
DROWSINESS DETECTION SYSTEM

Project Report submitted in partial fulfillment

for the award of the degree of

Bachelor Of Technology

Submitted by

ROHIT PARIHAR (18SCSE1010218)
ARHAM KHAN (18SCSE1010350)

IN
IN

COMPUTER SCIENCE ENGINEERING

S SCHOOL OF COMPUTER SCIENCE AND ENGINEERING

Under the Supervision of

Dr. Shobha Tyagi

Associate Professor

November - December 2021

[1]



DRIVER DROWSINESS DETECTION SYSTEM

SCHOOL OF COMPUTER SCIENCE AND ENGINEERING
BONAFIDE CERTIFICATE

Certified that this project report “DROWSINESS DETECTION SYSTEM” is the

bonafide work of “Rohit Parihar, Arham KHAN” who carried out the project

work under my supervision.

SIGNATURE SIGNATURE
DR MUNISH SABHARWAL Dr. Shobha Tyagi

Dean of School SUPERVISOR
PROFESSOR

SCSE SCSE



DRIVER DROWSINESS DETECTION SYSTEM

Approval Sheet

This thesis/dissertation/report entitled DROWSINESS DETECTION SYSTEM by Rohit Parihar,

Arham KHAN, is approved for the degree of BACHELORS OF TECHNOLOGY IN COMPUTER

SCIENCE ENGINEERING.

Examiners

_____________

_____________

Supervisor (s)

____________

____________

____________

Chairman

____________

Date:_________

Place:_________



DRIVER DROWSINESS DETECTION SYSTEM

Statement of Project Report
Preparation

1. Thesis title: DROWSINESS DETECTION SYSTEM.

2. Degree for which the report is submitted: BACHELORS OF TECHNOLOGY.

3. Project Supervisor was referred to for preparing the report.

4. Specifications regarding thesis format have been closely followed.

5. The contents of the thesis have been organized based on the guidelines.

6. The report has been prepared without resorting to plagiarism.

7. All sources used have been cited appropriately.

8. The report has not been submitted elsewhere for a degree.

(Signature of the student)

Name: Rohit Parihar

Roll No.:

18SCSE1010218

Statement of Preparation:



DRIVER DROWSINESS DETECTION SYSTEM

Statement of Project Report
Preparation

1. Thesis title: DROWSINESS DETECTION SYSTEM.

3. Degree for which the report is submitted: BACHELORS OF TECHNOLOGY.

3. Project Supervisor was referred to for preparing the report.

8. Specifications regarding thesis format have been closely followed.

9. The contents of the thesis have been organized based on the guidelines.

10. The report has been prepared without resorting to plagiarism.

11. All sources used have been cited appropriately.

8. The report has not been submitted elsewhere for a degree.

(Signature of the student)

Name: Arham Khan

Roll No.:18SCSE1010350

Statement of Preparation:



DRIVER DROWSINESS DETECTION SYSTEM

ABSTRACT

This document is a review report on the research conducted and the project made

in the field of computer engineering to develop a system for driver drowsiness

detection to prevent accidents from happening because of driver fatigue and

sleepiness. The report proposed the results and solutions on the limited

implementation of the various techniques that are introduced in the project.

Whereas the implementation of the project gives the real-world idea of how the

system works and what changes can be done in order to improve the utility of the

overall system.

Furthermore, the paper states the overview of the observations made by the authors

in order to help further optimization in the mentioned field to achieve the utility at a

better efficiency for a safer road.

Keywords—Driver drowsiness; eye detection; yawn detection; blink pattern;

fatigue



DRIVER DROWSINESS DETECTION SYSTEM

Contents

1 Introduction 8
1.1 PURPOSE . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.1.1 HUMAN PSYCHOLOGY. . . . . . . . . . . . 8
1.1.2 CURRENT STATISTICS . . . . . . . . . . . . . . . . . . . 9

1.2 DOCUMENT CONVENTIONS . . . . . . . . . . . . . . . . 9
1.3 INTENDED AUDIENCE. . . . . . . . . . . . . . . 9
1.4 PRODUCT SCOPE. . . . . . . . . . . . . . . 10
1.5 PROBLEM DEFINITION. . . . . . . . . . . . . . . 10

2 Literature Survey 11
2.1 SYSTEM REVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 TECHNOLOGY USED. . . . . . . . . . . . . . . 11

3 Software Requirements Specification 12
3.1 PYTHON . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1.1 LIBRARIES . . . . . . . . . . . . . . . . . . . . 12
3.2 OPERATING SYSTEM . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 HARDWARE . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Requirement Analysis 14
4.1 PYTHON . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.1.1 LIBRARIES . . . . . . . . . . . . . . . . . . . . 15
4.2 OPERATING SYSTEM . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3 HARDWARE . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.3.1 LAPTOP . . . . . . . . . . . . . . . . . . . . 20
4.3.2 WEBCAM . . . . . . . . . . . . . . . . . . . . 20

5 System Design 21
5.1 USE CASE MODEL . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2 ACTIVITY DIAGRAM . . . . . . . . . . . . . . . . . . . . . . . . . 22

1 5.3 CLASS DIAGRAM . . . . . . . . . . . . . . . . . . . . . . . . . 23

6 System Testing 24
6.1 TEST CASES & TEST RESULTS . . . . . . . . . . . . . . . . . . . . . .



DRIVER DROWSINESS DETECTION SYSTEM

7 Project Planning 25
7.1 SYSTEM MODEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

8 Implementation 26

9 Screenshots of Project 27
9.1 NON-DROWSY STATE . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
9.2 DROWSY STATE . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

10 Conclusion and Future Scope 38
10.1 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
10.2 FUTURE SCOPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

11 References 39



DRIVER DROWSINESS DETECTION SYSTEM

Introduction

1.1 PURPOSE

Humans have always invented machines and devised techniques to ease

and protect their lives, for mundane activities like traveling to work, or for

more interesting purposes like aircraft travel. With the advancement in

technology, modes of transportation kept on advancing and our

dependency on it started increasing exponentially. It has greatly affected

our lives as we know it. Now, we can travel to places at a pace that even

our grandparents wouldn’t have thought possible. In modern times, almost

everyone in this world uses some sort of transportation every day. Some

people are rich enough to have their own vehicles while others use public

transportation. However, there are some rules and codes of conduct for

those who drive irrespective of their social status. One of them is staying

alert and active while driving.

Neglecting our duties towards safer travel has enabled hundreds of

thousands of tragedies to get associated with this wonderful invention every

year. It may seem like a trivial thing to most folks but following rules and

regulations on the road is of utmost importance. While on road, an

automobile wields the most power and in irresponsible hands, it can be

destructive and sometimes, that carelessness can harm lives even of the

people on the road. One kind of carelessness is not admitting when we are

too tired to drive. In order to monitor and prevent a destructive outcome

from such negligence, many researchers have written research papers on

driver drowsiness detection systems. But at times, some of the points and

observations made by the system are not accurate enough. Hence, to

provide data and another perspective on the problem at hand, in order to

improve their implementations and to further optimize the solution, this

project has been done.



DRIVER DROWSINESS DETECTION SYSTEM

1.1.1 FACTS & STATISTICS

Our current statistics reveal that just in 2015 in India alone, 148,707

people died due to car related accidents. Of these, at least 21 percent

were caused due to fatigue causing drivers to make mistakes. This can be

a relatively smaller number still, as among the multiple causes that can

lead to an accident, the involvement of fatigue as a cause is generally

grossly underestimated. Fatigue combined with bad infrastructure in

developing countries like India is a recipe for disaster. Fatigue, in general,

is very difficult to measure or observe unlike alcohol and drugs, which

have clear key indicators and tests that are available easily. Probably, the

best solutions to this problem are awareness about fatigue-related

accidents and promoting drivers to admit fatigue when needed. The

former is hard and much more expensive to achieve, and the latter is not

possible without the former as driving for long hours is very lucrative.

When there is an increased need for a job, the wages associated with it

increases leading to more and more people adopting it. Such is the case

for driving transport vehicles at night. Money motivates drivers to make

unwise decisions like driving all night even with fatigue. This is mainly

because the drivers are not themselves aware of the huge risk associated

with driving when fatigued. Some countries have imposed restrictions on

the number of hours a driver can drive at a stretch, but it is still not

enough to solve this problem as its implementation is very difficult and

costly.

1.2 DOCUMENT CONVENTIONS

Main Heading Font size: 24 (bold fonts)

Sub-headings Font size: 16 (bold fonts)

Sub-headings Content Font size: 14 (normal fonts)



DRIVER DROWSINESS DETECTION SYSTEM

1.3 INTENDED AUDIENCE

The intended audience for this document are the development team, the

project evaluation jury, and other tech-savvy enthusiasts who wish to further

work on the project.

PRODUCT SCOPE

There are many products out there that provide the measure of fatigue level

in the drivers which are implemented in many vehicles. The driver

drowsiness detection system provides the similar functionality but with

better results and additional benefits. Also, it alerts the user on reaching a

certain saturation point of the drowsiness measure.

1.4 PROBLEM DEFINITION

Fatigue is a safety problem that has not yet been deeply tackled by any

country in the world mainly because of its nature. Fatigue, in general, is

very difficult to measure or observe unlike alcohol and drugs, which have

clear key indicators and tests that are available easily. Probably, the best

solutions to this problem are awareness about fatigue-related accidents

and promoting drivers to admit fatigue when needed. The former is hard

and much more expensive to achieve, and the latter is not possible

without the former as driving for long hours is very lucrative.



DRIVER DROWSINESS DETECTION SYSTEM

Literature Survey

2.1 SYSTEM REVIEW

This survey is done to comprehend the need and prerequisite of the general

population, and to do as such, we went through different sites and

applications and looked for the fundamental data. Based on these data, we

made an audit that helped us get new thoughts and make different

arrangements for our task. We reached the decision that there is a need of

such application and felt that there is a decent extent of progress in this

field too.

2.2 TECHNOLOGY USED

a. PYTHON - Python is an interpreted, high-level, general-purpose

programming language. Python's design philosophy emphasizes code

readability with its notable use of significant whitespace. Its language

constructs and object-oriented approach aim to help programmers write

clear, logical code for small and large-scale projects. Python is

dynamically typed AND supports multiple programming paradigms,

including procedural, object-oriented, and functional programming.

b. JUPYTER Lab - Project Jupyter is a nonprofit organization created to

develop open-source software, open-standards, and services for

interactive computing across dozens of programming languages.

c. IMAGE PROCESSING - In computer science, digital image processing is

the use of computer algorithms to perform image processing on digital

images.

https://en.wikipedia.org/wiki/Nonprofit_organization
https://en.wikipedia.org/wiki/Open-source_software
https://en.wikipedia.org/wiki/Interactive_computing
https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Digital_image
https://en.wikipedia.org/wiki/Digital_image


DRIVER DROWSINESS DETECTION SYSTEM

d. MACHINE LEARNING - Machine learning is the scientific study

of algorithms and statistical models that computer systems use in order to

perform a specific task effectively without using explicit instructions,

relying on patterns and inference instead. It is seen as a subset of artificial

intelligence. Machine learning algorithms build a mathematical model

based on sample data, known as "training data", in order to make

predictions or decisions without being explicitly told.

https://en.wikipedia.org/wiki/Branches_of_science
https://en.wikipedia.org/wiki/Branches_of_science
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Statistical_model
https://en.wikipedia.org/wiki/Computer_systems
https://en.wikipedia.org/wiki/Artificial_intelligence
https://en.wikipedia.org/wiki/Artificial_intelligence
https://en.wikipedia.org/wiki/Mathematical_model
https://en.wikipedia.org/wiki/Training_data


DRIVER DROWSINESS DETECTION SYSTEM

Chapter 3

Software Requirements Specification

3.1 Python:
 Python 3

3.2 Libraries
 Numpy

 Scipy

 Playsound

 Dlib

 Imutils

 opencv, etc.

3.3 Operating System
 Windows or Ubuntu

Hardware Requirements Specification

I. Laptop with basic hardware.

II. Webcam



DRIVER DROWSINESS DETECTION SYSTEM

4.Requirement Analysis

Python

Python is an interpreted high-level general-purpose programming language. Its

design philosophy emphasizes code readability with its use of significant

indentation. Its language constructs as well as its object-oriented approach aim

to help programmers write clear, logical code for small and large-scale projects.

Python is dynamically-typed and garbage-collected. It supports multiple

programming paradigms, including structured (particularly, procedural), object-

oriented and functional programming. It is often described as a "batteries

included" language due to its comprehensive standard library.

Guido van Rossum began working on Python in the late 1980s, as a successor

to the ABC programming language, and first released it in 1991 as Python 0.9.0.

Python 2.0 was released in 2000 and introduced new features, such as list

comprehensions and a cycle-detecting garbage collection system (in addition to

reference counting). Python 3.0 was released in 2008 and was a major revision

of the language that is not completely backward-compatible. Python 2 was

discontinued with version 2.7.18 in 2020.

Design philosophy and features Python is a multi-paradigm programming

language. Object-oriented programming and structured programming are fully

supported, and many of its features support functional programming and aspect-

oriented programming (including by metaprogramming[58] and metaobjects

(magic methods)).[59] Many other paradigms are supported via extensions,

including design by contract[60][61] and logic programming.[62] Python uses

dynamic typing and a combination of reference counting and a cycle-detecting



DRIVER DROWSINESS DETECTION SYSTEM

garbage collector for memory management.[63] It also features dynamic name

resolution (late binding), which binds method and variable names during program

execution. Python's design offers some support for functional programming in the

Lisp tradition. It has filter,mapandreduce functions; list comprehensions,

dictionaries, sets, and generator expressions.[64] The standard library has two

modules (itertools and functools) that implement functional tools borrowed from

Haskell and Standard ML.[65] The language's core philosophy is summarized in

the document The Zen of Python (PEP 20), which includes aphorisms such

as:[66] Beautiful is better than ugly. Explicit is better than implicit. Simple is better

than complex. Complex is better than complicated. Readability counts. Rather

than having all of its functionality built into its core, Python was designed to be

highly extensible (with modules). This compact modularity has made it

particularly popular as a means of adding programmable interfaces to existing

applications. Van Rossum's vision of a small core language with a large standard

library and easily extensible interpreter stemmed from his frustrations with ABC,

which espoused the opposite approach. It is often described as a "batteries

included" language due to its comprehensive standard library.

Numpy

NumPy (pronounced /ˈnʌmpaɪ/ (NUM-py) or sometimes /ˈnʌmpi/[3][4] (NUM-pee))

is a library for the Python programming language, adding support for large, multi-

dimensional arrays and matrices, along with a large collection of high-level

mathematical functions to operate on these arrays. The ancestor of NumPy,

Numeric, was originally created by Jim Hugunin with contributions from several

other developers. In 2005, Travis Oliphant created NumPy by incorporating

features of the competing Numarray into Numeric, with extensive modifications.

NumPy is open-source software and has many contributors. NumPy is a

NumFOCUS fiscally sponsored project.

NumPy targets the CPython reference implementation of Python, which is a non-



DRIVER DROWSINESS DETECTION SYSTEM

optimizing bytecode interpreter. Mathematical algorithms written for this version

of Python often run much slower than compiled equivalents. NumPy addresses

the slowness problem partly by providing multidimensional arrays and functions

and operators that operate efficiently on arrays; using these requires rewriting

some code, mostly inner loops, using NumPy. Using NumPy in Python gives

functionality comparable to MATLAB since they are both interpreted,[20] and

they both allow the user to write fast programs as long as most operations work

on arrays or matrices instead of scalars. In comparison, MATLAB boasts a large

number of additional toolboxes, notably Simulink, whereas NumPy is intrinsically

integrated with Python, a more modern and complete programming language.

Moreover, complementary Python packages are available; SciPy is a library that

adds more MATLAB-like functionality and Matplotlib is a plotting package that

provides MATLAB-like plotting functionality. Internally, both MATLAB and NumPy

rely on BLAS and LAPACK for efficient linear algebra computations. Python

bindings of the widely used computer vision library OpenCV utilize NumPy arrays

to store and operate on data. Since images with multiple channels are simply

represented as three-dimensional arrays, indexing, slicing or masking with other

arrays are very efficient ways to access specific pixels of an image. The NumPy

array as universal data structure in OpenCV for images, extracted feature points,

filter kernels and many more vastly simplifies the programming workflow and

debugging.

Open CV

OpenCV is a cross-platform library using which we can develop real-time

computer vision applications. It mainly focuses on image processing, video

capture and analysis including features like face detection and object detection.

Let’s start the chapter by defining the term "Computer Vision".

Computer Vision

Computer Vision can be defined as a discipline that explains how to reconstruct,



DRIVER DROWSINESS DETECTION SYSTEM

interrupt, and understand a 3D scene from its 2D images, in terms of the

properties of the structure present in the scene. It deals with modeling and

replicating human vision using computer software and hardware.

Computer Vision overlaps significantly with the following fields:

Image Processing: It focuses on image manipulation.

Pattern Recognition: It explains various techniques to classify patterns.

Photogrammetry: It is concerned with obtaining accurate measurements from

images.

Computer Vision Vs Image Processing

Image processing deals with image-to-image transformation. The input and

output of

image processing are both images.

Computer vision is the construction of explicit, meaningful descriptions of

physical

objects from their image. The output of computer vision is a description or an

interpretation of structures in 3D scene.

Applicationsof Computer Vision

Here we have listed down some of major domains where Computer Vision is

heavily used.

Robotics Application

 Localization ─ Determine robot location automatically

 Navigation

 Obstacles avoidance

 Assembly (peg-in-hole, welding, painting)

 Manipulation (e.g. PUMA robot manipulator)

 Human Robot Interaction (HRI): Intelligent robotics to interact with and

serve people

Medicine Application

Classification and detection (e.g. lesion or cells classification and tumor detection)

1. OpenCV –Overview

OpenCV



DRIVER DROWSINESS DETECTION SYSTEM

2D/3D segmentation

3D human organ reconstruction (MRI or ultrasound)

Vision-guided robotics surgery

Industrial Automation Application

 Industrial inspection (defect detection)

 Assembly

 Barcode and package label reading

 Object sorting

 Document understanding (e.g. OCR)

 Security Application

 Biometrics (iris, finger print, face recognition)

 Surveillance ─ Detecting certain suspicious activities or behaviors

 Transportation Application

 Autonomous vehicle

 Safety, e.g., driver vigilance monitoring

Features of OpenCV Library

Using OpenCV library, you can –

 Read and write images

 Capture and save videos

 Process images (filter, transform)

 Perform feature detection

 Detect specific objects such as faces, eyes, cars, in the videos or images.

 Analyze the video, i.e., estimate the motion in it, subtract the background,

and

 track objects in it.

OpenCV was originally developed in C++. In addition to it, Python and Java

bindings were provided. OpenCV runs on various Operating Systems such as

windows, Linux, OSx, FreeBSD, Net BSD, Open BSD, etc. This tutorial explains

the concepts of OpenCV with examples using Java bindings.

OpenCV OpenCV Library Modules Following are the main library modules of the



DRIVER DROWSINESS DETECTION SYSTEM

OpenCV library.

Core Functionality

This module covers the basic data structures such as Scalar, Point, Range, etc.,

that are used to build OpenCV applications. In addition to these, it also includes

the multidimensional array Mat, which is used to store the images. In the Java

library of OpenCV, this module is included as a package with the name

org.opencv.core.

Image Processing
This module covers various image processing operations such as image filtering,

geometrical image transformations, color space conversion, histograms, etc. In

the Java library of OpenCV, this module is included as a package with the name

org.opencv.imgproc. Video This module covers the video analysis concepts such

as motion estimation, background subtraction, and object tracking. In the Java

library of OpenCV, this module is included as a package with the name

org.opencv.video. Video I/O This module explains the video capturing and video

codecs using OpenCV library. In the Java library of OpenCV, this module is

included as a package with the name org.opencv.videoio. calib3d This module

includes algorithms regarding basic multiple-view geometry algorithms, single

and stereo camera calibration, object pose estimation, stereo correspondence

and elements of 3D reconstruction. In the Java library of OpenCV, this module is

included as a package with the name org.opencv.calib3d. features2d This

module includes the concepts of feature detection and description. In the Java

library of OpenCV, this module is included as a package with the name

org.opencv.features2d. Objdetect This module includes the detection of objects

and instances of the predefined classes such as faces, eyes, mugs, people, cars,

etc. In the Java library of OpenCV, this module is included as a package with the

name org.opencv.objdetect. Highgui This is an easy-to-use interface with simple

UI capabilities. In the Java library of OpenCV, the features of this module is

included in two different packages namely, org.opencv.imgcodecs and

org.opencv.videoio.OpenCV



DRIVER DROWSINESS DETECTION SYSTEM

A Brief History of OpenCV

OpenCV was initially an Intel research initiative to advise CPU-intensive

applications. It was officially launched in 1999.In the year 2006, its first major

version, OpenCV 1.0 was released. In October 2009, the second major version,

OpenCV 2 was released. In August 2012, OpenCV was taken by a nonprofit

organization OpenCV.org

DLib

DLib-ml implements numerous machine learning algorithms:SVMs, K-Means

clustering, Bayesian Networks,and many others. DLib also features utility

functionality including

 Threading,

 Networking,

 Numerical Algorithms,

 Image Processing,

 and Data Compression and Integrity algorithms.

DLib includes extensive unit testing coverage and examples using the library.

Every class and function in the library is documented. This documentation can be

found on the library's home page. DLib provides a good framework for

developing machine learning applications in C++.

DLib is much like DMTL in that it provides a generic high-performance machine

learning toolkit with many different algorithms, but DLib is more recently updated

and has more examples. DLib also contains much more supporting functionality.

What makes DLib unique is that it is designed for both research use and

creating machine learning applications in C++



DRIVER DROWSINESS DETECTION SYSTEM

System Design

5.1 USE CASE DIAGRAM



DRIVER DROWSINESS DETECTION SYSTEM

5.2 ACTIVITY DIAGRAM

FIGURE 2



DRIVER DROWSINESS DETECTION SY

5.3 CLASS DIAGRAM

FIGURE 3



DRIVER DROWSINESS DETECTION SY

System Testing

6.1 Test Cases and Test Results

Test Test Case Title Test Condition System Behavior Expected Result

ID

T01 NSGY

Straight Face,
Good Light, With
Glasses Non Drowsy Non Drowsy

T02 YTGN
Tilted Face, Good
Light, No Glasses Drowsy Drowsy

T03 YTGY

Tilted Face, Good
Light, With
Glasses Drowsy Drowsy

Note: Testing is performed manually



DRIVER DROWSINESS DETECTION SYSTEM

Project Planning

7.1 SYSTEM MODEL

The framework is created utilizing the incremental model. The center

model of the framework is first created and afterwards augmented in this

way in the wake of testing at each turn. The underlying undertaking

skeleton was refined into expanding levels of ability.

At the following incremental level, it might incorporate new execution

backing and improvement.

Figure 4: Block diagram



DRIVER DROWSINESS DETECTION SYSTEM

Chapter 8

Implementation

 In our program we used Dlib, a pre-trained program trained on the

HELEN dataset to detect human faces using the pre-defined 68

landmarks.

Landmarked Image of a person by Dlib

HELEN Dataset Samples

 After passing our video feed to the dlib frame by frame, we are able to
detect left eye and right eye features of the face.



DRIVER DROWSINESS DETECTION SYSTEM

 Now, we drew contours around it using OpenCV.

 Using Scipy’s Euclidean function, we calculated sum of both

eyes’ aspect ratio which is the sum of 2 distinct vertical

distances betweenthe eyelids divided by its horizontal

distance.

Eyes with horizontal and vertical distance marked for Eye
Aspect Ratiocalculation.

 Now we check if the aspect ratio value is less than 0.25

(0.25 waschosen as a base case after some tests). If it is

less an alarm is sounded and user is warned.



DRIVER DROWSINESS DETECTION SYSTEM

ALGORITHM

Recognition of Eye's State:The eye area can be estimated from optical flow, by sparse

tracking or by frame-to-frame intensity differencing and adaptive thresholding. And Finally,

a decision is made whether the eyes are or are not covered by eyelids. A different approach

is to infer the state of the eye opening from a single image, as e.g. by correlation matching

with open and closed eye templates, a heuristic horizontal or vertical image intensity

projection over the eye region, a parametric model fitting to find the eyelids, or active shape

models. A major drawback of the previous approaches is that they usually implicitly impose

too strong requirements on the setup, in the sense of a relative face-camera pose (head

orientation), image resolution, illumination, motion dynamics, etc. Especially the heuristic

methods that use raw image intensity are likely to be very sensitive despite their real-time

performance. Therefore, we propose a simple but efficient algorithm to detect eye blinks by

using a recent facial landmark detector. A single scalar quantity that reflects a level of the

eye opening is derived from the landmarks. Finally, having a per-frame sequence of the eye-

opening estimates, the eye blinks are found by an SVM classifier that is trained on examples

of blinking and non-blinking patterns. Eye Aspected Ratio Calculation: For every video

frame, the eye landmarks are detected. The eye aspect ratio (EAR) between height and width

of the eye is computed.

EAR = ||p2 − p6|| + ||p3 − p5|| (1) 2||p1 − p4||
where p1, . . ., p6 are the 2D landmark locations, depicted in Fig. 1. The EAR is mostly

constant when an eye is open and is getting close to zero while closing an eye. It is partially

person and head pose insensitive. Aspect ratio of the open eye has a small variance among

individuals, and it is fully invariant to a uniform scaling of the image and in-plane rotation of

the face. Since eye blinking is performed by both eyes synchronously, the EAR of both eyes

is averaged.



DRIVER DROWSINESS DETECTION SYSTEM

Source Code

{

"cells": [

{

"cell_type": "markdown",

"metadata": {},

"source": [

"# Drowsiness Detection OpenCV\n",

"\n",

"\n",

"This code can detect your eyes and alert when the user is drowsy.\n",

"\n",

"## Applications\n",

"This can be used by riders who tend to drive for a longer period of time that may

lead to accidents.\n",

"\n",

"### Algorithm\n",

"\n",

"Each eye is represented by 6 (x, y)-coordinates, starting at the left-corner of the eye

(as if you were looking at the person), and then working clockwise around the eye:.\n",

"\n",

"<img src=\"eye1.jpg\">\n",

"\n",

"### Condition\n",

"\n",

"It checks 20 consecutive frames and if the Eye Aspect ratio is lesst than 0.25, Alert

is generated.\n",

"\n",



DRIVER DROWSINESS DETECTION SYSTEM

"#### Relationship\n",

"\n",

"<img src=\"eye2.png\">\n",

"\n",

"#### Summing up\n",

"\n",

"<img src=\"eye3.jpg\">\n",

"\n",

]

},

{

"cell_type": "code",

"execution_count": 1,

"metadata": {},

"outputs": [],

"source": [

"from scipy.spatial import distance\n",

"from imutils import face_utils\n",

"import imutils\n",

"import dlib\n",

"import cv2"

]

},

{

"cell_type": "code",

"execution_count": 2,

"metadata": {},

"outputs": [],

"source": [

"def eye_aspect_ratio(eye):\n",

"\tA = distance.euclidean(eye[1], eye[5])\n",



DRIVER DROWSINESS DETECTION SYSTEM

"\tB = distance.euclidean(eye[2], eye[4])\n",

"\tC = distance.euclidean(eye[0], eye[3])\n",

"\tear = (A + B) / (2.0 * C)\n",

"\treturn ear"

]

},

{

"cell_type": "code",

"execution_count": 3,

"metadata": {},

"outputs": [],

"source": [

"thresh = 0.25\n",

"frame_check = 20\n",

"detect = dlib.get_frontal_face_detector()\n",

"predict = dlib.shape_predictor(\"shape_predictor_68_face_landmarks.dat\")"

]

},

{

"cell_type": "code",

"execution_count": 4,

"metadata": {},

"outputs": [],

"source": [

"(lStart, lEnd) = face_utils.FACIAL_LANDMARKS_IDXS[\"left_eye\"]\n",

"(rStart, rEnd) = face_utils.FACIAL_LANDMARKS_IDXS[\"right_eye\"]"

]

},

{

"cell_type": "code",

"execution_count": 5,



DRIVER DROWSINESS DETECTION SYSTEM

"metadata": {},

"outputs": [],

"source": [

"cap=cv2.VideoCapture(0)\n",

"flag=0\n",

"while True:\n",

"\tret, frame=cap.read()\n",

"\tframe = imutils.resize(frame, width=450)\n",

"\tgray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)\n",

"\tsubjects = detect(gray, 0)\n",

"\tfor subject in subjects:\n",

"\t\tshape = predict(gray, subject)\n",

"\t\tshape = face_utils.shape_to_np(shape)#converting to NumPy Array\n",

"\t\tleftEye = shape[lStart:lEnd]\n",

"\t\trightEye = shape[rStart:rEnd]\n",

"\t\tleftEAR = eye_aspect_ratio(leftEye)\n",

"\t\trightEAR = eye_aspect_ratio(rightEye)\n",

"\t\tear = (leftEAR + rightEAR) / 2.0\n",

"\t\tleftEyeHull = cv2.convexHull(leftEye)\n",

"\t\trightEyeHull = cv2.convexHull(rightEye)\n",

"\t\tcv2.drawContours(frame, [leftEyeHull], -1, (0, 255, 0), 1)\n",

"\t\tcv2.drawContours(frame, [rightEyeHull], -1, (0, 255, 0), 1)\n",

"\t\tif ear < thresh:\n",

"\t\t\tflag += 1\n",

"\t\t\t#print (flag)\n",

"\t\t\tif flag >= frame_check:\n",

"\t\t\t\tcv2.putText(frame, \"****************ALERT!****************\", (10, 30),\n",

"\t\t\t\t\tcv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)\n",

"\t\t\t\tcv2.putText(frame, \"****************ALERT!****************\", (10,325),\n",

"\t\t\t\t\tcv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)\n",

"\t\telse:\n",



DRIVER DROWSINESS DETECTION SYSTEM

"\t\t\tflag = 0\n",

"\tcv2.imshow(\"Frame\", frame)\n",

"\tkey = cv2.waitKey(1) & 0xFF\n",

"\tif key == ord(\"q\"):\n",

"\t\tcv2.destroyAllWindows()\n",

"\t\tcap.release()\n",

"\t\tbreak\n"

]

},

{

"cell_type": "code",

"execution_count": null,

"metadata": {},

"outputs": [],

"source": []

}

],

"metadata": {

"kernelspec": {

"display_name": "Python 3",

"language": "python",

"name": "python3"

},

"language_info": {

"codemirror_mode": {

"name": "ipython",

"version": 3

},

"file_extension": ".py",

"mimetype": "text/x-python",

"name": "python",



DRIVER DROWSINESS DETECTION SYSTEM

"nbconvert_exporter": "python",

"pygments_lexer": "ipython3",

"version": "3.6.4"

}

},

"nbformat": 4,

"nbformat_minor": 2

}

from scipy.spatial import distance

from imutils import face_utils

import imutils

import dlib

import cv2

def eye_aspect_ratio(eye):

A = distance.euclidean(eye[1], eye[5])

B = distance.euclidean(eye[2], eye[4])

C = distance.euclidean(eye[0], eye[3])

ear = (A + B) / (2.0 * C)

return ear

thresh = 0.25

frame_check = 20

detect = dlib.get_frontal_face_detector()

predict = dlib.shape_predictor(".\shape_predictor_68_face_landmarks.dat")# Dat file is

the crux of the code

(lStart, lEnd) = face_utils.FACIAL_LANDMARKS_68_IDXS["left_eye"]

(rStart, rEnd) = face_utils.FACIAL_LANDMARKS_68_IDXS["right_eye"]

cap=cv2.VideoCapture(0)

flag=0



DRIVER DROWSINESS DETECTION SYSTEM

while True:

ret, frame=cap.read()

frame = imutils.resize(frame, width=450)

gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

subjects = detect(gray, 0)

for subject in subjects:

shape = predict(gray, subject)

shape = face_utils.shape_to_np(shape)#converting to NumPy Array

leftEye = shape[lStart:lEnd]

rightEye = shape[rStart:rEnd]

leftEAR = eye_aspect_ratio(leftEye)

rightEAR = eye_aspect_ratio(rightEye)

ear = (leftEAR + rightEAR) / 2.0

leftEyeHull = cv2.convexHull(leftEye)

rightEyeHull = cv2.convexHull(rightEye)

cv2.drawContours(frame, [leftEyeHull], -1, (0, 255, 0), 1)

cv2.drawContours(frame, [rightEyeHull], -1, (0, 255, 0), 1)

if ear < thresh:

flag += 1

print (flag)

if flag >= frame_check:

cv2.putText(frame, "****************ALERT!****************", (10,

30),

cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)

cv2.putText(frame, "****************ALERT!****************",

(10,325),

cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)

#print ("Drowsy")

else:

flag = 0

cv2.imshow("Frame", frame)



DRIVER DROWSINESS DETECTION SYSTEM

key = cv2.waitKey(1) & 0xFF

if key == ord("q"):

Break

from scipy.spatial import distance

from imutils import face_utils

import imutils

import dlib

import cv2

def eye_aspect_ratio(eye):

A = distance.euclidean(eye[1], eye[5])

B = distance.euclidean(eye[2], eye[4])

C = distance.euclidean(eye[0], eye[3])

ear = (A + B) / (2.0 * C)

return ear

thresh = 0.25

frame_check = 20

detect = dlib.get_frontal_face_detector()

predict = dlib.shape_predictor(".\shape_predictor_68_face_landmarks.dat")# Dat file is

the crux of the code

(lStart, lEnd) = face_utils.FACIAL_LANDMARKS_68_IDXS["left_eye"]

(rStart, rEnd) = face_utils.FACIAL_LANDMARKS_68_IDXS["right_eye"]

cap=cv2.VideoCapture(0)

flag=0

while True:

ret, frame=cap.read()

frame = imutils.resize(frame, width=450)

gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

subjects = detect(gray, 0)



DRIVER DROWSINESS DETECTION SYSTEM

for subject in subjects:

shape = predict(gray, subject)

shape = face_utils.shape_to_np(shape)#converting to NumPy Array

leftEye = shape[lStart:lEnd]

rightEye = shape[rStart:rEnd]

leftEAR = eye_aspect_ratio(leftEye)

rightEAR = eye_aspect_ratio(rightEye)

ear = (leftEAR + rightEAR) / 2.0

leftEyeHull = cv2.convexHull(leftEye)

rightEyeHull = cv2.convexHull(rightEye)

cv2.drawContours(frame, [leftEyeHull], -1, (0, 255, 0), 1)

cv2.drawContours(frame, [rightEyeHull], -1, (0, 255, 0), 1)

if ear < thresh:

flag += 1

print (flag)

if flag >= frame_check:

cv2.putText(frame, "****************ALERT!****************", (10,

30),

cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)

cv2.putText(frame, "****************ALERT!****************",

(10,325),

cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)

#print ("Drowsy")

else:

flag = 0

cv2.imshow("Frame", frame)

key = cv2.waitKey(1) & 0xFF

if key == ord("q"):

break



DRIVER DROWSINESS DETECTION SYSTEM

Conclusion and Future Scope

10.1 Conclusion

It completely meets the objectives and requirements of the system. The
framework has achieved an unfaltering state where all the bugs have
been disposed of. The framework cognizant clients who are familiar with
the framework and comprehend it's focal points and the fact that it takes
care of the issue of stressing out for individuals having fatigue-related
issues to inform them about the drowsiness level while driving.

10.2 Future Scope

The model can be improved incrementally by using other parameters like
blink rate, yawning, state of the car, etc. If all these parameters are used it
can improve the accuracy by a lot.

We plan to further work on the project by adding a sensor to track the
heart rate in order to prevent accidents caused due to sudden heart
attacks to drivers.

Same model and techniques can be used for various other uses like
Netflix and other streaming services can detect when the user is asleep
and stop the video accordingly. It can also be used in application that
prevents user from sleeping.



DRIVER DROWSINESS DETECTION SYSTEM

References
[1] COMPUTATIONALLY EFFICIENT FACE DETECTION; B.

SCHLKOPF-A. BLAKE, S. ROMDHANI, AND P. TORR.

[2] USE OF THE HOUGH TRANSFORMATION TO DETECT LINES AND
CURVES IN PICTURE; R. DUDA AND P. E. HART.

[3] JAIN, “FACE DETECTION IN COLOR IMAGES; R. L. HSU, M. ABDEL-
MOTTALEB, AND A. K. JAIN.

[4] OPEN/CLOSED EYE ANALYSIS FOR DROWSINESS DETECTION;
P.R. TABRIZI AND R. A. ZOROOFI.

[5] http://ncrb.gov.in/StatPublications/ADSI/ADSI2015/chapter1A%20traffic
%20accidents.pdf

[6] http://www.jotr.in/text.asp?2013/6/1/1/118718

[7] http://dlib.net/face_landmark_detection_ex.cpp.html

http://ncrb.gov.in/StatPublications/ADSI/ADSI2015/chapter1A%20traffic
http://dlib.net/face_landmark_detection_ex.cpp.html

	DROWSINESS DETECTION SYSTEM
	       Project Report submitted in partial fulfill
	 for the award of the degree of
	Bachelor Of Technology
	                                Submitted by
	IN
	S                              SCHOOL OF COMPUTER 
	BONAFIDE CERTIFICATE
	SIGNATURESIGNATURE
	Dean of SchoolSUPERVISOR


	Statement of Project Report Preparation
	Statement of Project Report Preparation
	Contents
	1.1PURPOSE
	1.2DOCUMENT CONVENTIONS
	1.3INTENDED AUDIENCE
	PRODUCT SCOPE
	1.4PROBLEM DEFINITION

	Literature Survey
	2.1SYSTEM REVIEW
	2.2TECHNOLOGY USED


	Chapter 3
	Software Requirements Specification
	3.1Python:
	3.2Libraries
	3.3Operating System

	Hardware Requirements Specification
	System Design
	5.1USE CASE DIAGRAM
	5.3CLASS DIAGRAM

	System Testing
	Project Planning
	7.1SYSTEM MODEL


	Chapter 8
	Implementation
	Conclusion and Future Scope
	References


