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ABSTRACT 

 

 

COVID-19 pandemic caused by novel corona-virus is continuously spreading until 

now all over the world. The impact of COVID-19 has been fallen on almost all sectors 

of development. The healthcare system is going through a crisis. Many precautionary 

measures have been taken to reduce the spread of this disease where wearing a mask 

is one of them. In this project, we propose a system that will find out people who are 

not wearing any facial mask in a smart city network where all the public places are 

monitored with Closed-Circuit Television (CCTV) cameras. The novel Coronavirus 

had brought a new normal life in which the social distance and wearing of face masks 

plays a vital role in controlling the spread of virus. But most of the people are not 

wearing face masks in public places which increases the spread of viruses. This may 

result in a serious problem of increased spreading. Hence to avoid such situations we 

have to scrutinize and make people aware of wearing face masks. Humans cannot be 

involved for this process, due to the chance of getting affected by corona. Hence here 

comes the need for artificial intelligence(AI), which is the main theme of our project. 

Our project involves the identification of persons wearing face masks and not wearing 

face masks in public places by means of using image processing and AI techniques 

and sending alert messages to authority persons. The object detection algorithms are 

used for identification of persons with and without wearing face masks which also 

gives the count of persons wearing mask and not wearing face mask and Internet of 

Things (IOT) is utilized for sending alert messages. The alert messages are sent to the 

authority persons through mobile notification and Email. Based on the count of 

persons wearing and not wearing face masks the status is obtained. Depending upon 

the status warning is done by means of using buzzer and LED’s. 



INTRODUCTION 

The novel coronavirus covid-19 had brought a new normal life. India is struggling to 

get out of this virus attack and the government implemented lockdown for the long 

way. Lockdown placed a pressure on the global economy. So the government gave 

relaxations in lockdown . Declared by the WHO that a potential speech by maintaining 

distance and wearing a mask is necessary. The biggest support that the government 

needs after relaxation is social distancing and wearing of masks by the people.But 

many people are getting out without a face mask this may increase the spread of covid-

19. Economic Times India has stated that " Survey Shows that 90 percent Indians are 

aware, but only 44 percent wearing a mask ". This survey clearly points that people are 

aware but they are not wearing the mask due to some discomfort in wearing and 

carelessness. This may result in the easy spreading of covid-19 in public places. The 

world health organization  has clearly stated that until vaccines are found the wearing 

of masks and social distancing are key tools to reduce spread of virus. So it is 

important to make people wear masks in public places. In densely populated regions it 

is difficult to find the persons not wearing the face mask and warn them. Hence we are 

using image processing techniques for identification of persons wearing and not 

wearing face masks. In real time images are collected from the camera and it is 

processed in Raspberry Pi embedded development kit. The real time images from the 

camera are compared with the trained dataset and detection of wearing or not wearing 

a mask is done. The trained dataset is made by using machine learning technique 

which is the deciding factor of the result. The algorithm created by means of using a 

trained dataset will find the persons with and without wearing face masks. The Internet 

of Things (IOTs) can be used for connecting objects like smartphones, Internet TVs, 

laptops, computers, sensors and actuators to the Internet where the devices are linked 

together to enable new forms of communication between things and people, and 

between things themselves. Intimation messages are sent to authority persons by 

means of using IOT . As the spread of the virus occurs through physical contact, 

conventional recognition systems (such as fingerprints) or typing a password on a 

keyboard become insecure. Thus, facial recognition systems are the best option, as 

they do not require physical interaction as in other cases. However, the use of the face 

mask within these systems has represented a great challenge for artificial vision , 

because at the time of facial recognition, half of the face is covered and several 

essential data are lost. This clearly denotes the need to create algorithms that recognize 

a person when they are wearing a face mask . This has made it necessary to implement 

new strategies to achieve robustness in the current systems . In this sense, 

convolutional neural networks (CNN) belong to a set of techniques grouped under the 

so-called deep learning . Thus, over the years, this technology has been adapted to the 



needs of the human being, as established in , developing applications in various fields 

of knowledge, such as agriculture , military area , and medicine , among others. The 

contribution of this type of neural network has also been applied to analyze dental 

images, and this is technically described in the review of . In , a system that analyzes 

medical images is proposed, through selective data sampling, that detects hemorrhages 

in color images. On the other hand, in , a technical review of the contributions of the 

CNN in the mammographic breast cancer diagnosis (MBCD) is shown. Although there 

are several related investigations, they are still in the initial stages, with the clear 

objective of providing robust tools in the future. In , a review is described that seeks to 

identify the chronological advancement of CNN in brain magnetic resonance imaging 

(MRI) analysis. Although its use in medicine is not recent, it has now been directed 

particularly to applications related to COVID-19 . Various methods and procedures are 

used for the diagnosis of this disease, and one of them is the review of computed 

tomography scans. For this reason, suggests a rapid and valid method based on AI (10 

CNN) for the detection of pulmonary affections. The results show a sensitivity, 

specificity, and precision of over 99%. Similarly, in a system for automatic disease 

diagnosis using the EfficientNet architecture is described. The results denote an 

average accuracy of over 96%, validating the contribution in situations of health crisis. 

Taking X-rays is another way to identify the virus affectations in the patient’s chest 

Given this, in a deep learning method based on nCOVnet networks is presented for 

detection, the results of which show an accuracy of between 98% and 99%. Something 

similar is done in , where chest X-ray images are analyzed and the various training 

techniques of the networks are compared, obtaining an accuracy of 98.33% when using 

ResNet-34. Although in most cases CNNs are used in the diagnosis of COVID-19, 

they can also be used in other applications, as part of contagion prevention measures In 

a system is presented that allows people to be monitored when entering and being 

inside a certain place, and to evaluate if they are complying with the established 

biosecurity measures. In the event that this is not complied with, other people can be 

informed to exercise caution and health personnel to apply the respective measures. 

They have also been used to develop detection systems for the proper use of face 

masks. For this reason in  a system is proposed that differentiates the people who use a 

mask or not with the algorithms RCNN, Fast RCNN, and Faster RCNN with an 

accuracy of 93.4%. In the VGG-16 CNN model is used to implement a detection 

system with an accuracy rate of 96%. Similarly, in they propose the SSDMNV2 model 

based on the MobileNetV2 architecture, which has an accuracy of 92.64% when 

performing the experimental tests. On the other hand, describes a system for the 

detection of face masks using a support vector machine (SVM) algorithm. The datasets 

are the Real-World Masked Face Dataset (RMFD), the Simulated Masked Face  



Dataset (SMFD), and the Labeled Faces in the Wild (LFW). The results show an 

accuracy of 99.64% with SVM in RMFD, 99.49% in SMFD, and 100% in LFW. In 

InceptionV3 transfer learning is used, obtaining an accuracy of 99.92% during training 

and 100% during tests with SMFD data. In a method to identify the correct use of 

masks is defined by combining classification networks and super-resolution of images 

(SRCNet). An accuracy of 98.70% is achieved, surpassing conventional image 

classification methods of this type. The problem of facial recognition due to the use of 

face masks during the COVID-19 pandemic has caused new horizons to be explored in 

artificial intelligence, representing a challenge for researchers, which has motivated the 

development of ocular recognition systems, as a parallel response. In a facial 

recognition system using eye information and CNN trained by ImageNet is presented. 

The results present an accuracy of between 90–95%. Similarly provides a facial 

recognition system using SVM with three databases (UBIPr, Color FERET, and Ethnic 

Ocular). Performance tests show a yield of approximately 92%. In continuity with the 

works described in the bibliography, this document presents a facial recognition 

system for people regardless of whether they use a face mask or not. For this purpose, 

the work has been organized into four sections, Section 2 contains the materials and 

methods, Section 3 shows the results, and Section 4 presents the discussion.Computer 

Vision is the branch of the science of computers and software systems which can 

recognize as well as understand images and scenes. Computer Vision is consists of 

various aspects such as image recognition, object detection, image generation, image 

super-resolution , Facial Expression Recognition, Real time object detection, Generate 

synthetic image, Detect Pedestrians on Videos , Cars Moving Detection on Videos, 

Car's Plate Detection to detect the no. plate of car and many more. Object detection is 

widely used for face detection, vehicle detection, pedestrian counting, web images, 

security systems and self-driving cars. 

 

 

 

 

 

 

 

 

 

 

 



Applications of Computer Vison: 

• Car Detection 

 

 

 

• Vehicle Plate Detection 

 

 



• Face Eye Detection 

 

• Pencil Sketch 



 

 

An object detection system finds objects of the real world present either in a 

digital image or a video, where the object can belong to any class of objects 

namely humans, cars, etc. 

In order to detect an object in an image or a video the system needs to have a few 

components in order to complete the task of detecting an object, they are a model 

database, a feature detector, a 

hypothesiser and a hypothesiser verifier. This is a review of the various 

techniques that are used to detect an object, localize an object, categorize an 

object, extract features, appearance information, and many more, in images and 

videos. 

Now in our project we propose a system that will find out people who are not wearing 

any facial mask in a smart city network where all the public places are monitored 

with Closed-Circuit Television (CCTV) cameras. While a person without a mask is 

detected, necessary action is taken. 

Now what it can do is it can capture the image of a person at that instant who is not 

wearing masks and send it to the authority , it can inform the authorities via any 

mail service . It can be used in homes, so that if any person is not wearing masks 

then the doors will not open . 



LITERATURE REVIEWS 

Machine learning for image classification  

In the content based image classification using deep learning , Joseph Redmon et.al 

proposed You Only Look Once (YOLO ) algorithm for real time object detection. 

Sanzidul Islam et.al 2020, gave a deep learning based assistive System to classify 

COVID-19 Face Mask which is implemented in rasbperrypi-3. Velantina et.al 2020, 

made an COVID-19 facemask detection by means of using Caffe model. Senthilkumar 

et.al 2017, compared the two most frequently used machine learning algorithms K-

Nearest Neighbour and Support Vector Machine in his work for face recognition. 

Senthilkumar et.al 2018, proposed a new and fast approach for face recognition. 

Internet of Things  

Luigi Atzori et.al reviewed different versions of the Internet of Things are reported and 

corresponding enabling technologies. Lu Tan et.al and Neng Wang discussed the 

Future internet in their work. Feng Xia et.al and others discussed briefly about the 

Internet of Things, 2012 in their work. 

IOT device and Machine Learning  

Yair Meidan et.al 2017, has implemented nine IOT devices and treated each IOT 

device as separate classes. For classification purposes, deep learning techniques were 

used. Yair Meidan et.al and Michael Bohadana et.al 2017, proposed a security system 

for detection of unauthorized IoT devices using machine learning techniques. Liang 

Xiao et.al 2018, has improved the IoT Security techniques based on machine learning 

using Artificial Intelligence concept. With this, based on the above literature surveys, 

we have made a new deep learning algorithm for face mask detection. The details are 

elaborated in forthcoming chapters. 

 

   

 

 

 

 

 

 

 

 

 

 

 



 In our project, we are using the MobileNet v1 algorithm for 

classifying the image. MobileNet Architecture 

 
 

 

The MobileNet model is designed to be used in mobile applications, and it is 

TensorFlow’s first mobile computer vision model. 

MobileNet uses depthwise separable convolutions. It significantly reduces the 

number of parameters when compared to the network with regular convolutions 

with the same depth in the nets. This results in lightweight deep neural networks. 

 

A depthwise separable convolution is made from two operations. 

 

 

1. Depthwise convolution. 

 

2. Pointwise convolution. 

 

 

MobileNet gives us an excellent starting point for training our classifiers that are 

insanely small and insanely fast. 



Architecture of MobileNet 

 

 

Depthwise separable convolution is a depthwise convolution followed by a pointwise 

convolution as follows: 

 
 

 

 



Depthwise Separable Convolution 

1. Depthwise convolution is the channel-wise DK×DK spatial convolution. 

Suppose in the figure above, and we have five channels; then, we will have 5 

DK×DK spatial convolutions. 

2. Pointwise convolution is the 1×1 convolution to change the dimension. 

3. Depthwise convolution 

 

 

 



 

 

 

1. Depthwise convolution. 

 

It is a map of a single convolution on each input channel separately. Therefore 

its number of output channels is the same as the number of the input channels. 

Its computational cost is 

Df² * M * Dk². 

 

2. Pointwise convolution. 

 

 

 

 

Convolution with a kernel size of 1x1 that simply combines the features created 

by the depthwise convolution. Its computational cost is 

M * N * Df². 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Difference between Standard Convolution and Depthwise separable convolution. 

 

Standard Convolution 

 

The main difference between MobileNet architecture and a traditional CNN instead of 

a single 3x3 convolution layer followed by the batch norm and ReLU. Mobile Nets split 

the convolution into a 3x3 depth-wise conv and a 1x1 pointwise conv, as shown in the 

figure. 



 

 

 

In MobileNetV1, a better module is introduced with inverted residual structure. 

Non-linearities in narrow layers are removed. 

 

1. MobileNetV1 Convolutional Blocks 

 

 

 

In MobileNet V1 there are two layers: 

 

The first layer is called a depthwise convolution, it performs lightweight filtering by 

applying a single convolutional filter per input channel. The second layer is a 1×1 

convolution, called a pointwise convolution, which is responsible for building new 

features through computing linear combinations of the input channels. ReLU6 is used 

here for comparison. 



 

 

ReLU6 

 ReLU6 is used due to its robustness when used with low-precision 

computation, based on MobileNetV1. 

MobileNetV1 

 In MobileNetV1, there are two types of blocks. One is residual block 

with stride of 1. Another           one is block with stride of 2 for downsizing. 

 There are 3 layers for both types of blocks. 

 This time, the first layer is 1×1 convolution with ReLU6. 

 The second layer is the depthwise convolution. 

 The third layer is another 1×1 convolution but without any non-

linearity. It is claimed that if ReLU is used again, the deep networks only have 

the power of a linear classifier on the non- zero volume part of the output 

domain. 

 

 

 And there is an expansion factor t. And t=6 for all main experiments. 

 If the input got 64 channels, the internal output would get 64×t=64×6=384 

channels. 



MODULES AND HARDWARE REQUIREMENT 

 

 Using opencv library. 

 

OpenCV is a cross-platform library using which we can develop real-time 

computer vision applications. It mainly focuses on image processing, video 

capture and analysis including features like face detection and object detection. 

 

 Using keras. 

 

Keras is an API designed for human beings, not machines. Keras follows best 

practices for reducing cognitive load: it offers consistent & simple APIs, it 

minimizes the number of user actions required for common use cases, and it 

provides clear and actionable feedback upon user error. 

 

 Using numpy. 

 

NumPy is an open-source numerical Python library. NumPy contains a multi-

dimensional array and matrix data structures. It can be utilised to perform a 

number of mathematical operations on arrays such as trigonometric, statistical, 

and algebraic routines. 

 

 Using matplotlib. 

 

Matplotlib is a cross-platform, data visualization and graphical plotting library 

for Python and its numerical extension NumPy. 

 

 Using sklearn. 

 

The sklearn library contains a lot of efficient tools for machine learning and 

statistical modeling including classification, regression, clustering and 

dimensionality reduction. 

 

 Using tensorflow. 

 

TensorFlow is a Python library for fast numerical computing created and 

released by Google. It is a foundation library that can be used to create Deep 

Learning models directly or by using wrapper libraries that simplify the 



process built on top of TensorFlow. 

 

 Using imutils. 

 

Imutils are a series of convenience functions to make basic image processing 

functions such as translation, rotation, resizing, skeletonization, and displaying 

Matplotlib images. 

 

HARDWARE AND SOFTWARE REQUIREMENTS: 

⚫ OS = Windows 10 

⚫ RAM = 8GB 

⚫ Processor= i5 or i7 gen. 

⚫ Software : Visual Studio , 

Spyder , Jupyter etc. Need of: 

Dataset containing images of people having masks or not having masks 

(helps in training the Model). 

 

        Benefits  

YOLO is a popular object detection algorithm because it achieves high accuracy 

while it is also able to run in real-time. The algorithm “only looks once” at the image 

means that it requires only one forward propagation pass through the neural network 

to make predictions. After non-max suppression it then gives the recognized objects 

along with the bounding boxes. In YOLO, a single CNN simultaneously predicts 

multiple bounding boxes and class probabilities for those boxes. YOLO directly 

optimizes detection performance since it trains on full images. YOLO has a number 

of benefits over other object detection methods they are- 

• YOLO is extremely fast  

• YOLO scans the entire image during training and also during testing. So, it 

implicitly encodes contextual information about classes as well as their appearance. 

 • YOLO learns generalizable representations of objects so that when it is trained on 

natural images and tested , the algorithm performs excellently when compared to 

other top detection methods. 

 

 

 

 

 

 



 
 

Fig3.1 

 

 

Workflow  

Here the workflow of YOLO object detection algorithm is discussed in detail. 

Initially a dataset of images is collected which are used for training by means of 

using YOLO. Dataset consists of images of persons with masks and without masks. 

figure 3.1 shows the work flow of YOLO.  

Data Acquisition 

 Data is really important for deep learning techniques. If we use more data for 

training the AI then the result will be better. To train YOLO we need more data and 

with proper annotation. Using a web-scraping tool we have collected 900 images of 

both mask and no-mask. These images cannot be used directly so we need to pre-

process before feeding into the model. Next step is Data Annotation. 

 

 

 



Data Annotation  

To train YOLO we need to annotate images for object detection models. Our dataset 

should be well annotated. There are different types of annotations available. Here a 

bounding boxes method is used. It creates a rectangle area over images that are 

present in our dataset. Since Annotation needs more time we are using a tool called 

LabelIMG to annotate our data.  

YOLOv3 Configuration  

The YOLOv3 configuration involved the creation of two files and a custom Yolov3 

cfg file. YOLOv3 configuration first creates a ”obj.names” file which contains the 

name of the classes which the model wanted to detect. Then a obj.data file which 

contains a number of classes in here is 2, train data directory, validation data, 

”obj.names” and weights path which is saved on the backup folder. Lastly, a cfg file 

contains 2 classes. figure 3.2 shows the configuration steps involved. Next is training 

of our YOLOv3 in which an input image is passed into the YOLOv3 model. This 

will go through the image and find the coordinates that are present. It divides the 

image into a grid and from that grid it analyzes the target objects features. Here 80 

percent data is used for training , and remaining 20 percent is used for validation. 

Now weights of YOLOv3 trained on the dataset are created under a file. Using these 

trained weights now we can classify the persons wearing and not wearing the mask. 

 
 

Fig3.2 



Face Mask Detection Algorithm  

Step 1: Start the program. 

      Step 2: Input image is feeded.  

Step 3: YOLOv3 trained weights are loaded from the disk.  

Step 4: Persons with and without face mask are detected by means of object detection 

algorithm.  

Step 5: After detection resultant image is displayed along with count of Persons with and 

without masks.  

Step 6: The ratio of with and without face mask is calculated and based upon ratio status is 

obtained.  

Step 7: Based on status output LED and buzzer connected to Raspberry pi will be activated.  

Step 8: Resultant image is saved in Raspberry pi for identification 

 

Material and METHODOLOGY 

 

Description of the Problem 

 The effects of COVID-19 on the global economy can be seen with the naked eye, as the 

confinement of people in the homes brings with it less production and slows down the 

commercial dynamism. However, it should be noted that in situations of health crisis such as 

the one that continues to be experienced, it is relevant to put people’s health before any 

productive activity. That is why biosecurity measures and social distancing protocols have 

been implemented to limit the spread of this dangerous virus. As well as the capacity in public 

institutions, industries and other establishments has been limited, highlighting the so-called 

telework (in certain cases). Thus, companies have implemented various methodologies, 

strategies, and techniques to protect the integrity and health, both when entering and staying 

in face-to-face work sessions. As previously mentioned, CNN have been an important 

technological tool during this pandemic. Although most approaches have been taken towards 

the diagnosis of the disease, monitoring and prevention has also been covered. Today, the 

use of a personal face mask is a mandatory preventive measure. Keeping the mouth, nose, 

and cheeks covered has now made people only recognizable by their eyes, eyebrows, and 

hair, which is a problem for the human eye, which tends to find similarities in several faces 

that have similar features. This problem also affects computer systems, as facial recognition 

systems are now very common. They are used to unlock the smartphone, access sensitive 

applications, and to enter certain places. Current systems usually process information from 

the entire face of the person, which is why technology 

 



 must adapt to these new conditions. All this is done with the purpose of maintaining the 

biosecurity of the user, but giving them the opportunity to continue with the activities as 

naturally as possible. The literature has shown that there are systems that seek to identify 

whether people use it properly. These works have had very good results. However, facial 

recognition using biosecurity material has not yet been explored. All of this motivated the 

present investigation, in which a detection system with two approaches is presented. The first 

is to develop a face classifier, starting from a database of people with and without a mask. 

The second describes a facial recognition algorithm in controlled environments, which allows 

for personnel to be identified automatically, without removing the face mask. This can be 

implemented as an access system to an institution or a home, but at a low cost. This is ensured 

by using open-source programming software and simple features that reduce computational 

expense. For this reason, the possibility of improving the adaptability of current facial 

recognition systems, in the face of new circumstances, has been established as a starting 

hypothesis. 

Requirements  

The programming language used here is Python. For optimal operation, a highprocessing 

equipment (GPU) is needed. However, we received no external financing, so we chose to 

work with free Google servers, which are available in Google Colab. Another of the 

essential requirements is to have the necessary databases in order to carry out the training 

and obtain the classification and recognition models. Taking into account that building the 

database of these databases requires a high investment of time when working with artificial 

intelligence and especially with convolutional neural networks. Additionally, it is necessary 

to develop a consent form for the people who will allow for taking photographs for the 

facial recognition algorithm database. This is necessary because there are currently no 

databases for the recognition of people with face masks. For this, it is necessary to rely on 

Art 6.1d of the European General Data Protection Regulation (RGPD), in connection with 

article 46.3 of the LOU. Here, it is mentioned that the data of a person will be treated in 

accordance with the exercise of public powers conferred on the universities as responsible 

for the treatment of the data of the students. As well as biometric data ((article 9.2.a) of the 

RGPD), in which consent will be needed so that it can be part of the exams where facial 

recognition techniques are applied. The collection, filing, processing, distribution, and 

dissemination of these information data will require the authorization of the owner and the 

mandate of the law. 

        System Development 

 It is proposed to design a system that is capable of identifying a person’s face, even if it is 

with or without a mask. For the system to work properly, it is necessary to use two 

databases: the first is for classifier training and consists of a large number of images of 

people who wear a face mask and others who do not. The second is used for training the 



facial recognition system, and here there are people with and without the biosafety material 

(face mask). The input data are obtained either from an image, or a video and the 

architecture used is MobileNet, with the aim of having a better precision and robustness. 

This project is divided into three stages, which are described below.  

First Stage  

This stage focuses on finding the location and dimension of one or more faces, regardless 

of whether or not they wear a mask, within an image. For this, the OpenCV Deep Learning-

based face detection model is used and, as a result, the region of interest (ROI) is obtained, 

which contains data such as the location, width, and height of the face.   

Second Stage  

A diagram of the operation of the second stage is shown in Figure 1. This is where the 

classifier training is performed to detect faces with a mask and without a mask. For this, the 

“Real-World-Masked-Face-Dataset” database available on Git-Hub is used. Unzipping the 

files makes available a large number of images of people of Asian origin wearing a mask. 

From this database, the training of the classifier of the first stage is carried out. 

Third Stage  

Once the face of the person has been identified, in the third stage, facial recognition is 

carried out, for which a set of own observations is used that is built based on the faces of 

various people. For the construction of the set of observations, a balance is sought in terms 

of gender, namely, five women and five men from whom the images are obtained. Figure  

shows the set of faces using a mask and Figure  shows without a face mask. 

Training of Facial Recognition Models  

The procedure to obtain the images is as follows: (i) during a week, daily videos of the face 

of each individual are obtained, seeking to capture different angles and different 

environmental conditions (lighting changes). (ii) From the videos obtained, images are 

captured at different moments in order to build a set of observations with images. (iii) The 

images where the face is not found in the entirety are eliminated. At the end of the 

procedure, a total of 13,359 images are obtained; 7067 (52.9%) with a face mask and 6292 

(47.1%) without a face mask. In practice, acquiring so many images of a face requires a 

short video recording of a few seconds showing different views of the face. Regarding the 

identification of the images used for the recognition of people, the images have been 

labeled from left to right, as follows:  

• Women: W1, W2, W3, W4, and W5 (Vicky, Mela, Damaris, Ale, and Yaritza, 

respectively).  

• Men: M1, M2, M3, M4, and M5 (Oscar, Jorge, Pablo, John, and Jonathan respectively). 

 In this way, when a person is recognized in an image, the name information can be 

accessed and placed in the image. Therefore, once the necessary data have been obtained, 

the recognition model is trained. The two facial recognition models follow the architecture 



of Figure 6, which is briefly explained below. To do this, from this set of observations, the 

facial recognition model has two approaches: 1. The first model aimed at recognizing 

people using a face mask. 2. The second model aimed at recognizing people not using a 

face mask. 

 Database:  

Set of observations of the faces of people using a mask and without using a mask for both 

approaches of the third stage.  

Preprocessing:  

For the facial recognition model of people using a face mask, only 3/5 of the upper part of 

the face is extracted. This in order to discriminate the mask that the person is using (as in 

the experimental tests, this information is not useful for the recognition model). Whereas, 

for the facial recognition model without a face mask, the image of the full face is used. In 

both cases, the resulting image is scaled to a size of 164 × 164 pixels. Characteristics 

extraction: The FaceNet model is used to extract the most essential characteristics of the 

face. This model extracts the most essential features from the input image, in this case a 

face, and returns a vector of 128 features. The input of the network is an image with a 

human face and, using a deep metric learning technique, it calculates the metric to generate 

vectors of real characteristics [17]. This network is a model belonging to PyTorch, which 

can generate neural networks similar to Caffe . The image is inserted into the network, then 

passes through the neural network and obtains the embedding of each face represented by 

f(x)   R d . This method attempts to ensure that the image of a specific person (xi a ) is 

closer to all of the images of the same person (xi p ) and away from images of other people 

(xi n ). Equation (1) shows the calculation of the loss (L), where α is the margin applied 

between positive and negative pairs [54]. It receives an image of 164 × 164 pixels as the 

input data, and a vector of characteristics of 128 elements called “face embedding” is 

obtained at the output.  

L = N ∑ i h ||(x a i ) − f(x p i )||2 2 − || f(x a i ) − f(x n i )||2 2 + α i (1)  

ANN classification: 

 Once the vector of characteristics has been obtained, any machine learning classification 

model can be applied; in this case, a feedforward multilayer perceptron is chosen. A 

feedforward multilayer perceptron (ANN) is chosen, because it does not need a large 

amount of data, it has been demonstrated that an ANN is a universal approximator with 

excellent results, and it does not require as much computational cost. After investigating 

the literature, it is best to use convolutional neural networks, but at this stage it is not 

necessary, as the best characteristics have been extracted by FaceNet and it only uses a 

vector of characteristics, instead of a raw image.  

The architecture of our simple neural network applied to the two approaches is as follows:  

• 128 neurons in the initial layer (size of the feature vector—face embedding)  



• 100 neurons in a hidden layer with built-in ReLu activation  

• 50 neurons in a hidden layer with built-in ReLu activation  

• 24 neurons in a hidden layer with built-in ReLu activation 

 • 10 neurons in the output layer with a Softmax activation function 

 • The following configurations are used for classifier training: 

 • Epochs: 15  

• Batch Size: 32  

• Optimizer: Adam 

 • Loss Function: MSE  

         First, we will do the Data Preprocessing of our dataset. 

        Our dataset contains around 700 images of each class i.e people wearing masks and   

not wearing masks in 2 separate folders with mask and without mask. 

 

We can say that it is a Binary Classification 

Problem. With masks: 

 



Without Mask 

 

 

 

 

In this process , we will resize each image with 224 X224px and convert it to array and 

then scale it to range of [-1,1]. 

Then perform one-hot encoding to convert our classes to binary 

format.  

Libraries required :  

• Tensorflow 

• Imutils 

• opencv  

• pandas 

• numpy 

• malplotlib.



 

By this we will get our transformed dataset. 

 

Then, we will train our model based on this dataset using MobileNet v1 algorithm. 

 

Then we will detect faces with masks and without masks. 



 

Architecture Diagram 

 

 

 

 

 

 

 

 

 

 

 

 

 



FEASIBILITY STUDY 

 

 

We can use it in a webcam or any CCTV to detect the person wearing masks or not 

wearing masks and takes necessary action against them. 

We use Convolutional Neural Network and Deep Learning for Real Time Detection and 

Recognition of Human Faces, which is simple face detection and recognition system is 

proposed in this paper which has the capability to recognize human faces in single as well 

as multiple face images in a database in real time with masks on or off the face. Pre-

processing of the proposed frame work includes noise removal and hole filling in colour 

images. After pre-processing, face detection is performed by using CNNs architecture. 

Architecture layers of CNN are created using Keras Library in Python. Detected faces are 

augmented to make computation fast. By using Principal Analysis Component (PCA) 

features are extracted from the augmented image. For feature selection, we use Sobel Edge 

Detector. 

1.The Input Image 

Real-time input images are used in this proposed system. Face of person in input images 

must be fully or partially covered as they have masks on it. The system requires a 

reasonable number of pixels and an acceptable amount of brightness for processing. Based 

on experimental evidence, it is supposed to perform well indoors as well as outdoors i.e. 

passport offices, hospitals, hotels, police stations and schools etc. 

2.The Pre-processing Stage 

Input image dataset must be loaded as Python data structures for pre-processing to overturn 

the noise disturbances, enhance some relevant features, and for further analysis of the 

trained model. Input image needs to be pre-processed before face detection and matching 

techniques are applied. Thus pre-processing comprises noise removal, eye and mask 

detection, and hole filling techniques. Noise removal and hole filling help eliminate false 

detection of face/ faces. After the pre-processing, the face image is cropped and re-

localised. Histogram Normalisation is done to improve the quality of the pre- processed 

image. 

3.The Face Detection Stage 

We perform face detection usingHAAR Cascade algorithm.This system consists of the 

value of all black pixels in greyscale images was accumulated. They then deducted from 

the total number of white boxes. Finally, the outcome is compared to the given threshold, 

and if the criterion is met, the function considers it a hit.In general, for each computation 

in Haar-feature, each single pixel in the feature areas can need to be obtained, and this step 



can be avoided by using integral images in which the value of each pixel is equal to the 

number of grey values above and left in the image. 

Feature =ie{1..N}wi.RecSum(x, y,w,h), 

where RecSum (x, y, w,h) is the summation of intensity in any given upright or rotated 

rectangle enclosed in a detection window and x, y,w,h is for coordinates, dimensions, and 

rotation of that rectangle, respectively. Haar Wavelets represented as box classifier which 

is used to extract face features by using integral image 

4.The Feature-Extraction Stage 

Feature Extraction improves model accuracy by extracting features from pre-processed 

face images and translating them to a lower dimension without sacrificing image 

characteristics. This stage allows for the classification of human faces. 

5.The Classification Stage 

Principal Component Analysis(PCA) is used to classify faces after an image recognition 

model has been trained to identify face images. Identifying variations in human faces is not 

always apparent, but PCA comes into the picture and proves to be the ideal procedure for 

dealing with the problem of face recognition. PCA does not operate classifying face images 

based on geometrical attributes, but rather checks which all factors would influence the 

faces in an image. PCA was widely used in the field of pattern recognition for classification 

problems.PCA demonstrates its strength in terms of data reduction and perception. 

6.Training Stage 

The method is based on the notion that it learns from pre- processed face images and utilizes 

CNN model to construct a framework to classify images based on which group it belongs 

to. This qualified model is saved and used in the prediction section later. In CNN model, 

the stages of feature extraction are done by PCA and feature selection done by Sobel Edge 

Detector and thus it improves classification efficiency andaccuracy of the training model. 

7.Prediction Stage 

In this stage, the saved model automatically detects theoftheface maskimagecaptured by 

the webcam or camera. The saved model and the pre-processed images are loaded for 

predicting the person behind the mask. CNN offers high accuracy over face detection, 

classification and recognition produces precise and exactresults.CNN model follows a 

sequential model along with Keras Library in Python for prediction of human faces. 

 



Future Work  

 

In this work of face mask detection we have used YOLOv3 to detect the persons with 

face mask and without face mask with good efficiency and and sent an intimation 

message to authority persons by means of IOT. It’s performance is really well in 

images and our detection results were also quite good. This detection can also be used 

for video stream or camera fed inputs. To get improved performance and speed, 

Raspberry Pi of higher variant such as 4GB or 8GB RAM can be used to implement the 

detection algorithm. The Future development of the project is planned to involve the 

identification of a person and sent the intimation message to the persons mobile who 

were not wearing face masks. This can be implemented in offices and institutions by 

means of training the database with employees images or students images and by 

means of face recognition the person is identified by which the mobile number and 

other details of the person is obtained from database and hence it will be easy to notify 

that particular person or useful for taking any actions regarding not wearing face 

mask.The proposed model can also be enhanced by means of including various 

parameters like peoples count, social distance and temperature measurement. This 

project will be very helpful and can be implemented in hospitals, airports, schools, 

colleges, offices, shops, malls, theaters, temples, apartments etc. and can also be 

implemented for Covid free event management. 

PYTHON PROGRAM 

 About Python: 

 Python is a general-purpose interpreted, interactive, object-oriented, and high-level 

programming language. It was created by Guido van Rossum during 1985- 1990. Like 

Perl, Python source code is also available under the GNU General Public License 

(GPL). Python 3.0 was released in 2008. Although this version is supposed to be 

backward incompatible, later on many of its important features have been back-ported 

to be compatible with version 2.7. 

 Features: 

 Python is a high-level, interpreted, interactive and object-oriented scripting language. 

Python is designed to be highly readable. It uses English keywords frequently whereas 

other languages use punctuation, and it has fewer syntactic constructions than other 

languages. 

 Libraries: 

 Python’s standard library is very extensive, offering a wide range of facilities as 

indicated by the long table of contents listed below. The library contains built-in 

modules (written in C) that provide access to system functionality such as file I/O that  

 



would otherwise be inaccessible to Python programmers, as well as modules written in 

Python that provide standardized solutions for many problems that occur in everyday 

programming. Some of these modules are explicitly designed to encourage and 

enhance the portability of Python programs by abstracting away platform-specifics into 

platform-neutral APIs. The Python installers for the Windows platform usually include 

the entire standard library and often also include many additional components. For 

Unix-like operating systems Python is normally provided as a collection of packages, 

so it may be necessary to use the packaging tools provided with the operating system to 

obtain some or all of the optional components. 

Code 

# import the necessary packages 

from tensorflow.keras.applications.mobilenet_v2 import preprocess_input 

from tensorflow.keras.preprocessing.image import img_to_array 

from tensorflow.keras.models import load_model 

from imutils.video import VideoStream 

import numpy as np 

import imutils 

import time 

from cv2 import cv2 

import os 

 

def detect_and_predict_mask(frame, faceNet, maskNet): 

 # grab the dimensions of the frame and then construct a blob 

 # from it 

 (h, w) = frame.shape[:2] 

 blob = cv2.dnn.blobFromImage(frame, 1.0, (224, 224), 

  (104.0, 177.0, 123.0)) 

 

 # pass the blob through the network and obtain the face detections 

 faceNet.setInput(blob) 

 detections = faceNet.forward() 

 print(detections.shape) 

 

 # initialize our list of faces, their corresponding locations, 

 # and the list of predictions from our face mask network 

 faces = [] 

 locs = [] 

 



 preds = [] 

 

 # loop over the detections 

 for i in range(0, detections.shape[2]): 

  # extract the confidence (i.e., probability) associated with 

  # the detection 

  confidence = detections[0, 0, i, 2] 

 

  # filter out weak detections by ensuring the confidence is 

  # greater than the minimum confidence 

  if confidence > 0.5: 

   # compute the (x, y)-coordinates of the bounding box for 

   # the object 

   box = detections[0, 0, i, 3:7] * np.array([w, h, w, h]) 

   (startX, startY, endX, endY) = box.astype("int") 

 

   # ensure the bounding boxes fall within the dimensions of 

   # the frame 

   (startX, startY) = (max(0, startX), max(0, startY)) 

   (endX, endY) = (min(w - 1, endX), min(h - 1, endY)) 

             

             

             

             

             

             

 

   # extract the face ROI, convert it from BGR to RGB channel 

   # ordering, resize it to 224x224, and preprocess it 

   face = frame[startY:endY, startX:endX] 

   face = cv2.cvtColor(face, cv2.COLOR_BGR2RGB) 

   face = cv2.resize(face, (224, 224)) 

   face = img_to_array(face) 

   face = preprocess_input(face) 

 

   # add the face and bounding boxes to their respective 

   # lists 

 



   faces.append(face) 

   locs.append((startX, startY, endX, endY)) 

             

             

             

 

 # only make a predictions if at least one face was detected 

 if len(faces) > 0: 

  # for faster inference we'll make batch predictions on *all* 

  # faces at the same time rather than one-by-one predictions 

  # in the above `for` loop 

  faces = np.array(faces, dtype="float32") 

  preds = maskNet.predict(faces, batch_size=32) 

 

 # return a 2-tuple of the face locations and their corresponding 

 # locations 

 return (locs, preds) 

 

# load our serialized face detector model from disk 

prototxtPath = r"C:/Users/sumit/OneDrive/Desktop/Project 2/deploy.prototxt" 

weightsPath = r"C:/Users/sumit/OneDrive/Desktop/Project 

2/res10_300x300_ssd_iter_140000.caffemodel" 

faceNet = cv2.dnn.readNet(prototxtPath, weightsPath) 

 

# load the face mask detector model from disk 

maskNet = load_model("mask_detector.model") 

 

# initialize the video stream 

print("Starting video stream...") 

vs = VideoStream(src=0).start() 

 

 

# loop over the frames from the video stream 

while True: 

 # grab the frame from the threaded video stream and resize it 

 # to have a maximum width of 500 pixels 

 frame = vs.read() 

 



 frame = imutils.resize(frame, width=500) 

 

 # detect faces in the frame and determine if they are wearing a 

 # face mask or not 

 (locs, preds) = detect_and_predict_mask(frame, faceNet, maskNet) 

 

 # loop over the detected face locations and their corresponding 

 # locations 

 for (box, pred) in zip(locs, preds): 

  # unpack the bounding box and predictions 

  (startX, startY, endX, endY) = box 

  (mask, withoutMask) = pred 

 

  # determine the class label and color we'll use to draw 

  # the bounding box and text 

  label = "Mask" if mask > withoutMask else "No Mask" 

  color = (0, 255, 0) if label == "Mask" else (0, 0, 255) 

 

  # include the probability in the label 

  label = "{}: {:.2f}%".format(label, max(mask, withoutMask) * 100) 

 

  # display the label and bounding box rectangle on the output 

  # frame 

  cv2.putText(frame, label, (startX, startY - 10), 

   cv2.FONT_HERSHEY_SIMPLEX, 0.45, color, 2) 

  cv2.rectangle(frame, (startX, startY), (endX, endY), color, 2) 

 

 # show the output frame 

 cv2.imshow("Mask Detector", frame) 

 key = cv2.waitKey(1) & 0xFF 

 

 # if the `q` key was pressed, break from the loop 

 if key == ord("q"): 

  break 

 

# do a bit of cleanup 

cv2.destroyAllWindows() 

 



vs.stop() 

 ################################################################### 

# various libraries used  

import numpy as np 

import matplotlib.pyplot as plt 

import os 

from sklearn.metrics import classification_report 

from sklearn.model_selection import train_test_split 

from sklearn.preprocessing import LabelBinarizer 

from tensorflow.keras.utils import to_categorical 

from tensorflow.keras.preprocessing.image import 

ImageDataGenerator,img_to_array,load_img 

from tensorflow.keras.applications import MobileNetV2 

from tensorflow.keras.layers import Input,Dense,Dropout,AveragePooling2D,Flatten 

from tensorflow.keras.models import Model 

from tensorflow.keras.optimizers import Adam 

from tensorflow.keras.applications.mobilenet_v2 import preprocess_input 

from imutils import paths 

 

# initializing the initial learning rate, no. of epochs and batch size 

 

INIT_LR = 1e-4 

EPOCHS = 20 

BS = 32 

 

DIRECTORY = [r,"C:\Users\sumit\OneDrive\Desktop\dataset"] 

CATEGORIES = ["with_mask", "without_mask"] 

 

# grab the list of images in our dataset directory, then initialize 

# the list of data (i.e., images) and class images 

print("Loading Images..........") 

 

data = [] 

labels = [] 

 

for category in CATEGORIES: 

    path = os.path.join(DIRECTORY, category) 

    



 for img in os.listdir(path): 

     img_path = os.path.join(path, img) 

     image = load_img(img_path, target_size=(224, 224)) 

     image = img_to_array(image) 

     image = preprocess_input(image) 

 

     data.append(image) 

     labels.append(category) 

 

# perform one-hot encoding on the labels 

lb = LabelBinarizer() 

labels = lb.fit_transform(labels) 

labels = to_categorical(labels) 

 

data = np.array(data, dtype="float32") 

labels = np.array(labels) 

 

(trainX, testX, trainY, testY) = train_test_split(data, labels, 

 test_size=0.20, stratify=labels, random_state=42) 

 

# construct the training image generator for data augmentation 

aug = ImageDataGenerator( 

 rotation_range=20, 

 zoom_range=0.15, 

 width_shift_range=0.2, 

 height_shift_range=0.2, 

 shear_range=0.15, 

 horizontal_flip=True, 

 fill_mode="nearest") 

 

# load the MobileNetV2 network, ensuring the head FC layer sets are 

# left off 

baseModel = MobileNetV2(weights="imagenet", include_top=False, 

 input_tensor=Input(shape=(224, 224, 3))) 

 

# construct the head of the model that will be placed on top of the 

# the base model 

 



headModel = baseModel.output 

headModel = AveragePooling2D(pool_size=(7, 7))(headModel) 

headModel = Flatten(name="flatten")(headModel) 

headModel = Dense(128, activation="relu")(headModel) 

headModel = Dropout(0.5)(headModel) 

headModel = Dense(2, activation="softmax")(headModel) 

 

# place the head FC model on top of the base model (this will become 

# the actual model we will train) 

model = Model(inputs=baseModel.input, outputs=headModel) 

 

# loop over all layers in the base model and freeze them so they will not be updated 

during the first training process 

for layer in baseModel.layers: 

 layer.trainable = False 

     

     

     

     

 

# compile  model 

print("Compiling Model...") 

opt = Adam(lr=INIT_LR, decay=INIT_LR / EPOCHS) 

model.compile(loss="binary_crossentropy", optimizer=opt, 

 metrics=["accuracy"]) 

 

# train the head of the network 

print("[Training head...") 

H = model.fit( 

 aug.flow(trainX, trainY, batch_size=BS), 

 steps_per_epoch=len(trainX) // BS, 

 validation_data=(testX, testY), 

 validation_steps=len(testX) // BS, 

 epochs=EPOCHS) 

 

# make predictions on the testing set 

print("Evaluating Network...") 

 



predIdxs = model.predict(testX, batch_size=BS) 

 

# for each image in the testing set we need to find the index of the 

# label with corresponding largest predicted probability 

predIdxs = np.argmax(predIdxs, axis=1) 

 

# show a nicely formatted classification report 

print(classification_report(testY.argmax(axis=1), predIdxs, 

 target_names=lb.classes_)) 

 

# serialize the model to disk 

print("Saving mask detector model...") 

model.save("mask_detector.model", save_format="h5") 

 

 

# plot the training loss and accuracy 

N = EPOCHS 

plt.style.use("ggplot") 

plt.figure() 

plt.plot(np.arange(0, N), H.history["loss"], label="train_loss") 

plt.plot(np.arange(0, N), H.history["val_loss"], label="val_loss") 

plt.plot(np.arange(0, N), H.history["accuracy"], label="train_acc") 

plt.plot(np.arange(0, N), H.history["val_accuracy"], label="val_acc") 

plt.title("Training Loss and Accuracy") 

plt.xlabel("Epoch #") 

plt.ylabel("Loss/Accuracy") 

plt.legend(loc="lower left") 

plt.savefig("plot.png") 

 

 

 

 

 

 

 

 

 

 



Result 

 

The model is successfully deployed can be seen in fig .3 and fig. 4. 

The experiments carried out have the purpose of demonstrating the potential use of the 

system, so tests are carried out using the recall metrics, Precision, F1-score, and the 

corresponding macro avg and weighted avg. The objective of using these metrics is to 

evaluate the system from different perspectives. Recall and precision indicate the ability 

of the model to correctly detect true positives. Recall also considers the false negatives 

detected, and the precision of the false positives detected by the model. False positives, 

in this case of face detection with masks, occur when an object is labeled as a face. For 

example, the system frames a plant as a face with a face mask, as it is false that a plant is 

a positive face. The reasons this can occur in our system are numerous, which is why 

hard work is needed in order to collect a large database so that the model being trained 

can better distinguish the desired classes (faces). False negatives occur when a face is not 

detected in the first stage, because the face has covered areas that make classification 

difficult; in this proposal, this initial classifier is a pre-developed tool. On the other hand, 

the F1-score provides a global measure of the system’s performance, it is a combination 

of precision and recall (in a single value), with 0 being low performance and 1 being the 

best possible performance (all cases detected correctly). By considering the macro avg 

metric, sd can get a general idea of the average of all of the experiments, while the 

weighted avg establishes an average measure of all of the experiments, but considering 

the number of observations of each class. Thus, in the event that a class has a higher 

score, the final weighted avg score will not be affected by it, but will give a value of 

importance to each score depending on the amount of observation. When considering 

these metrics, what is sought is to verify the robustness of the method by classifying both 

classes. In the second stage, the face classifier training with a mask and faces without a 

mask takes a period of approximately 10 h, and in the third stage the extraction of face 

embeddings takes approximately 5 h and the ANN-based classifier training takes 10 min. 

 

 

 

 

 

 

 

 

 

 



CONCLUSION 

The designed algorithm was effectively able to detect the person wearing masks 

or not wearing masks and also shows the probability of detection. This prototype 

system allows for the facial recognition of people with and without a mask, and 

could be used as a low computational consumption proposal for personnel access 

control. The two models of this system are tested with images, thus achieving 

better precision and optimization for each model. The face of someone found in 

the database is successfully classified to provide the name tag and probability of 

success. The three stages of the system allowed for the relevant characteristics of 

a person’s face to be extracted, and thus use a simple neural network for the 

classification task. In this sense, the use of a “Face Embeddings” as input to the 

neural network obtained satisfactory results in the experiments carried out. 

During the training of the third stage, it is possible to notice that there is an 

overadjustment, this fact is due to the fact that the database is built for this stage 

with a few participants, although it is composed of several images, and does not 

exist much variability. However, the system shows potential to be used in 

differentiated facial recognition applications. It should be noted that if a face is 

not found in the database, it will be detected, but the tag “mask” or “no mask” 

will be added, which refers to whether the person is wearing a mask. It should be 

considered that the level of confidence used in the system to accept if a face 

belongs to someone is 0.6. When defining whether people are wearing a mask or 

not, the accuracy is 99.65%. When evaluating the facial recognition model with 

the test data of people who do not use a mask, an accuracy of 99.96% is 

obtained, and for those who use a mask, an accuracy of 99.52% is obtained. In 

this way, the basis for future research that can expand the study in this field is 

established. In the bibliographic review, the use of MATLAB has been 

evidenced as an alternative proposal that could provide a lower number of false 

positives that should be evaluated. It is also proposed to investigate new 

extraction architectures that can be compared with FaceNet, and to thus choose 

the best one. One important thing to note is that the system has difficulty 

detecting certain faces when wearing a mask. This problem is due to the fact that 

initially, the Open CV Deep Learning based face detector was being used and it 

is not designed to detect faces with masks. It could also be observed that the face 

recognition stage is not robust when the detected face presents a certain angle of 

inclination. However, this is not a problem of great impact, as this application is 

oriented to access control and at this point, the person must maintain a firm and  



straight posture in front of the device that acquires the image. Therefore, as a 

future work, merging the first and second stages in the same model and creating 

an own algorithm that directly searches for a face with and without a mask 

should be considered. This avoids first using the Open CV face detector and then 

classifying faces with and without mask. This will further reduce the processing 

time and make the model more robust. In addition, it is proposed that in the 

future, a comparative study of the models used for the transfer of learning can be 

carried out in order to determine the best  model and network trained in  

unfavorable evaluation conditions. Once the final models have been trained, they 

can be compressed and deployed on low-cost embedded devices such as 

Raspberry Pi or mobile devices. 
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