exhibited in Figure 12, the order schema has the keys of shippingAddress,

paymentMethod, paymentResult, taxPrice, totalPrice, and shippingPrice. Also,

the order schema has isPaid key, which indicates whether the order is paid for in

conjunction with isDelivered key, which shows if the order is delivered. The order

schema also has paidAt and deliveredAt, which present the time of payment and

delivery. Similar to product schema, the order schema includes the user field

representing the user who set up that product with a direct reference to the User

model. The orderItems field is an array which includes the ordered items.

4.1.2 Backend user authentication and authorization

When a request is made to the Express server, it is possible to have a middleware

that can access anything in the request and response object. Listing 9 reveals the

addition of a middleware in the application.

app.use(express.json())

Listing 9. A middleware connected in the server.js file.

The express.json() middleware, which parses the requests coming with JSON

payload, was utilized in the application. As discussed in section 2.1.2, it is also

possible to use router-level middleware, but it has to be an instance of

express.Router() function. The usage of router-level middleware is illustrated in

Listing 10.

import express from "express";

import {authUser} from

"./controllers/userController.

js" const authRouter =

express.Router();

authRouter.post("/login",

authUser);

app.use('/api/auth', authRouter)

Listing 10. Using router-level middleware in server.js.

The authRouter is initialized as an instance of express.Router(). Afterward, for

requests coming to "/api/auth", the authRouter will handle the routing for child

routes inside it. For example in Listing 10, when the user goes to

"/api/auth/login", the only child route of authRouter, the authUser controller will

be used to handle requests.

The only one route for user login in this application is the "/api/auth/login" route

with POST method. From Listing 10, the authUser() function acts as the

controller for this route. When a user logs in through this route, the user's email

and password will be checked against the database. Afterward, JWT will be used

to grant access to certain parts and protected routes in the API. The application

instantiates and signs a JWT with a secret key when a user logs in, then sends it

back to the client to be used and stored in the client. If the user needs to access

any protected route, the token can be sent in the headers, and the server will

decode the token with the same secret key to verify that the token is valid. Figure

14 displays the logic of the authUser() controller.

Figure 13. Logic of authUser() controller.

As shown in Figure 13, on line 10, the user entry is checked in the database using

email. If a user with that email exists, the password user entered is checked to see

if it matches the password entry stored in the database on line 12. On line 18, if

the user is successfully verified, the application will send back a JWT token that

is signed using the user's unique _id that is automatically generated by MongoDB

and the secret key. The generateToken() method creates a signed JWT with a

secret key that will expire in 30 days. The authUser() controller sends the JWT

token back so that if the user accesses a protected route on the server, the user can

send the JWT token on the headers based on the convention "Authentication:

Bearer <TOKEN>".

For user authorization, a middleware named "protected" was called into play to

restrict only logged in users to access the endpoints that require logged-in users.

Listing 11 points out the usage of "protected" middleware.

router.route('/api/user/profile').get(protected

, getUserProfile)

Listing 11. Usage of "protected" middleware.

The route called "/api/user/profile" in Listing 11 is employed to display the user

profile for a logged-in user. The route is guarded with the "protected" middleware

to only allow logged-in users to access the route. The complete code of

"protected" middleware is listed in Figure 14.

Figure 14. The "protected" middleware.

As shown in Figure 14, the first request headers were checked to see if the

authorization header is in the request. After that, on line 12, the JWT token is

extracted from the authorization header. Thereupon, the JWT token is decoded

using the JWT's verify() function to obtain the user id from the JWT token. If the

JWT is invalid, the verify() function will error out, and the error will be sent back

to the client. Afterward, the middleware checks if there is any user in the database

that has the same user id. If the user with the same user id in the database is found,

the middleware will allow the user to access the route. On the other hand, the

request object's "user" field will be populated with the found user entry in the

MongoDB database to be used by the middlewares that come after this, which is

called "admin". Figure 15 below displays the "admin" middleware:

 Figure 15. The "admin" middleware.

 As displayed in Figure 16, on line 2, the "admin" middleware first checks if the

"user" field is in the request object, and it has a truthy "isAdmin" flag. If the test

passes, the user is an admin, and the user can access the route. The usage of the

"admin" middleware is presented in Listing 12 below:

router.route('/api/user').post(registerUser).get(prote

cted,admin, getUsers)

Listing 12. Usage of "admin" middleware.

From Listing 12, the "admin" middleware is placed after the "protected"

middleware so that the "protected" middleware can pass along the "user" object,

which represents the user who is accessing the route. Afterward, the "admin"

middleware takes the user object appended to the request object by the "protected"

middleware, and checks if the "isAdmin" field in the user object is true, which

indicates that the user is an admin. If that is the case, the "admin" middleware will

permit the user to access the protected route.

4.1.3 Routing and APIs

To better structure router-level middlewares, in this application, all the router-level

middlewares are held in the "routes" folder. Figure 16 below explicates the usage

of router-level middlewares in the application:

Figure 16. Routes and importing router-level middleware.

Figure 16 shows four main routes of the application: product, auth, user, and order

routes. All routes, except the auth route, have multiple sub routes inside it. A sub

route may deal with GET, POST, PUT or DELETE requests, and can be gated to

prevent unauthorized users from accessing it. For instance, the route

"/api/users/profile", which is a sub route of "/api/users", can only be accessed by

logged in users, therefore it is guarded with the "protected" middleware.

4.2 Frontend development

The development of the application's frontend included the Redux integration,

frontend user authentication, Paypal integration, and the development of various

different pages in the application.

4.2.1 Redux integration

Redux is used to store the global state in this project. For example, some pieces of

state, such as the store products are called in many places, making sense to make

them available to all components. Even though it is possible to put all the state to

the top level component and pass pieces of state down through props, it will get

messy for an application of this size. To integrate Redux into the application, the

Redux store was first set up. Figure 17 displays the creation of the application's

Redux store:

Figure 17. The Redux store of the application.

As explained in Figure 17, on line 6, the main reducer was initialized by combining

smaller reducers, each controlling a piece of state in the application. Afterward, the

store was implemented using the createStore() function from Redux, which took

in the main reducer, the initialState, and the enhancer composed of the Redux dev

tool and the redux-thunk middleware. The Redux dev tool helps visualize the

Redux store on the browser while developing the application, while the redux-

thunk middleware provides the ability to use asynchronous actions in Redux,

which is very useful in dealing with data fetching.

Down the road, the Redux store was exported to be used to instantiate Redux in

the application. Figure 18 below displays the integration of Redux to the

application:

Figure 18. Redux integration to the application in index.js file.

The Provider component from the “react-redux” package was imported as

described in Figure 18, which took in the earlier exported store. The Provider

passed down the Redux store to any nested component inside it. The App

component was then imported and used inside the Provider, so that all the App's

child components have access to the global store and can get information from the

store.

4.2.2 Home page

The Home page is the page displayed by default when a user comes to the

application. While building the Home page, the Redux flow with data fetching is

carefully discussed since this flow is reused in many other pages. Figure 19

illustrates the appearance of the Home page with products of the shop.

Figure 19. Home page of the application.

As shown in Figure 19, the Home page displays the products of the shop. Initially,

when the user comes to this page, the products will be fetched from the server to

the client, and the products will be mapped to create the ProductCard components.

The ProductCard components will then be displayed in the page.

The products fetching for the Home page was carried out using Redux. First the

reducer for the “products” piece of state was created. Figure 20 presents the code

for the reducer and action types for products.

Figure 20. Reducer and action types for products.

As illustrated in Figure 20, PRODUCT_REQUEST, PRODUCT_SUCCESS, and

PRODUCT_ERROR are only three needed action types for products, representing

three statuses of data fetching: data is fetching, data fetching is successful, and data

fetching is not successful. The STATUS constant also has three properties of

REQUEST, SUCCESS, and ERROR, where each mimics a data fetching status.

The store's product piece has an object's shape, including products, status, and

error. If the action type is PRODUCTS_REQUEST, the status in the store's product

piece will be REQUEST. If the action type is PRODUCTS_SUCCESS, the status

will be SUCCESS, and the products from the action payload will be placed to the

Redux store. Finally, if the API call does not succeed, the status will be ERROR,

and the error will be included in the Redux store.

The reducer and action types are applied for data fetching of the products for Home

screen after that. Figure 21 displays the whole data flow of fetching products:

Figure 21. Data flow of fetching products.

As can be seen from Figure 21, on line 19, the Redux store is connected to the

application, and the product piece is taken from the Redux store using the

useSelector hook that was made available. The status, error, and product properties

are next destructured from the Redux store's products piece of state and used for

displaying information inside the HomePage component. On line 18, a dispatch

variable is instantiated using the useDispatch hook from react-redux and can

dispatch actions to the Redux store. When the HomePage component is mounted,

the useEffect hook runs afterward and dispatches an action by invoking the

fetchProducts function, which is carried out on line 4.

After being invoked, the fetchProducts() function dispatches an action having the

type of PRODUCTS_REQUEST, which indicates that the data fetching started

then. The products' data is later fetched from the "/api/products" route on the

backend using the “axios” package. If the data fetching succeeds, fetchProducts()

function will dispatch the action type PRODUCTS_SUCCESS having the server's

payload of products' data. If the data fetching fails, the fetchProducts() function

will dispatch the action type PRODUCTS_ERROR, and the action will contain a

payload of the error which occurs while fetching the data. The status, error, and

product variables obtained from Redux's products state will display the Home page

correspondingly. The logic for displaying the Home page is written in Figure 22:

Figure 22. Logic to display the Home page.

According to Figure 22, based on data fetching status, the Home page component

displays differently for each type of status. If the data fetching is in progress, the

data fetching status is the REQUEST key of STATUS constant, which will be

REQUEST, and the page will show a loader. A loader improves user experience

and signifies the user that data fetching is happening. If the status is ERROR,

meaning the data fetching fails, a failure message will be rendered with the content

of the occurred error. Otherwise, if the data fetching is successful, the products will

be populated and mapped through to create the ProductCard components seen in

the Home page.

4.2.3 User authentication

The frontend user authentication for the application consists of Login page, login

and logout functionalities, in conjunction with private and admin frontend routes.

4.2.3.1 Login page and login functionality

The Login page is where a user can log in to the application to do tasks that only a

logged-in user can do, such as add products to cart, order products, or pay for the

orders. The Login page also has the header shared for every page in the application.

The view of the Login page is specified in Figure 23

 Figure 23. Login page of the application.

As illustrated in Figure 23, the Login page consists of a form with two input

components, which governs the email and password that the user passes in, and a

submit button to send the login request. When the user enters email and password,

the email and password will be saved in state using useState hooks. To better

illustrate the Login page’s behavior, the code of Login Page is displayed in Figure

24 below:

Figure 24. The logic of Login page.

As can be viewed in Figure 24, the email and password variables are set initially

to empty strings using the useState hook. Subsequently, the component is

connected to Redux using useSelector hook, and after that, the userLogin piece of

Redux state was taken from the Redux store. The userLogin piece of state indicates

whether the user has logged in or not. If the user is logged in, the Login page will

redirect the user to the Home page showing the shop's products since a logged-in

user cannot log in a second time. The form inputs will set email and password

values, which are set in state when the user types in the inputs. Finally, when the

user submits the login request by clicking the submit button, the page will dispatch

actions that are formed by executing the login() function with the email and

password that the user entered. The login() function is used for user login and

dispatches actions correspondingly to save the user information to local storage.

Henceforth, the user information will be available to be used throughout the

application. For better understanding, Figure 25 displays the details of the login()

function.

Figure 25. Login function.

As can be observed in Figure 25, initially, the login() function dispatches an action

of type USER_LOGIN_REQUEST, which enables the loader to be shown to the

user while waiting for logging in. A config object specifying the Content-Type

header to be "application/json" will be then created to tell the server that the type

of content to be sent to the server will be of JSON type. a POST request to

“api/users/login” route on the server will be executed, sending the user's email and

password to the server and passing the config object initialized before. Afterward,

if the request is successful, an action of type USER_LOGIN_SUCCESS will be

dispatched, the user info with JWT token will be populated inside the Redux store,

and user info will be added to local storage. Besides, the JWT token will be added

to the Authorization headers in the subsequent requests to access protected routes

on the backend. On the contrary, if the request fails, an action of type

USER_LOGIN_FAIL carrying the error will be dispatched.

4.2.3.2 Logout functionality

If the user is logged in, the header will have a dropdown displaying the username.

When the user clicks on the dropdown, there will be a logout option, as visualized

in Figure 26.

Figure 26. Header of the application with logout functionality.

In Figure 26, the "Logout" button arises when the user clicks on the dropdown that

has the username. After clicking the button, the application will dispatch an action

to clear the Redux store's user information. Furthermore, the local storage

information of the user will be cleared.

4.2.3.3 Private routes and Admin routes

Each of the three types of users, which consists of not logged in users, logged in

users, and admin users, has different permissions when using the application. For

instance, admins will have access to add and edit products, unlike other types of

users. Therefore, gating the view access for each type of user is necessary. In order

to facilitate this, protected routes to gate access are implemented. For gating pages

that require the user to log in, a component called PrivateRoute is employed, whose

logic can be seen in Figure 27 below.

Figure 27. Logic and usage of PrivateRoute component.

From Figure 27, on line 30, the PrivateRoute component takes a path and a

component. After that, the PrivateRoute component passes down the path to the

Route component inside it, which means that the PrivateRoute component and its

child Route component will be displayed when the user goes to the path passed

into the PrivateRoute component. Initially, when the PrivateRoute renders, the user

information is taken from the Redux store, and if there is such data in the Redux

store, the user is logged in. A check happens on line 11 to see whether the user has

logged in; if that is the case, the component passed into the PrivateRoute will be

rendered. Or else, the user will be redirected to the "/signin" route where the user

can sign in with the Login page. As a result, the user profile page is gated so that

only logged in users can view it when coming to the "/profile" path.

4.2.4 Sign up page

It is possible to view some of the application screens, such as the Home screen,

without asking the user to sign up to improve the user experience. On the other

hand, if users wish to buy on the platform, they need to sign up and log in. The

user interface of the Signup page is depicted in Figure 28 below:

 Figure 28. Sign up page.

The Signup page in Figure 28 includes a form with four input components: name,

email address, password, and confirmed password. The password and confirmed

password are required to match for the purpose of submitting the sign up request.

After submitting valid passwords, a POST request will be sent to the "/api/users"

route on the backend with user name, email and password under JSON format. If

a user with the same email address exists, an error stating that the user already

exists will be sent back from the server and displayed on the page. Contrarily the

user will be successfully created in the database. If user sign up is successful, the

frontend will sign the user in.

4.2.5 Product page and Cart page

The Product page is the place where a user can find more detailed information

about the product. Generally, the user can view the product name, description,

price, image, and whether the product is in stock or not. Furthermore, a logged-in

user will have the ability to select the product's quantity and add the product to the

cart. After adding the product to the cart, the product will be sent to the local

storage, and the user will be redirected to the cart page.

The Cart page presents all the products that were added to cart. In this page, logged-

in users have the ability to remove a product from the cart and change the quantity

of the products in the cart. Each product is shown with a small thumbnail, the price,

and the quantity. A total price is also presented with a button to proceed to

checkout.

4.2.6 Checkout page and Paypal integration

After clicking the proceed to checkout button, the user will be redirected to the

Checkout page. the shipping address, payment method, and order items are laid

out in the Checkout page, where logged-in users can edit by clicking the Edit

button. Only Paypal payment method is available in the application, but other

payment methods can be later employed to facilitate user payment. The page's right

side contains the order summary with items' price, shipping price, tax, and total

price. Underneath, Paypal payment button is rendered using the "react-paypal-

button-v2" package provided by Paypal. The Paypal script is inserted to the page

when the page loads using useEffect hook.

When the user clicks on Paypal payment button, a payment modal will be prompted

on the page. After signing in to Paypal using the login form inside the modal, the

user will be able to make the purchase. In order to test Paypal integration and mimic

real transactions, sandbox accounts were created for the shop and the users. Finally,

if the payment is successful, the order's status will be set to "paid" and reflected on

the frontend.

4.2.7 Admin pages

For all admin pages, access is gated, and users must be admins to view these pages.

First and foremost, the admin can view the list of users and update users'

information. The following Figure 30 presents the admin user list:

As demonstrated in Figure 30, the admin User list page contains a table featuring

all the users in the application, where each table row consists of user id, username,

user email, and if the user is admin. Furthermore, options to edit and remove users

are provided on each row. Additionally, the application header has one more

dropdown for admin users, which will show navigation to admin pages when

clicked. Admin users can also view the list of products, edit products, and add new

products. When adding a new product, admin users can enter product name, price,

product image, brand, category, count in stock, and product description. Besides,

admin users can set orders to be delivered.

4.3 Deployment on Heroku

In order to create a production build for the React frontend of the application, the

command "npm run build" on the frontend was utilized, which created the

production build in the "frontend/build" folder. Afterward, the application was

deployed to Heroku, a deployment platform. To deploy to Heroku, Heroku CLI

was installed, and the login to Heroku was carried out from the terminal.

Subsequently, the command "heroku create" was run on the terminal to create a

new Heroku application. Besides, a file named Procfile including script to run the

server, and "heroku-postbuild" command were employed to start the Heroku

application. On the Heroku platform, environment variables were then entered, and

after a short time, the application was successfully built and deployed.

Chapter 5 Result and Discussion

In the end, the online shop application using the MERN stack technologies was

successfully developed. As a result, it is evident that the MERN stack is capable of

constructing a complex full-stack application. MongoDB, Express, React, and

Node were used in conjunction with numerous tools and packages to deliver the

final application. Those technologies and tools used were carefully explained

throughout the project report.

5.1 Conclusion and Future Scope

Eventually, a working and production-ready online shop application was built and

deployed successfully. Any visitor can see the products and the details of the

products, and within a few steps, any visitor can sign up, add products to cart and

pay for the orders using Paypal. With higher privileges, admin users can update

products, mark orders as paid, update the user database, and promote users to be

admins. Generally, the application satisfied all the predefined requirements from

the start of the project.

The thesis can be treated as an extensive guide to the MERN stack and can help

those who want to learn more about MERN stack development. Eventually, the

MERN stack proved to be capable of building rather complex full-stack

applications. However, the end application could still be improved by adding new

features, such as new payment methods, social media login, and product rating

functionality. Additional advanced concepts, such as server-side rendering, code

splitting, and testing, could still be added to improve different aspects of the

application.

References

1. MERN Stack documentation : https://www.mongodb.com/mern-stack

2. MEAN Stack documentation : https://www.mongodb.com/blog/post/the-

mean-stack-mongodb-expressjs-angularjs-and

3. MongoDB and Its History : https://www.mongodb.com/blog/post/a-founders-

reflections-on-10-years-of-mongodb

4. Express Official Documentation : https://expressjs.com/

5. Express JS : https://developer.mozilla.org/en-US/docs/Learn/Server-

side/Express_Nodejs/Introduction

6. Middleware Pattern in Express Js : https://dzone.com/articles/understanding-

middleware-pattern-in-expressjs

7. Using Express in Middleware : https://expressjs.com/en/guide/using-

middleware.html

8. Virtual DOM Official Documentation : https://reactjs.org/docs/faq-

internals.html

9. Components and Props in ReactJS : https://reactjs.org/docs/components-and-

props.html

10. Hooks in ReactJS : https://reactjs.org/docs/hooks-intro.html

11. UseState Hooks in ReactJS : https://reactjs.org/docs/hooks-state.html

12. Brief History of NodeJs : https://en.wikipedia.org/wiki/Node.js

13. Difference between NodeJs and Browser :

https://nodejs.dev/learn/differences-between-nodejs-and-the-browser

14. State of the Union : https://www.npmjs.com/package/union

15. Which Stack is Right by Christoph Helke : https://bitbucket.org/blog/lamp-

vs-mean-which-stack-is-right-for-you

16. Mongoose Documentation : https://mongoosejs.com/docs/

17. Redux Documentation : https://redux.js.org/

18. Authorization documentation : https://auth0.com/docs/authorization

19. GitHub Documentation : https://docs.github.com/en

https://www.mongodb.com/mern-stack
https://www.mongodb.com/blog/post/the-mean-stack-mongodb-expressjs-angularjs-and
https://www.mongodb.com/blog/post/the-mean-stack-mongodb-expressjs-angularjs-and
https://www.mongodb.com/blog/post/a-founders-reflections-on-10-years-of-mongodb
https://www.mongodb.com/blog/post/a-founders-reflections-on-10-years-of-mongodb
https://expressjs.com/
https://developer.mozilla.org/en-US/docs/Learn/Server-side/Express_Nodejs/Introduction
https://developer.mozilla.org/en-US/docs/Learn/Server-side/Express_Nodejs/Introduction
https://dzone.com/articles/understanding-middleware-pattern-in-expressjs
https://dzone.com/articles/understanding-middleware-pattern-in-expressjs
https://expressjs.com/en/guide/using-middleware.html
https://expressjs.com/en/guide/using-middleware.html
https://reactjs.org/docs/faq-internals.html
https://reactjs.org/docs/faq-internals.html
https://reactjs.org/docs/components-and-props.html
https://reactjs.org/docs/components-and-props.html
https://reactjs.org/docs/hooks-intro.html
https://reactjs.org/docs/hooks-state.html
https://en.wikipedia.org/wiki/Node.js
https://nodejs.dev/learn/differences-between-nodejs-and-the-browser
https://www.npmjs.com/package/union
https://bitbucket.org/blog/lamp-vs-mean-which-stack-is-right-for-you
https://bitbucket.org/blog/lamp-vs-mean-which-stack-is-right-for-you
https://mongoosejs.com/docs/
https://redux.js.org/
https://auth0.com/docs/authorization
https://docs.github.com/en

