
A Project Report

on

CRYPTOWEB

Submitted in partial fulfillment of the

requirement for the award of the degree

of

Bachelor of Technology in Computer Science and
Engineering

CSE 4TH YEAR

UnderTheSupervisionof
Dr. Ganga Sharma

Designation :
Associate Professor

Submitted By :

Vaibhab Kumar Yadav -

18SCSE1010301

Shivam Singh -

18SCCSE1010221

SCHOOL OF COMPUTING SCIENCE AND ENGINEERING
DEPARTMENTOF COMPUTER SCIENCE AND ENGINEERING

GALGOTIAS UNIVERSITY, GREATER NOIDA
INDIA

DECEMBER , 2021

CANDIDATE’S DECLARATION

I/We hereby certify that the work which is being presented in the

thesis/project/dissertation, entitled “ CRYPTO WEB ” in partial fulfillment of the

requirements for the award of the Bachelor of Technology in Computer Science and

Engineering submitted in the School of Computing Science and Engineering of

Galgotias University, Greater Noida, is an original work carried out during the period of

November of 2021 to December of 2021, under the supervision of Dr. Ganga Sharma

Designation Associate Professor , Department of Computer Science and Engineering of

School of Computing Science and Engineering , Galgotias University, Greater Noida .

The matter presented in the report has not been submitted by us for the award of any

other degree of this or any other places.

This is to certify that the above statement made by the candidates is correct to
the best of my
knowledge.

Supervisor Name : Dr. Ganga Sharma
Associate Professor ,Galgotias university

DECEMBER , 2021

SCHOOL OF COMPUTING SCIENCE AND
ENGINEERING ,

GALGOTIAS UNIVERSITY,
GREATER NOIDA

SHIVAM SINGH ,
18SCSE1010221

VAIBHAB KUMAR YADAV ,
18SCSE1010301

CERTIFICATE

The Final Thesis/Project Viva-Voce examination of Vaibhab Kumar Yadav -

18scse1010301 and Shivam Singh - 18scse1010221 has been held on

_________________ and their work is recommended for the award of

B.TECH Degree .

Signature of Examiner(s) Signature of Supervisor(s)

Signature of Dean

Date: December , 2021
Place: Greater Noida

TABLE OF CONTENTS

ABSTRACT

1. INTRODUCTION

1.1 Introduction

1.1.1 Cryptography

1.1.2 Steganography

1.1.3 Types of Steganography

1.1.4 Steganography Versus Cryptography

1.1.5 Benefits of Steganography and Cryptography

1.1.6 Applications of Steganography

1.2 Problem Statement

1.3 The tools and technologies used in the project

2. LITERATURE SURVEY

3. METHODOLOGY

3.1 Proposed System

3.1.1 Sender side

3.1.2 Receiver side

3.2 Module Division

3.2.1 RSA

4. DESIGN

4.1 Use Case Diagram

4.2 Activity Diagram

5. EXPERIMENTAL ANALYSIS AND RESULTS

5.1 System Configurations

i. Software Requirements

ii. Hardware Requirements

5.2 Sample Code

6. REFERENCES

1

Abstract

In this digital world with everything is online , all the bodies from

individuals to organization store their sensitive content online including

passwords , addresses etc. But some organizations are storing sensitive

data as it is. They are either storing it at some shared places or uploading it

to some server. This is very risk as any one can see their sensitive data.

The sensitive data can be either organizations data or clients data. Both are

need to be saved securely. This is where Encryption comes into the

picture .

Encryption is the encoding of information so that only those who have

access to a password or encryption key can access it. Encryption protects

data content, rather than preventing unauthorized interception of or access

to data transmissions. Due to recent developments in stego analysis,

providing security to personal contents, messages, or digital images using

steganography has become difficult. By using stego analysis, one can

easily reveal existence of hidden information in carrier files. This project

introduces a novel steganographic approach for communication between

two private parties. The approach introduced in this project makes use of

both steganographic as well as cryptographic techniques. In Cryptography

we are using RSA. In Steganography we are using Image Steganography

for hiding the data. And we also use Mutual Authentication process to

satisfy all services in Cryptography i.e., Access Control, Confidentiality,

Integrity, Authentication. In this way we can maintain the data more

securely. Since we use RSA algorithm for securing the data and again on

2

this we perform Steganography to hide the data in an image. Such that any

other person in the network cannot access the data present in the network.

Only the sender and receiver can retrieve the message from the data.

By this project what we are trying to achieve is :

1.We will encrypt the secure file with one secret key

2. Save the file

3.When they want to download it again, then they need to decrypt

it with thesecret key

Now the problem is solved. User can encrypt the data with a secret key

and no one can be able to view the file without secret key.The only thing

is that the key has to bekept secret. This will help the organization to keep

their sensitive data securely .

Encryption is already a essential part of the digital world and is only going

to grow from here .

Keywords : Rivest-Shamir-Adelman(RSA), Crptography, Steganograp

3

Introduction

1.1 Introduction :

With the increase in number of security breaches and theft of user data ,

most people are exposed to a lot of cyber attacks like identity , money

theft , black mailing , extortion and many more . To avoid any more

personal attack we need to adapt few practices which keep us safe in the

digital world . One of Cryptographies is encryption which

encrypts/protects a data/file with a password so that only a person with a

password can access it . Encryption is the transformation of plain data

(known as plain text) into unintelligible data (known as cipher text)

through an algorithm referred to as cipher. Encryption is the

transformation of data into a form that is as close to impossible as possible

to read without the appropriate knowledge (a key). Itspurpose is to ensure

privacy by keeping information hidden from anyone for whom it is not

intended, even those who have access to the encrypted data .

Cryptography has a main role in embedded systems design. This prevent

unauthorized person from accessing the file or message and thus

safeguarding the important data and the user .

Digital communication witnesses a noticeable and continuous

development in many applications in the Internet. Hence, secure

communication sessions must be provided. The security of data

transmitted across a global network has turned into a key factor on the

network performance measures. So, the confidentiality and the integrity of

4

data are needed to prevent eavesdroppers from accessing and using

transmitted data. Steganography and Cryptography are two important

techniques that are used to provide network security. The aim of this

project is to develop a new approach to hiding a secret information in an

image, by taking advantage of benefits of combining cryptography and

steganography.

1.1.1 Cryptography -

Cryptography is one of the traditional methods used to guarantee the

privacy of communication between parties. This method is the art of secret

writing, which is used to encrypt the plaintext with a key into ciphertext to

be transferred between parties on an insecure channel. Using a valid key,

the cipher text can be decrypted to the original plaintext. Without the

knowledge of the key, nobody can retrieve the plaintext. Cryptography

plays an essential role in many factors required for secure communication

across an insecure channel, like confidentiality, privacy, non repudiation,

key exchange, and authentication .

Fig 1.1.1 : Cryptography as a flow model.

5

1.1.1.1 Symmetric / Secret Key Cryptography -

The technique of Secret key encryption can also be known as the

symmetric-key, shared key, single-key, and eventually private-key

encryption. The technique of private key uses for all sides encryption and

decryption of secret data. The original information or plaintext is

encrypted with a key by the sender side also the similarly key is used by

the receiver to decrypt a message to obtain the plaintext. the key will be

known only by a people who are authorized to the encryption/decryption.

However, the technique affords the good security for transmission but

there is a difficulty with the distribution of the key. If one stole or explore

the key he can get whole data without any difficulty. An example of

Symmetric-Key is DES Algorithm.

1.1.1.2 Asymmetric / Public Key Cryptography -

We can call this technique as asymmetric cryptosystem or public key

cryptosystem, this technique use two keys which are mathematically

associated, use separately for encrypting and decrypting the information.

In this technique, when we use the private key, there are no possibilities to

obtain the data or simply discover the other key. The key used for

encryption is stored public therefore it’s called public key, and the

decryption key is stored secret and called private key. An example of

Asymmetric-Key Algorithm is RSA.

1.1.2 Steganography -

It can be defined as the science of hiding and communicating data

6

through apparently reliable carriers in attempt to hide the existence of the

data. So, there is no knowledge of the existence of the message in the first

place. If a person views the cover which the information is hidden inside,

he or she will have no clue that there is any covering data, in this way the

individual won’t endeavour to decode the data. The secret information can

be inserted into the cover media by the stego system encoder with using

certain algorithm. A secret message can be plaintext, an image, ciphertext,

or anything which can be represented in form of a bitstream. after the

secret data is embedded in the cover object, the cover object will be called

as a stego object also the stego object sends to the receiver by selecting the

suitable channel, where decoder system is used with the same stego

method for obtaining original information as the sender would like to

transfer .

Fig 1.1.2 : Stegonography as a flow model.

7

1.1.3 Types of Steganography -

There are various types of steganography.

A. Text Files

The technique of embedding secret data inside a text is identified as text

stego. Text steganography needs a low memory because this type of file can

only store text files. It affords fast transfer or communication of files from a

sender to receiver.

B. Image Files

It is the procedure in which we embed the information inside the pixels of

image. So, that the attackers cannot observe any change in the cover image.

LSB approach is a common image steganography algorithm.

C. Audio Files

It is the process in which we hide the information inside an audio. There are

many approaches to hide secret information in an audio files for examples

Phase Coding, LSB .

D. Video Files

It is the process of hiding some secret data inside the frames of a video.

8

1.1.4 Steganography versus Cryptography -

Steganography and cryptography are used for the purpose of data

transmission over an insecure network without the data being exposed to

any unauthorized persons. Steganography embeds the data in a cover image

while cryptography encrypts the data. The advantage of Steganography is

that, the look of the file isn’t changed and this it will not raise any doubt for

the attacker to suspect that there may be some data hidden unlike

cryptography that encrypts the data and sends it to network.

1.1.5 Benefits of Steganography and Cryptography -

It is noted that steganography and cryptography alone is insufficient for the

security of information, therefore if we combine these systems, we can

generate more reliable and strong approach. The combination of these two

strategies will improve the security of the information. This combined will

fulfill the prerequisites, for example, memory space, security, and strength

for important information transmission across an open channel. Also, it will

be a powerful mechanism which enables people to communicate without

interferes of 6 eavesdroppers even knowing there is a style of

communication in the first place.

1.1.6 Applications of Steganography -

(i) Secret Communication : Steganography does not advertise secret

communication and therefore avoids scrutiny of the sender message. A

9

trade secret, blueprint, or other sensitive information can be transmitted

without alerting potential attackers.

(ii) Feature Tagging : Elements can be embedded inside an image, such as

the names of the individuals in a photo or location in a map. Copying the

stego image also copies all of the embedded features and only parties who

possess the decode stego key will be able to extract and view the features.

(iii) Copyright Protection : Copy protection mechanisms that prevent the data,

usually digital data from being copied. The insertion and analysis of water

marks to protect copyrighted material is responsible for the percent rise of

interest digital steganography and data embedding.

1.2 PROBLEM STATEMENT

The purpose of this project is to provide the correct data with security to the

users. For some of the users the data might be lost during the transmission

process in the network and for some, the data might be changed by the

unauthorized person in the network and there are some other security

problems in the network. Our application will give you more Security to the

data present in the network and there will be able to reduce the loss of data in

the network which will be transmitted from the sender to the receiver using

the latest technologies. Only the Authorized persons i.e., who are using our

application will be 8 there in the Network. The proposed algorithm is to hide

the audio data effectively in an image without any suspicion of the data being

10

hidden in the image. It is to work against the attacks by using a distinct new

image that isn’t possible to compare. The aim of the project is to hide the data

in an image using steganography and ensure that the quality of concealing

data must not be lost. We used a method for hiding the data in a distinct

image file in order to securely send over the network without any suspicion

the data being hidden. This algorithm, though requires a distinct image which

we can use as a carrier and hide the data which is well within the limits of the

threshold that the image can hide, that will secure the data.

11

1.3 The tools and technologies used in the project :

1. Cryptography techniques - Encryption using AES (Advance Encryption

Standard)

2. Web development technologies - Html , CSS , Javascript etc

3. Tools - Sublime Text , Browser Sync , GitHub , Git

4. Hosting - Github Pages

3

Literature Review

Encryption is one of the techniques that ensure the security of images used

in various domains like military intelligence, secure medical imaging

services, intranet and internet communication, e-banking, social

networking image communication like Facebook, WhatsApp, Twitter etc.

All these images travel in a free and open networkeither during storage or

communication; hence their security turns out to be a crucial necessity in

the grounds of personal privacy and confidentiality. This article reviews

and summarizes various image encryption techniques so as to promote

development of advanced image encryption methods that facilitate

increased versatility and security.

There is much skepticism surrounding cryptography. The National Institute of

Standards andTechnology (NIST) has joined forces with the National Security

Agency (NSA) to form the “Common Criteria” process known as the

Common Criteria for Information Technology Security Evaluation whose

aim it is to increase the confidence in cryptographic and information-related

security products. Additionally, the Department of Defense (DoD) hasenacted

policy directives requiring Information Assurance (IA) professionals to

receive information security training in addition to basic IA training for all of

its DoD employees . Bhargav-Spantzel contends that there is a recent

paradigm in identity management called user-centricity identity

management. . Bhargav-Spantzel et al. indicates that the most predominant

identitymanagementmodel on the Internet today is the silo model where users

4

handle their own data and provide it to organizations separately. One solution to

this dilemmaoffered by Bhargav-Spantzel et al. is the centralized federation

model, such as Microsoft’s Passport, which removes the inconsistencies and

redundancies of the silo model and provides the Web users a seamless

experience.

5

3. METHODOLOGY

3.1 Sender Side -

The Sender side consists of cryptographic and steganography stages. This

method starts with cryptographic then steganography.

Cryptography Stage :

In encryption stage, we use RSA (Rivest Shamir Adelson) algorithm. This

technique takes two prime numbers. The Encryption can be done using the

Plain Text and with “e” values which was generated using the two prime

numbers. Then we will get a cipher text, which is communicated to the

receiving end for decryption. This encrypted data will be used in

steganography stage.

Input= Message + Two Prime Numbers.

Output= Encrypted Message.

3.2 Receiver side

Receiver side consists of steganography and cryptography stages. In receiver

side we will first extract embedded data then decrypt it.

In cryptography stage, we use the data which is extracted from stego file and

use RSA. We will use the same steps which are used in sender side. The

6

Decryption can be done using the Encrypted message, receivers private key

and senders public key. Input= Encrypted Message + 2 Prime Numbers.

Output= Plain Text. Now the Plain Text is in the form of Base-64. After

getting the plain text apply Base64 coversion to change the Plain-text to given

input, which can be Text, Image, Video, Audio.

3.3 MODULE DIVISION

3.3.1 RSA

The RSA algorithm is the basis of a cryptosystem a suite of cryptographic

algorithms that are used for specific security services which enables public

key encryption and is widely used to secure sensitive data, particularly when

it is being sent over an insecure network 18 such as the internet. RSA was

first publicly described in 1977 by Ron Rivest, Adi Shamir and Leonard

Adleman of the Massachusetts Institute of Technology, though the 1973

creation of a public key algorithm by British mathematician Clifford Cocks

was kept classified by the U.K.'s GCHQ until 1997. In RSA cryptography,

both the public and the private keys can encrypt a message; the opposite key

from the one used to encrypt a message is used to decrypt it. This attribute is

one reason why RSA has become the most widely used asymmetric algorithm,

It provides a method to assure the confidentiality, integrity, authenticity, and

non-repudiation of electronic communications and data storage.

7

RSA derives its security from the difficulty of factoring large integers that are

the product of two large prime numbers. Multiplying these two numbers is

easy, but determining the original prime numbers from the total or factoring is

considered infeasible due to the time it would take using even today's

supercomputers.

3.3.1.1 Why RSA Algorithm is used ?

The public and private key generation algorithm is the most complex part of

RSA cryptography. Two large prime numbers, p and q, are selected. N is

calculated by multiplying p and q. This number is used by both the public and

private keys and provides the link between them. Its length, usually expressed

in bits, is called the key length.

The public key consists of the modulus n and a public exponent e. The e

doesn't have to be a secretly selected prime number, as the public key is

shared with everyone.

The private key consists of the modulus n and the private exponent d, which

is calculated using the Extended Euclidean algorithm to find the

multiplicative inverse with respect to the totient of n.

8

3.3.1.2 RSA Security

RSA security relies on the computational difficulty of factoring large integers.

As computing power increases and more efficient factoring algorithms are

discovered, the ability to factor larger and larger numbers also increases.

Encryption strength is directly to key size, and doubling key length can

deliver an exponential increase in strength, although it does impair

performance. RSA keys are typically 1024-bits or 2048-bits long, but experts

believe that 1024-bit keys are no longer fully secure against all attacks. This

is why the government and some industries are moving to a minimum key

length of 2048- bits.

Barring an unforeseen breakthrough in quantum computing, it will be many

years before longer keys are required, but elliptic curve cryptography (ECC)

is gaining with many security experts as an alternative to RSA to implement

public key cryptography. It can create faster, smaller and more efficient

cryptographic keys.

Modern hardware and software are ECC-ready, and its popularity is likely to

grow, as it can deliver equivalent security with lower computing power and

battery resource usage, making it more suitable for mobile apps than RSA.

Finally, a team of researchers, which included Adi Shamir, a co-inventor of

RSA, has successfully created a 4096-bit RSA key using acoustic

cryptanalysis; however, any encryption algorithm is vulnerable to attack.

9

3.3.1.3 Description of Algorithm

 Plaintext is taken from a specified file and then encrypted using RSA

Algorithm.

 Encryption and decryption are of following form for same plaintext M and

ciphertext C.

 C=(M^e)modn

 M=(C^d)modn

 M=((M^e)^d)modn

 M=(M^ed)modn

 Both sender and receiver must know the value of n.

 The sender knows the value of e, and the receiver knows the value of d.

 Thus this is a public key encryption algorithm with a public key of PU

= {c, n} and private key of PR= {d, n}.

3.3.1.3 RSA algorithm

a) Key Generation :

 Select p and q such that both are the prime numbers, p≠q.

 Calculate n=p×q

 Calculate q(n) = (p-1) (q-1)

 Select an integer e such that : g(d ((n), e)) =1 & 1< e < (n)

 Calculate d; de = 1 mod (q(n))

 Public Key, PU= {e, n}

 Private Key, PR ={d,n} 21

10

b) Encryption :

 Plaintext : M

 Ciphertext: C = (M^e) mod n

c) Decryption:

Ciphertext: C

 Plaintext : M= (C^d) mod n

Note 1 : (n) -> Euler’s totient function

Note 2: Relationship between C and d is expressed as:

ed (mod (n)) =1

ed = 1 mod (n)

d =e−1 mod (n)

3.4 ALGORITHM ILLUSTARTION

Encryption :

Inputs : Message, 2 Prime Numbers, Image, Secret Key

Step 1 : Consider an Input , It can be :

a) Text

b) age

c) Audio

d) Video

Step 2 : Convert the input to Base-64 using Base-64 conversion

Algorithm.

11

Step 3 : After converting into Base-64 we will be getting a String.

Step 4 : Store the entire string in a Text File and save the file.

Step 5 : From that file consider each character and apply RSA.

Step 6 : By Using RSA we will be getting Cipher Text (cm).

Step 7 : Let the Cipher Text (cm) be encrypted message.

Step 8 : Consider an image, And hide the encrypted message(cm) in the

given image with the secret key Using Stegnography Algorithm.

Step 9: Now send the Stego-Image to the Receiver.

DECRYPTION :

Inputs : Cipher Text, 2 Prime Numbers, Image, Secret Key

Step 1 : Consider the input be Stego-Image.

Step 2 : Using the Secrert Key , Obtain the hidden message from the

StegoImage.

Step 3 : And the obtained message is a Cipher Text. We must decrypt

the message.

Step 4 : The Decyption of the message can be done using RSA

Algorithm.

Step 5: By Using RSA we will be getting Plain Text.

Step 6 : And thus the receiver will decrypt the message and it is in the

form of Base-64.

Step 7 : Finally by using Base-64 algorithm the Base-64 text is

converted into the original input, Which can be Text, Image,

Audio, Video.

12

4. DESIGN

Project design is a major step towards a successful project. A project design is

a strategic organization of ideas, materials and processes for the purpose of

achieving a goal. Project managers rely on a good design to avoid pitfalls and

provide parameters to maintain crucial aspects of the project. Project design is

an early phase of the project where a project's key features, structure, criteria

for success, and major deliverables are all planned out. The point is to

develop one or more designs which can be used to achieve the desired project

goals. Stakeholders can then choose the best design to use for the actual

execution of the project. The project design phase might generate a variety of

different outputs, including sketches, flowcharts, HTML screen designs, and

more.

So, the design can be implemented using Unified Modeling Language.

diagrams such as class diagram, use case diagram, sequence diagram, activity

diagrams. UML offers a way to visualize a system’s architectural blueprints

in a diagram, including elements such as :

Any activities

 Individual components of the system

How the system will run

How entities interact with others

 External user interface

13

UML is a common language for business analysts, software architects and

developers used to describe, specify, design, and document existing or new

business processes, structure and behaviour of artifacts of software systems.

The key to making a UML diagram is connecting shapes that represent an

object or class with other shapes to illustrate relationships and the flow of

information and data.

4.2 Use Case Diagram

A use case diagram at its simplest is a representation of a user's interaction

with the system that shows the relationship between the user and the different

use cases in which the user is involved. A use case diagram can identify the

different types of users of a system and the different use cases and will often

be accompanied by other types of diagrams as well. The use cases are

represented by either circles or ellipses.

Fig 4.1 Use Case Diagram

14

4.4 Activity Diagram

Activity diagrams are graphical representations of workflows of stepwise

activities and actions with support for choice, iteration and concurrency. In

the Unified Modeling Language, activity diagrams are intended to model both

computational and organizational processes (i.e., workflows) as well as the

data flows intersecting with the related activities. Although activity diagrams

primarily show the overall flow of control, they can also include elements

showing the flow of data between activities through one or more data stores.

Fig 4.2 Activity Diagram

15

5. EXPERIMENTAL ANALYSIS AND RESULTS

5.1 SYSTEM CONFIGURATION

5.1.1 Software Requirements:

The software configurations used are -

Operating System: Windows 11

Programming Language : Html , Css , JavaScript

Audio file format: any file format is accepted

5.1.2 Hardware Requirements:

Device - Laptop

RAM: Minimum of 4GB

Storage: SSD preferred

16

5.2 Source Code

HTML CODE :

<!DOCTYPE html>
<html lang="en">

<head>
<meta charset="utf-8">
<title>CRYPTOWEB</title>
<link rel="stylesheet" type="text/css" href="css.css">
<link rel="stylesheet"

href="https://cdnjs.cloudflare.com/ajax/libs/font-
awesome/5.15.3/css/all.min.css"/>
<meta name="viewport" content="width=device-width, initial-scale=1.0">

</head>
<style>

body {
font-family: 'Festive', cursive;
color: black;
font-size: 11pt;

}

a, a:link, a:visited, a:active {
color: blue;
text-decoration: underline;

}

a:hover {
cursor:pointer;
color: red;

}

.black10pointcourier {
font-family: 'courier';
color: black;
font-size: 10pt;

}

17

.container {
width: 80%;
margin: 0 auto;

}

button{
width: 150px;
height: 40px;
font-family: 'Festive', cursive;
border-radius: 15px;

}

button:hover{
color:white;
background-color:black;
border: 8px;
border-radius: 15px;

}

h1
{

color: darkmagenta;

}
h4{

color: rgb(226, 43, 202);
}

.dropzone {
border: 10px dashed rgb(71, 8, 172);
width: 100%;
padding: 6% 2% 6% 2%;
text-align: center;
margin: 5px 0 5px 0;

}

.divTablefullwidth{

18

display: table;
width: 100%;

}

.divTable{
display: table;

}

.divTableRow {
display: table-row;

}
.divTableCell {

display: table-cell;
padding: 3px 3px;

}
.divTableBody {

display: table-row-group;
}

.greenspan {
color: green;

}

.redspan {
color: red;

}
</style>
<body>

<div class=container>
<div class="divTablefullwidth">

<div class="divTableBody">
<div class="divTableRow">

<div class="divTableCell" style="float:
left;">

<h1>CRYPTOWEB</h1>
<h4>Use your web browser to encrypt

and decrypt files.</h4>
</div>

19

<div class="divTableCell" style="float:
right;">

<h1>
<button id="btnRefresh"

onClick="javascript:location.reload();">Refresh Page</button>
<button id="btnDivEncrypt"

onClick="javascript:switchdiv('encrypt');">Encrypt a File</button>
<button id="btnDivDecrypt"

onClick="javascript:switchdiv('decrypt');">Decrypt a File</button>
</h1>

</div>
</div>

</div>
</div>

</div>

<div class=container>
<hr>

</div>

<div class="container" id=divEncryptfile>
<h2>Encrypt a File</h2>
<p>To encrypt a file, enter a password and drop the file to be

encrypted into the dropzone below. The file will then be encrypted using the
password, then you'll be given an opportunity to save the encrypted file to
your system.</p>

</br></br>
<div class="divTable">

<div class="divTableBody">
<div class="divTableRow">

<div
class="divTableCell">Password :</div>

<div class="divTableCell"><input
id=txtEncpassphrase type=password size=30
onkeyup=javascript:encvalidate(); value=''></div>

<div class="divTableCell">(minumum

20

length eight characters, make sure it strong!)</div>
</div>
<div class="divTableRow">

<div class="divTableCell">Password :
(retype)</div>

<div class="divTableCell"><input
id=txtEncpassphraseretype type=password size=30
onkeyup=javascript:encvalidate(); value=''></div>

<div class="divTableCell"></div>

</div>
</div>

</div>

<p> </p>

<div>
<div class=dropzone id="encdropzone"

ondrop="drop_handler(event);" ondragover="dragover_handler(event);"
ondragend="dragend_handler(event);">

<p>Drag and drop the file to be encrypted into
this dropzone, or click here to
select file.</p>

<p></p>
</div>
<input type="file" id="encfileElem"

style="display:none" onchange="selectfile(this.files)">
</div>

<p> </p>

<div class="divTable">
<div class="divTableBody">

<div class="divTableRow">
<div class="divTableCell"><button

id=btnEncrypt onclick=javascript:encryptfile(); disabled>Encrypt
File</button></div>

<div class="divTableCell"><span

21

id=spnEncstatus></div>
</div>

</div>
</div>

<p> </p>

<div>
<button>Save Encrypted

File</button>
</div>

<p> </p>
</div>

<div class="container" id=divDecryptfile>
<h2>Decrypt a File</h2>
<p>Decrypt a file using the password that was previously

used to encrypt the file. After the file is decrypted, you'll be given an
opportunity to save the decrypted file to your system.</p>

<div class="divTable">
<div class="divTableBody">

<div class="divTableRow">
<div class="divTableCell">Password</div>
<div class="divTableCell"><input

id=txtDecpassphrase type=password size=30
onkeyup=javascript:decvalidate(); value=''></div>

</div>
</div>

</div>

<p> </p>

<div>
<div class=dropzone id="decdropzone"

ondrop="drop_handler(event);" ondragover="dragover_handler(event);"
ondragend="dragend_handler(event);">

22

<p>Drag and drop file to be decrypted into
this dropzone, or click <a role=button
onclick=javascript:decfileElem.click();>here to select file.</p>

<p></p>
</div>
<input type="file" id="decfileElem"

style="display:none" onchange="selectfile(this.files)">
</div>

<p> </p>

<div class="divTable">
<div class="divTableBody">

<div class="divTableRow">
<div class="divTableCell"><button

id=btnDecrypt onclick=javascript:decryptfile(); disabled>Decrypt
File</button></div>

<div class="divTableCell"></div>

</div>
</div>

</div>

<p> </p>

<div>
<button>Save Decrypted

File</button>
</div>

<p> </p>
</div>

<div class="container">
<hr>
<h3>Usage</h3>
<p>
Use this web page to encrypt a file using a password, then

23

use the same password later to decrypt the file. IMPORTANT: The same
password that was used to encrypt the file must be used to decrypt the file
later. If you loose or forget the password, it cannot be recovered!

</p>

<h3>Operation and privacy</h3>
<p>
This page uses javascript running within your web browser

to encrypt and decrypt files client-side, in-browser.
This page makes no network connections during this process,

to ensure that your files and keys never leave the web browser during the
process.

This can be independently verified by reviewing the source
code for this page, or by monitoring your web browser's <a
href=https://developer.mozilla.org/en-
US/docs/Tools/Network_Monitor>networking activity during operation
of this page.

This page can also be downloaded and run locally on your
system offline.

</p>

<h3>Cryptography</h3>
<p>
All client-side cryptography is implemented using the <a

href='https://developer.mozilla.org/en-
US/docs/Web/API/Web_Crypto_API'>Web Crypto API.

Files are encrypted using AES-CBC 256-bit symmetric
encryption. The encryption key is derived from the password and a random
salt using PBKDF2 derivation with 10000 iterations of SHA256 hashing.

</p>

<h3>Compatibility with openssl</h3>
<p>
The encryption used by this page is compatible with <a

href='https://www.openssl.org/docs/man1.1.1/man1/openssl-
enc.html'>openssl.

Files encrypted using this page can be decrypted using

24

openssl using the following command:

openssl aes-256-cbc -d -

salt -pbkdf2 -iter 10000 -in <i>encryptedfilename</i> -out
<i>plaintextfilename</i>

Files encrypted using the following openssl command can be

decrypted using this page:

openssl aes-256-cbc -e -

salt -pbkdf2 -iter 10000 -in <i>plaintextfilename</i> -out
<i>encryptedfilename</i>

</p>

<h3>Running this page offline</h3>
<p>
This web page is self-contained. The page does not require

any supporting files; all javascript and css for this page is contained in the
source code of this page.

To run this page locally on your system offline, simply save
this page to your system as a .html file, then open the file from your system in
your web browser (optionally with networking disabled).

</p>
</div>

<footer>
<div class="main-content">
<div class="left box">
<h2>About us</h2>
<div class="content">
<p>CRYPTO WEB is created by us (Shivam & Vaibhab) for the

people to encrypt and decrypt the files on the internet. We are B.Tech CSE
students from Galgotias University who try to implement what they know in
the real world.</p>

<div class="social">
<span class="fab

fa-facebook-f">

25

<a
href="https://www.instagram.com/p/CJTXP2hhsgo5WlUv3pcdmUCWEwdm
Hqdtldn8Qo0/?utm_medium=copy_link"><span class="fab fa-
instagram">

<a
href="https://instagram.com/shivamsinghrajpoot99?utm_medium=copy_link"
>

</div>
</div>
</div>
<div class="center box">
<h2>Address</h2>
<div class="content">
<div class="place">

Galgotias University , U.P
</div>

<div class="email">

vaibhavkumarvky@gmail.com

shivamsingh199907@gmail.com
</div>
</div>
</div>
<div class="right box">
<h2>Contact us</h2>
<div class="content">
<form action="#">
<div class="email">
<div class="text">Email *</div>
<input type="email" required>
</div>
<div class="msg">
<div class="text">Message *</div>
<textarea rows="2" cols="25" required></textarea>

26

</div>
<div class="btn">
<button type="submit">Send</button>
</div>
</form>
</div>
</div>
</div>
<div class="bottom">
<center>
Created By VAIBHAB & SHIVAM
</center>
</div>
</footer>

</body>

</html>

<script type="text/javascript">
var mode=null;
var objFile=null;
switchdiv('encrypt');

function switchdiv(t) {
if(t=='encrypt') {

divEncryptfile.style.display='block';
divDecryptfile.style.display='none';
btnDivEncrypt.disabled=true;
btnDivDecrypt.disabled=false;
mode='encrypt';

} else if(t=='decrypt') {
divEncryptfile.style.display='none';
divDecryptfile.style.display='block';

27

btnDivEncrypt.disabled=false;
btnDivDecrypt.disabled=true;
mode='decrypt';

}
}

function encvalidate() {
if(txtEncpassphrase.value.length>=8 &&

txtEncpassphrase.value==txtEncpassphraseretype.value) {
spnCheckretype.classList.add("greenspan");
spnCheckretype.classList.remove("redspan");
spnCheckretype.innerHTML='✔';
} else {
spnCheckretype.classList.remove("greenspan");
spnCheckretype.classList.add("redspan");
spnCheckretype.innerHTML='✖';
}

if(txtEncpassphrase.value.length>=8 &&
txtEncpassphrase.value==txtEncpassphraseretype.value && objFile)
{ btnEncrypt.disabled=false; } else { btnEncrypt.disabled=true; }

}

function decvalidate() {
if(txtDecpassphrase.value.length>0 && objFile)

{ btnDecrypt.disabled=false; } else { btnDecrypt.disabled=true; }
}

//drag and drop functions:
//https://developer.mozilla.org/en-

US/docs/Web/API/HTML_Drag_and_Drop_API/File_drag_and_drop
function drop_handler(ev) {

console.log("Drop");
ev.preventDefault();
// If dropped items aren't files, reject them
var dt = ev.dataTransfer;
if (dt.items) {

// Use DataTransferItemList interface to access the file(s)

28

for (var i=0; i < dt.items.length; i++) {
if (dt.items[i].kind == "file") {

var f = dt.items[i].getAsFile();
console.log("... file[" + i + "].name = " + f.name);
objFile=f;

}
}

} else {
// Use DataTransfer interface to access the file(s)
for (var i=0; i < dt.files.length; i++) {

console.log("... file[" + i + "].name = " +
dt.files[i].name);

}
objFile=file[0];

}
displayfile()
if(mode=='encrypt') { encvalidate(); } else if(mode=='decrypt')

{ decvalidate(); }
}

function dragover_handler(ev) {
console.log("dragOver");
// Prevent default select and drag behavior
ev.preventDefault();

}

function dragend_handler(ev) {
console.log("dragEnd");
// Remove all of the drag data
var dt = ev.dataTransfer;
if (dt.items) {

// Use DataTransferItemList interface to remove the drag
data

for (var i = 0; i < dt.items.length; i++) {
dt.items.remove(i);

}
} else {

// Use DataTransfer interface to remove the drag data

29

ev.dataTransfer.clearData();
}

}

function selectfile(Files) {
objFile=Files[0];
displayfile()
if(mode=='encrypt') { encvalidate(); } else if(mode=='decrypt')

{ decvalidate(); }
}

function displayfile() {
var s;
var sizes = ['Bytes', 'KB', 'MB', 'GB', 'TB'];
var bytes=objFile.size;
var i = parseInt(Math.floor(Math.log(bytes) / Math.log(1024)));
if(i==0) { s=bytes + ' ' + sizes[i]; } else { s=(bytes /

Math.pow(1024, i)).toFixed(2) + ' ' + sizes[i]; }

if(mode=='encrypt') {
spnencfilename.textContent=objFile.name + ' (' + s + ')';

} else if(mode=='decrypt') {
spndecfilename.textContent=objFile.name + ' (' + s + ')';

}
}

function readfile(file){
return new Promise((resolve, reject) => {

var fr = new FileReader();
fr.onload = () => {

resolve(fr.result)
};
fr.readAsArrayBuffer(file);

});
}

async function encryptfile() {
btnEncrypt.disabled=true;

30

var plaintextbytes=await readfile(objFile)
.catch(function(err){

console.error(err);
});
var plaintextbytes=new Uint8Array(plaintextbytes);

var pbkdf2iterations=10000;
var passphrasebytes=new TextEncoder("utf-

8").encode(txtEncpassphrase.value);
var pbkdf2salt=window.crypto.getRandomValues(new

Uint8Array(8));

var passphrasekey=await window.crypto.subtle.importKey('raw',
passphrasebytes, {name: 'PBKDF2'}, false, ['deriveBits'])

.catch(function(err){
console.error(err);

});
console.log('passphrasekey imported');

var pbkdf2bytes=await window.crypto.subtle.deriveBits({"name":
'PBKDF2', "salt": pbkdf2salt, "iterations": pbkdf2iterations, "hash": 'SHA-
256'}, passphrasekey, 384)

.catch(function(err){
console.error(err);

});
console.log('pbkdf2bytes derived');
pbkdf2bytes=new Uint8Array(pbkdf2bytes);

keybytes=pbkdf2bytes.slice(0,32);
ivbytes=pbkdf2bytes.slice(32);

var key=await window.crypto.subtle.importKey('raw', keybytes,
{name: 'AES-CBC', length: 256}, false, ['encrypt'])

.catch(function(err){
console.error(err);

});
console.log('key imported');

31

var cipherbytes=await window.crypto.subtle.encrypt({name:
"AES-CBC", iv: ivbytes}, key, plaintextbytes)

.catch(function(err){
console.error(err);

});

if(!cipherbytes) {
spnEncstatus.classList.add("redspan");
spnEncstatus.innerHTML='<p>Error encrypting file. See

console log.</p>';
return;

}

console.log('plaintext encrypted');
cipherbytes=new Uint8Array(cipherbytes);

var resultbytes=new Uint8Array(cipherbytes.length+16)
resultbytes.set(new TextEncoder("utf-8").encode('Salted__'));
resultbytes.set(pbkdf2salt, 8);
resultbytes.set(cipherbytes, 16);

var blob=new Blob([resultbytes], {type: 'application/download'});
var blobUrl=URL.createObjectURL(blob);
aEncsavefile.href=blobUrl;
aEncsavefile.download=objFile.name + '.enc';

spnEncstatus.classList.add("greenspan");
spnEncstatus.innerHTML='<p>File encrypted.</p>';
aEncsavefile.hidden=false;

}

async function decryptfile() {
btnDecrypt.disabled=true;

var cipherbytes=await readfile(objFile)
.catch(function(err){

console.error(err);

32

});
var cipherbytes=new Uint8Array(cipherbytes);

var pbkdf2iterations=10000;
var passphrasebytes=new TextEncoder("utf-

8").encode(txtDecpassphrase.value);
var pbkdf2salt=cipherbytes.slice(8,16);

var passphrasekey=await window.crypto.subtle.importKey('raw',
passphrasebytes, {name: 'PBKDF2'}, false, ['deriveBits'])

.catch(function(err){
console.error(err);

});
console.log('passphrasekey imported');

var pbkdf2bytes=await window.crypto.subtle.deriveBits({"name":
'PBKDF2', "salt": pbkdf2salt, "iterations": pbkdf2iterations, "hash": 'SHA-
256'}, passphrasekey, 384)

.catch(function(err){
console.error(err);

});
console.log('pbkdf2bytes derived');
pbkdf2bytes=new Uint8Array(pbkdf2bytes);

keybytes=pbkdf2bytes.slice(0,32);
ivbytes=pbkdf2bytes.slice(32);
cipherbytes=cipherbytes.slice(16);

var key=await window.crypto.subtle.importKey('raw', keybytes,
{name: 'AES-CBC', length: 256}, false, ['decrypt'])

.catch(function(err){
console.error(err);

});
console.log('key imported');

var plaintextbytes=await window.crypto.subtle.decrypt({name:

33

"AES-CBC", iv: ivbytes}, key, cipherbytes)
.catch(function(err){

console.error(err);
});

if(!plaintextbytes) {
spnDecstatus.classList.add("redspan");
spnDecstatus.innerHTML='<p>Error decrypting file.

Password may be incorrect.</p>';
return;

}

console.log('ciphertext decrypted');
plaintextbytes=new Uint8Array(plaintextbytes);

var blob=new Blob([plaintextbytes], {type:
'application/download'});

var blobUrl=URL.createObjectURL(blob);
aDecsavefile.href=blobUrl;
aDecsavefile.download=objFile.name + '.dec';

spnDecstatus.classList.add("greenspan");
spnDecstatus.innerHTML='<p>File decrypted.</p>';
aDecsavefile.hidden=false;

}

</script>

34

CSS CODE :

@import
url('https://fonts.googleapis.com/css?family=Poppins:400,500,600,700&displ
ay=swap');

*{

font-family: 'Poppins', sans-serif;
}

.content1{
font-size: 2.5rem;
font-weight: 600;
color: red;
}
.content1 .p{
font-size: 2.1875rem;
font-weight: 600;
color: red;
}
footer{
position: static ;
bottom: 0px;
width: 100%;
background: #1111;
}
.main-content{
display: flex;
}
.main-content .box{
flex-basis: 50%;
padding: 10px 20px;
}
.box h2{
font-size: 1.125rem;
font-weight: 600;

35

text-transform: uppercase;
}
.box .content{
margin: 20px 0 0 0;
position: relative;
}
.box .content:before{
position: absolute;
content: '';
top: -10px;
height: 2px;
width: 100%;
background: blue;
}
.box .content:after{
position: absolute;
content: '';
height: 2px;
width: 15%;
background: #f12020;
top: -10px;
}
.left .content p{
text-align: justify;
}
.left .content .social{
margin: 20px 0 0 0;
}
.left .content .social a{
padding: 0 2px;
}
.left .content .social a span{
height: 40px;
width: 40px;
background: #1a1a;
line-height: 40px;
text-align: center;
font-size: 18px;

36

border-radius: 5px;
transition: 0.3s;
}
.left .content .social a span:hover{
background: #f1200;
}
.center .content .fas{
font-size: 1.4375rem;
background: #1a1a;
height: 45px;
width: 45px;
line-height: 45px;
text-align: center;
border-radius: 50%;
transition: 0.3s;
cursor: pointer;
}
.center .content .fas:hover{
background: #f12020;
}
.center .content .text{
font-size: 1.0625rem;
font-weight: 500;
padding-left: 10px;
}
.center .content .phone{
margin: 15px 0;
}
.right form .text{
font-size: 1.0625rem;
margin-bottom: 2px;
color: #656565;
}
.right form .msg{
margin-top: 10px;
}
.right form input, .right form textarea{
width: 100%;

37

font-size: 1.0625rem;
background: white;
padding-left: 10px;
border: 1px solid green;
}
.right form input:focus,
.right form textarea:focus{
outline-color: #3498db;
}
.right form input{
height: 35px;
}
.right form .btn{
margin-top: 10px;
}
.right form .btn button{
height: 40px;
width: 100%;
border: none;
outline: none;
background: #f12020;
font-size: 1.0625rem;
font-weight: 500;
cursor: pointer;
transition: .3s;
}
.right form .btn button:hover{
background: #000;
}
.bottom center{
padding: 5px;
font-size: 0.9375rem;
background: #151515;
}
.bottom center span{
color: #25d9bb;
}
.bottom center a{

38

color: #f12020;
text-decoration: none;
}
.bottom center a:hover{
text-decoration: underline;
}
@media screen and (max-width: 900px) {
footer{
position: relative;
bottom: 0px;
}
.main-content{
flex-wrap: wrap;
flex-direction: column;
}
.main-content .box{
margin: 5px 0;
}

39

IMPLEMENTATION

As the above picture shows , the interface and UI of the web application is simple and
easy to interact . The buttons are easy to read and interact with and the users can easily
navigate across the application .

Firstly we need to upload file on the website either by clicking the “here” button or by
simply drag and dropping . Then we need to encrypt the file using password . Then we
need to encrypt the file by clicking the “Encrypt file” button , this will simply encrypt
the file and the file can be downloaded using the download button .

40

This above picture shows how the website works and how it can be downloaded .

Decrypting a file as simple as the encrypting was . We just have to upload the file and
enter the file . This will decrypt the file and and we can download the file .

41

6. REFERENCES

[1] H.Abdulzahra, R. AHMAD, and N. M. NOOR, “Security enhancement; Combining

cryptograhy and steganography for data hiding in images,” ACACOS, Applied

Computational Science,pp.978-960,2014.

[2] P. R. Ekatpure and R. N.Benkar, “A comparative study of steganography &

cryptography,”2013.

[3] M. H. Rajyaguru, “Cryptography-combination of cryptography and steganography

with rapidly changing keys ,”Interntional Journal of Emerging Technology and

Advanced Engineering,ISSN ,pp.2250-2459,2012.

[4] D. Seth. L. Ramanathan, and A.Pandey, “Security enhancement; Combining

cryptography and steganography,” International Journal of Computer

Applications(0975-8887)Volume,2010.

[5] J. V. Karthik and B. V. Reddy, “Authentication of secret information in image

steganography,” International Journal of Computer Science and Network

Security(IJCSNS), vol. 14, no. 6. P. 58. 2014.

