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Abstract 
 
According to World Health Organization (WHO), cardiovascular diseases are 

world’s leading cause of deaths with approximately 32% (17.9 million) of all 

deaths every year. Early detection of heart related illness may prove beneficial in 

decrease the deaths worldwide. 

 

Currently, most of the detection is being done by a doctor based on the reports and 

lab results, but this can be unreliable but it is the most trusted method right now. 

Patients check with multiple just to decrease the human error coefficient which 

costs them very much and takes much time. Many researches have also been 

conducted to integrate Machine Learning into the complete detection methodology.  

 

This paper proposes a new Machine Learning based disease detector which can be 

used to check whether a patient has some kind of heart disease or not. The model 

uses some information from patient’s test reports such as chest pain type, 

cholesterol, condition of thalassemia etc., and classifies the patient as a probable 

heart disease patient or non-probable.  

The data has been through multiple feature transformations based on H2O.ai auto 

feature transformations. It has also been through multiple feature selection 

algorithms such as Linear SVC, Lasso, and Logistic Regression etc., to select the 

best features from the data. 

 

Keywords—Machine Learning, Heart Disease Detection, Healthcare, H2O, 

Classification
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Literature Survey 
  
Researchers Shadab Adam Pattekari and Asma Parveen[1] developed a system 

using Naïve Bayes data mining modelling technique. Their system obtains hidden 

information from a heart disease database. It can even be used to find out answers 

for more complex questions and include other data mining techniques as well. 

 

Arabasadi, Zeinab et al.[2] proposed a hybrid method made up of Neural Network 

and Genetic Algorithm. Genetic Algorithm was used to select better weights for the 

Neural Network. This increased the accuracy of their initial model by 10%. The 

accuracy of their model was 93.85%, while their sensitivity and specificity were 

97% and 93% respectively. 

 

Shadman Nashif et al.[3] proposed an SVM based model which was validated 

using 10-fold cross validation technique and tested on 2 different datasets. They 

also created a cloud-based monitoring system using Arduino, which was capable of 

sensing some real-time patient information. The accuracy was found to be 97.53%, 

the sensitivity was at 97.5% and specificity was at 94.94%. 

 

Researchers Rahma Atallah and Amjed Al-Mousa[4] proposed a majority voting 

ensemble method, which ran multiple models such as Stochastic Gradient Boosting 

Classifier, KNN Classifier, Random Forest Classifier, and Logistic Regression 

Classifier and predicted results based on the majority voting from all the models. 

This ensemble method produced an accuracy of 90%. 

 

Researchers Ricardo Buettner and Marc Schunter[5] proposed a Random Forest 

Classifier over the Cleveland Dataset. They ran the classifier over 10-fold cross 

validation which produced their best results with an accuracy of 84.448%. Without 

the cross validation, they got an accuracy of 82.895% from the Random Forest 

Classifier. 

 

Amin Ul Haq et al.[6] compares six different machine learning model for 

classification along with a Back Propagation Neural Network (BPNN). They found 

SVM to be the best on model evaluation with 86% model accuracy. While testing 

with the ensemble methods, SVM obtained an accuracy of 92.3% while BPNN 

scored 93% in accuracy. They concluded that BPNN was the most effective 

algorithm for heart disease detection. 
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Arabasadi Zeinab et al.[7] proposed a hybrid method with neural network using  

genetic algorithms for enhancing the initial weights to the neural network. This 

method resulted in a 10% improvement in the neural network. Using this method, 

they achieved an accuracy of 93.85%, sensitivity of 97% and precision of 92% on 

the Z-Alizadeh Sani dataset. 

 

Rajkumar Asha and Reena G. Sophia[8] proposed usage of two algorithms Bayes 

classifier, and k-nearest neighbor and usage of a data mining software known as 

Tanagra. This software was used to classify the data using 10-fold cross validation. 

 

Problem Formulation 
 

Our problem can be best formulated as the binary classification on whether the 

patient can have a heart disease or not. The dataset that we used for the problem 

can be found on the UCI Machine Learning Repository. The database used for the 

training and validation of the model was the Cleveland UCI Heart Disease Dataset. 

The dataset consists of 303 records of patients. 

 

There are a total of 13 features columns and 1 target column. Out of the 14 total 

columns 5 columns were numerical, 8 columns were categorical, and 1 column was 

Boolean. If the patient has/may have a heart disease then the model will result in 1 

or “May have a heart disease”, otherwise 0 or “May not have a heart disease”. 

 

Required Tools 
 

Tools required to solve this ML problem include the computer language Python 

which will be used for creating the model. Anaconda will be used for the 

environment as it includes most of the packages needed by us for solving the 

problem. Tools used are as follows – 

 

• Jupyter Notebook 

• Anaconda 

• Python 

• TensorFlow 

• Scikit-learn 

• H2O 

• Google Colab 
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Feasibility Analysis 

 

The data for the project can be acquired easily on the Internet. Since the problem is 

of binary classification, the labeling for the data is inexpensive. The data which has 

been previously used by researchers consisted of the 303 records that we have used 

with 13 feature columns and 1 target column.  

 

We want the system to predict whether the patient has/may have a heart disease or 

may not have a heart disease. And since this model may be used in healthcare 

sector, so the model created must be as accurate as possible and must have a very 

now false negative percentage.  

There have been previous models based on different models and ensemble methods 

and data mining methods. 

 

 

Complete Work Plan 
 

Data collection and feature extraction – We have found the data required by us to 

create a dataset. We have also build the data-ingestion pipelines which includes 

feature transformation and validate the quality of our data.  

We have also cleaned the redundant data and extract the important features from 

the data. 

 

Model exploration – Establish baselines for model performance, creating a simple 

model using initial data pipelines and train it. Try parallel ideas and find a suitable 

model for our problem and changing the baselines. 

 

Model refinement – Perform model-specific optimizations and perform error 

analysis while debugging the model due to the added complexity. 

 

Testing and evaluation – Evaluating the model on test distributions, ensuring that 

the model evaluation metric drives desirable downstream user behavior. We also 

need to ensure that the false negative rate is at their lowest as this model may or 

may not be used in healthcare sector. 
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Workflow 
 

Fig 1: Workflow for the project 

 

 

Feature Transformation and Selection 
 

Feature Transformation  

 

Weight of Evidence (WoE) measures the “strength” of a grouping technique to 

separate good and bad. This method was developed primarily to build a predictive 

model to evaluate the risk of loan default in the credit and financial industry. 

Weight of evidence (WOE) measures how much the evidence supports or 

undermines a hypothesis. 

 

It is computed as below: 

 

 
 

WoE will be 0 if the P(Goods) / P(Bads) = 1. That is, if the outcome is random for 

that group. If P(Bads) > P(Goods) the odds ratio will be < 1 and the WoE will be < 

0; if, on the other hand, P(Goods) > P(Bads) in a group, then WoE > 0. 
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WoE is well suited for Logistic Regression because the Logit transformation is 

simply the log of the odds, i.e., ln(P(Goods)/P(Bads)). Therefore, by using WoE-

coded predictors in Logistic Regression, the predictors are prepared and coded to 

the same scale. The parameters in the linear logistic regression equation can be 

directly compared. 

 

The WoE transformation has (at least) three advantage: 

 

1) It can transform an independent variable to establish a monotonic relationship to 

the dependent variable. It does more than this — to secure a monotonic relationship 

it would be enough to “recode” it to any ordered measure (for example 1,2,3,4…), 

but the WoE transformation orders the categories on a “logistic” scale which is 

natural for Logistic Regression 

 

2) For variables with too many (sparsely populated) discrete values, these can be 

grouped into categories (densely populated), and the WoE can be used to express 

information for the whole category 

 

3) The (univariate) effect of each category on the dependent variable can be 

compared across categories and variables because WoE is a standardized value (for 

example, you can compare WoE of married people to WoE of manual workers) 

 

Usage of WOE 

 

Weight of Evidence (WOE) helps to transform a continuous independent variable 

into a set of groups or bins based on similarity of dependent variable distribution 

i.e. number of events and non-events. 

 

For continuous independent variables : First, create bins (categories / groups) for 

a continuous independent variable and then combine categories with similar WOE  

values and replace categories with WOE values. Use WOE values rather than input 

values in your model. 

 

For categorical independent variables: Combine categories with similar WOE 

and then create new categories of an independent variable with continuous WOE 

values. In other words, use WOE values rather than raw categories in your model. 

The transformed variable will be a continuous variable with WOE values. It is 

same as any continuous variable. 
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K Fold Target Encoding 

 

The basic idea of the k-fold target encoding originates from the mean-target 

encoding. In the mean-target encoding, the categorical variables are replaced by the 

mean of the target corresponding to them. It is seen from fig.2 that the mean of the 

target when “Feature” is A = 0.6 and B=0.3.  

 

Therefore, A and B will be replaced by 0.6 and 0.3 respectively. This new feature 

might be more correlated to the target. However, this approach might have a 

tendency to the overfitting when the distribution of the categorical variables in 

Feature of the train and the test dataset are considerably different. 

 

 

 
                                                                      

     Fig 2: Target or mean encoding.                Fig 3: 5-fold target encoding. We use fold 2,3,4,5 to estimate first-fold. 

 

 

Therefore, k-fold target encoding can be applied to reduce the overfitting. In this 

method, we divide the dataset into the k-folds, here we consider 5 folds. Fig.3 

shows the first round of the 5 fold cross-validation. We calculate mean-target for  

fold 2, 3, 4 and 5 and we use the calculated values, mean_A = 0.556 and mean_B = 

0.285 to estimate mean encoding for the fold-1. 
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Fig 4: 5-fold target encoding. We use fold 2,3,4,5 to estimate first-fold. 

 

After that, we can calculate for the second fold as it is shown in Fig.4 

 

 
Fig 5: 5-fold target encoding. We use fold 1,3,4,5 to estimate second-fold. 
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Now the remaining part is creating “Feature_Kfold_Target_Enc” column in the test 

dataset. This column values can be obtained from getting mean of 

“Feature_Kfold_mean_Enc” train column for the categorical variables “A” and 

“B”. 

 

 
Fig 6: We estimate the Feature_Kfold_target_Enc for the test from the train. 

 

 

Feature Selection 
 

After the features were transformed using WoE encoders and CVTE, all the 

features were sent through a number of feature selection algorithms. Finally, 15 

features which had featured maximum number of times in the output of all the 

feature selection algorithms were used as the new features in the dataset. The new 

features included the newly transformed thalassemia feature by WoE Encoder. 

They also included Sex, Slope and Thalassemia features transformed by CVTE. 

 

Pearson Correlation 

        Pearson’s correlation (also called Pearson’s R) is a correlation 

coefficient commonly used in linear regression. If you’re starting out in statistics, 

you’ll probably learn about Pearson’s R first. In fact, when anyone refers 

to the correlation coefficient, they are usually talking about Pearson’s. 
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Real Life Example 

     Pearson correlation is used in thousands of real life situations. For example, 

scientists in China wanted to know if there was a relationship between how 

weedy rice populations are different genetically. The goal was to find out the 

evolutionary potential of the rice. Pearson’s correlation between the two 

groups was analyzed. It showed a positive Pearson Product Moment 

correlation of between 0.783 and 0.895 for weedy rice populations. This 

figure is quite high, which suggested a fairly strong relationship. 

 

The Pearson correlation for two objects, with paired attributes, sums the product 

of their differences from their object means, and divides the sum by the product 

of the squared differences from the object means. 

 

 
 

 

Linear SVC 

           The Linear Support Vector Classifier (SVC) method applies a linear kernel 

function to perform classification and it performs well with a large number of 

samples. If we compare it with the SVC model, the Linear SVC has additional 

parameters such as penalty normalization which applies 'L1' or 'L2' and loss 

function. The kernel method cannot be changed in linear SVC, because it is based 

on the kernel linear method.  

 

Preparing the data 

    First, we'll generate random classification dataset with make_classification() 

function. The dataset contains 3 classes with 10 features and the number of samples 

is 5000. 

 

x, y = make_classification(n_samples=5000, n_features=10,  

                           n_classes=3,  

                           n_clusters_per_class=1) 

 

Then, we'll split the data into train and test parts. Here, we'll extract 15 percent of it 

as test data. 

 

xtrain, xtest, ytrain, ytest = train_test_split(x, y, test_size=0.15) 
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Training the model 

     Next, we'll define the classifier by using the LinearSVC class. We can use the 

default parameters of the class. The parameters can be changed according to 

classification data content. 

 

lsvc = LinearSVC(verbose=0) 

print(lsvc) 

 

LinearSVC(C=1.0, class_weight=None, dual=True, fit_intercept=True, 

          intercept_scaling=1, loss='squared_hinge', max_iter=1000, 

          multi_class='ovr', penalty='l2', random_state=None, tol=0.0001, 

          verbose=0) 

 

Then, we'll fit the model on train data and check the model accuracy score. 

 

lsvc.fit(xtrain, ytrain) 

score = lsvc.score(xtrain, ytrain) 

print("Score: ", score) 

 

Score:  0.8602352941176471 

 

We can also apply a cross-validation training method to the model and check the 

training score. 

 

cv_scores = cross_val_score(lsvc, xtrain, ytrain, cv=10) 

print("CV average score: %.2f" % cv_scores.mean()) 

CV average score: 0.86 

 

 

Predicting and accuracy check 

     Now, we can predict the test data by using the trained model. After the 

prediction, we'll check the accuracy level by using the confusion matrix function. 

 

ypred = lsvc.predict(xtest) 

 

cm = confusion_matrix(ytest, ypred) 

print(cm) 

 

[[196  46  30] 

 [  5 213  10] 

 [ 26   7 217]] 
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We can also create a classification report by using classification_report() function 

on predicted data to check the other accuracy metrics. 

 

cr = classification_report(ytest, ypred) 

print(cr) 

                              precision    recall  f1-score   support 

                 0       0.86      0.72      0.79       272 

                1       0.80      0.93      0.86       228 

              2       0.84      0.87      0.86       250 

 

   accuracy                                           0.83       750 

 macro avg                       0.84      0.84      0.83       750 

weighted avg                    0.84      0.83      0.83       750 

 

 

Lasso regression 
     The word “LASSO” stands for Least Absolute Shrinkage 

and Selection Operator. It is a statistical formula for the regularisation of data 

models and feature selection. 

 

What is Lasso Regression? 

Lasso regression is a regularization technique. It is used over regression methods 

for a more accurate prediction. This model uses shrinkage. Shrinkage is where data 

values are shrunk towards a central point as the mean. The lasso procedure 

encourages simple, sparse models (i.e. models with fewer parameters). This 

particular type of regression is well-suited for models showing high levels of 

multicollinearity or when you want to automate certain parts of model selection, 

like variable selection/parameter elimination. 

 

Lasso Regression uses L1 regularization technique (will be discussed later in this 

article). It is used when we have more number of features because it automatically 

performs feature selection. 

 

L1 Regularization 

If a regression model uses the L1 Regularization technique, then it is called Lasso 

Regression. If it used the L2 regularization technique, it’s called Ridge Regression. 

We will study more about these in the later sections. 

 

L1 regularization adds a penalty that is equal to the absolute value of the magnitude 

of the coefficient. This regularization type can result in sparse models with few 

 

https://www.statisticshowto.com/integer/#abs
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coefficients. Some coefficients might become zero and get eliminated from the  

model. Larger penalties result in coefficient values that are closer to zero (ideal for 

producing simpler models). On the other hand, L2 regularization does not result in 

any elimination of sparse models or coefficients. Thus, Lasso Regression is easier 

to interpret as compared to the Ridge. 

 

Mathematical equation of Lasso Regression 

Residual Sum of Squares + λ * (Sum of the absolute value of the magnitude of 

coefficients) 

 
 

Where, 

• λ denotes the amount of shrinkage. 

• λ = 0 implies all features are considered and it is equivalent to the linear 

regression where only the residual sum of squares is considered to build a 

predictive model 

• λ = ∞ implies no feature is considered i.e, as λ closes to infinity it eliminates 

more and more features 

• The bias increases with increase in λ 

• variance increases with decrease in λ 

 

Lasso regression example 

import numpy as np 

 

Creating a New Train and Validation Datasets 

from sklearn.model_selection import train_test_split 

data_train, data_val = train_test_split(new_data_train, test_size = 0.2, random_state = 2) 

Classifying Predictors and Target 

#Classifying Independent and Dependent Features 

#_______________________________________________ 

#Dependent Variable 

Y_train = data_train.iloc[:, -1].values 

#Independent Variables 

X_train = data_train.iloc[:,0 : -1].values 

#Independent Variables for Test Set 

X_test = data_val.iloc[:,0 : -1].values 

 

Evaluating The Model With RMLSE 

def score(y_pred, y_true): 

error = np.square(np.log10(y_pred +1) - np.log10(y_true +1)).mean() ** 0.5 

score = 1 – error 
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return score 

actual_cost = list(data_val['COST']) 

actual_cost = np.asarray(actual_cost) 

 

 

Building the Lasso Regressor 

#Lasso Regression 

 

from sklearn.linear_model import Lasso 

#Initializing the Lasso Regressor with Normalization Factor as True 

lasso_reg = Lasso(normalize=True) 

#Fitting the Training data to the Lasso regressor 

lasso_reg.fit(X_train,Y_train) 

#Predicting for X_test 

y_pred_lass =lasso_reg.predict(X_test) 

#Printing the Score with RMLSE 

print("\n\nLasso SCORE : ", score(y_pred_lass, actual_cost)) 

 

 

Output 

0.7335508027883148 

The Lasso Regression attained an accuracy of 73% with the given Dataset. 

 

 

Variance Threshold 

             The variance threshold is a simple baseline approach to feature selection. It 

removes all features which variance doesn’t meet some threshold. By default, it 

removes all zero-variance features, i.e., features that have the same value in all 

samples.  
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We assume that features with a higher variance may contain more useful 

information, but note that we are not taking the relationship between feature 

variables or feature and target variables into account, which is one of the 

drawbacks of filter methods. 

Default Value of Threshold is 0 

 

• If Variance Threshold = 0 (Remove Constant Features ) 

• If Variance Threshold > 0 (Remove Quasi-Constant Features ) 

 

 

Regressive feature elimination using Logistic Regression 

           Recursive Feature Elimination, or RFE for short, is a popular feature 

selection algorithm. 

RFE is popular because it is easy to configure and use and because it is effective at 

selecting those features (columns) in a training dataset that are more or most 

relevant in predicting the target variable. 

 

There are two important configuration options when using RFE: the choice in the 

number of features to select and the choice of the algorithm used to help choose 

features.  

Both of these hyperparameters can be explored, although the performance of the 

method is not strongly dependent on these hyperparameters being configured well. 

 

• RFE is a wrapper-type feature selection algorithm. This means that a 

different machine learning algorithm is given and used in the core of the 

method, is wrapped by RFE, and used to help select features. This is in 

contrast to filter-based feature selections that score each feature and select 

those features with the largest (or smallest) score. 

• Technically, RFE is a wrapper-style feature selection algorithm that also 

uses filter-based feature selection internally. 

• RFE works by searching for a subset of features by starting with all features 

in the training dataset and successfully removing features until the desired 

number remains.  

• This is achieved by fitting the given machine learning algorithm used in the 

core of the model, ranking features by importance, discarding the least 

important features, and re-fitting the model. This process is repeated until a 

specified number of features remains. 
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Following table shows the Top 15 features with frequency and transformations: 

 
 

 

Model Exploration 
 

Stacked ensemble 

 

Stacking or Stacked Generalization is an ensemble machine learning algorithm. 

It uses a meta-learning algorithm to learn how to best combine the predictions from 

two or more base machine learning algorithms. 

 

The benefit of stacking is that it can harness the capabilities of a range of well-

performing models on a classification or regression task and make predictions that 

have better performance than any single model in the ensemble. 

Stacking is appropriate when multiple different machine learning models have skill 

on a dataset, but have skill in different ways. Another way to say this is that the 

predictions made by the models or the errors in predictions made by the models are 

uncorrelated or have a low correlation. 
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Generalized linear models 

 

Generalized Linear Model (GLiM, or GLM) is an advanced statistical modelling 

technique formulated by John Nelder and Robert Wedderburn in 1972.  

It is an umbrella term that encompasses many other models, which allows the 

response variable y to have an error distribution other than a normal distribution. 

The models include Linear Regression, Logistic Regression, and Poisson 

Regression. 

 

GLM models allow us to build a linear relationship between the response and 

predictors, even though their underlying relationship is not linear. This is made 

possible by using a link function, which links the response variable to a linear 

model. Unlike Linear Regression models, the error distribution of the response 

variable need not be normally distributed. The errors in the response variable are 

assumed to follow an exponential family of distribution. 

 

 

XGBoost 

 

XGBoost is an implementation of gradient boosted decision trees designed for 

speed and performance. 

 

It is an implementation of gradient boosting machines created by Tianqi Chen, now 

with contributions from many developers. It belongs to a broader collection of 

tools under the umbrella of the Distributed Machine Learning Community or 

DMLC who are also the creators of the popular mxnet deep learning library. 

 

XGBoost is a software library that you can download and install on your machine, 

then access from a variety of interfaces. Specifically, XGBoost supports the 

following main interfaces: 

 

• Command Line Interface (CLI). 

• C++ (the language in which the library is written). 

• Python interface as well as a model in scikit-learn. 

• R interface as well as a model in the caret package. 

• Julia. 

• Java and JVM languages like Scala and platforms like Hadoop. 
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Machine Learning Model 
 

Gradient Boosting Machine: 

Gradient boosting machines are a family of powerful machine-learning techniques 

that have shown considerable success in a wide range of practical applications. 

They are highly customizable to the particular needs of the application, like being 

learned with respect to different loss functions. This article gives a tutorial 

introduction into the methodology of gradient boosting methods with a strong 

focus on machine learning aspects of modeling. A theoretical information is 

complemented with descriptive examples and illustrations which cover all the 

stages of the gradient boosting model design.  

 

Gradient boosting involves three elements: 

• A loss function to be optimized. 

• A weak learner to make predictions. 

• An additive model to add weak learners to minimize the loss function. 

 

1. Loss Function 

The loss function used depends on the type of problem being solved. 

It must be differentiable, but many standard loss functions are supported and you 

can define your own. 

For example, regression may use a squared error and classification may use 

logarithmic loss. 

A benefit of the gradient boosting framework is that a new boosting algorithm does 

not have to be derived for each loss function that may want to be used, instead, it is 

a generic enough framework that any differentiable loss function can be used. 

 

2. Weak Learner 

Decision trees are used as the weak learner in gradient boosting. 

Specifically regression trees are used that output real values for splits and whose 

output can be added together, allowing subsequent models outputs to be added and  

“correct” the residuals in the predictions. 

Trees are constructed in a greedy manner, choosing the best split points based on 

purity scores like Gini or to minimize the loss. 

Initially, such as in the case of AdaBoost, very short decision trees were used that 

only had a single split, called a decision stump. Larger trees can be used generally 
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with 4-to-8 levels. 

It is common to constrain the weak learners in specific ways, such as a maximum 

number of layers, nodes, splits or leaf nodes.This is to ensure that the learners 

remain weak, but can still be constructed in a greedy manner. 

 

3. Additive Model 

Trees are added one at a time, and existing trees in the model are not 

changed. 

A gradient descent procedure is used to minimize the loss when adding trees. 

Traditionally, gradient descent is used to minimize a set of parameters, such as the 

coefficients in a regression equation or weights in a neural network. After 

calculating error or loss, the weights are updated to minimize that error. 

 

Instead of parameters, we have weak learner sub-models or more specifically 

decision trees. After calculating the loss, to perform the gradient descent 

procedure, we must add a tree to the model that reduces the loss (i.e. follow the 

gradient). We do this by parameterizing the tree, then modify the parameters of the 

tree and move in the right direction by (reducing the residual loss. 

Generally this approach is called functional gradient descent or gradient descent 

with functions. 

 

Improvements to Basic Gradient Boosting 

Gradient boosting is a greedy algorithm and can overfit a training dataset quickly. 

It can benefit from regularization methods that penalize various parts of the 

algorithm and generally improve the performance of the algorithm by reducing 

overfitting. 

4 enhancements to basic gradient boosting: 

1. Tree Constraints 

2. Shrinkage 

3. Random sampling 

4. Penalized Learning 

 

1. Tree Constraints 

There are a number of ways that the trees can be constrained.A good general 

heuristic is that the more constrained tree creation is, the more trees you will need  
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in the model, and the reverse, where less constrained individual trees, the fewer 

trees that will be required. 

Below are some constraints that can be imposed on the construction of decision 

trees: 

• Number of trees, generally adding more trees to the model can be very slow to 

overfit. The advice is to keep adding trees until no further improvement is 

observed. 

• Tree depth, deeper trees are more complex trees and shorter trees are preferred. 

Generally, better results are seen with 4-8 levels. 

• Number of nodes or number of leaves, like depth, this can constrain the size of the 

tree, but is not constrained to a symmetrical structure if other constraints are used. 

• Number of observations per split imposes a minimum constraint on the amount of 

training data at a training node before a split can be considered 

• Minimim improvement to loss is a constraint on the improvement of any split 

added to a tree. 

 

2. Weighted Updates 

The predictions of each tree are added together sequentially. 

The contribution of each tree to this sum can be weighted to slow down the 

learning by the algorithm. This weighting is called shrinkage or a learning rate. 

3. Stochastic Gradient Boosting 

A big insight into bagging ensembles and random forest was allowing trees to be 

greedily created from subsamples of the training dataset. 

This same benefit can be used to reduce the correlation between the trees in the 

sequence in gradient boosting models. 

This variation of boosting is called stochastic gradient boosting.A few variants of 

stochastic boosting that can be used: 

• Subsample rows before creating each tree. 

• Subsample columns before creating each tree 

• Subsample columns before considering each split. 

 

4. Penalized Gradient Boosting 

Additional constraints can be imposed on the parameterized trees in addition to 

their structure. 

Classical decision trees like CART are not used as weak learners, instead a 
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modified form called a regression tree is used that has numeric values in the leaf 

nodes (also called terminal nodes). The values in the leaves of the trees can be 

called weights in some literature. 

As such, the leaf weight values of the trees can be regularized using popular 

regularization functions, such as: 

• L1 regularization of weights. 

• L2 regularization of weights. 

 

 
Fig 7:Metrics for GBM Model 

 

Source Code 
"""Heart Detection Feature Engineering 

 

Automatically generated by Colaboratory. 

 

Original file is located at 

    https://colab.research.google.com/drive/1hpkWZ9Izbegov0yqKt2FxZvswTntCv8w 

 

# Dataset  

 

1. age: age in years 

2. sex: sex (1 = male; 0 = female) 

3. cp: chest pain type 

  1. Value 0: typical angina 

  2. Value 1: atypical angina 

  3. Value 2: non-anginal pain 

  4. Value 3: asymptomatic 

4. trestbps: resting blood pressure (in mm Hg on admission to the hospital) 

5. chol: serum cholestoral in mg/dl 

6. fbs: (fasting blood sugar > 120 mg/dl) (1 = true; 0 = false) 

7. restecg: resting electrocardiographic results 

  1. Value 0: normal 

  2. Value 1: having ST-T wave abnormality (T wave inversions and/or ST elevation 

or depression of > 0.05 mV) 

https://colab.research.google.com/drive/1hpkWZ9Izbegov0yqKt2FxZvswTntCv8w
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  3. Value 2: showing probable or definite left ventricular hypertrophy by Estes' 

criteria 

8. thalach: maximum heart rate achieved 

9. exang: exercise induced angina (1 = yes; 0 = no) 

10. oldpeak = ST depression induced by exercise relative to rest 

11. slope: the slope of the peak exercise ST segment 

  1. Value 0: upsloping 

  2. Value 1: flat 

  3. Value 2: downsloping 

12. ca: number of major vessels (0-3) colored by flourosopy 

13. thal: 0 = normal; 1 = fixed defect; 2 = reversable defect 

and the label 

14. condition: 0 = no disease, 1 = disease 

 

# Install Python Packages 

""" 

 

!pip install category_encoders 

!pip install requests 

!pip install tabulate 

!pip install "colorama>=0.3.8" 

!pip install future 

!pip install -f http://h2o-release.s3.amazonaws.com/h2o/latest_stable_Py.html h2o 

!pip install xgboost 

!pip install scikit-plot 

!pip install pycaret 

 

"""# Import libraries""" 

 

import h2o 

import numpy as np 

import pandas as pd 

import pickle 

from sklearn import base 

import scikitplot as skplt 

import matplotlib.pyplot as plt 

from h2o.automl import H2OAutoML 

from xgboost import XGBClassifier 

from sklearn.svm import SVC, LinearSVC 

from category_encoders import WOEEncoder 

from sklearn.preprocessing import LabelEncoder 

from h2o.estimators import H2OXGBoostEstimator 

from scikitplot.helpers import binary_ks_curve 

from h2o.grid.grid_search import H2OGridSearch  

from sklearn.feature_selection import VarianceThreshold 

from sklearn.ensemble import GradientBoostingClassifier 

from h2o.estimators.gbm import H2OGradientBoostingEstimator 

from sklearn.linear_model import LassoCV, LogisticRegression 

from h2o.estimators.stackedensemble import H2OStackedEnsembleEstimator 

from scikitplot.metrics import plot_ks_statistic, plot_precision_recall 

from sklearn.feature_selection import SelectFromModel, SelectKBest, RFE, chi2 
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from sklearn.metrics import 

accuracy_score,recall_score,f1_score,precision_score,roc_auc_score 

from sklearn.model_selection import KFold, GridSearchCV, train_test_split, 

RepeatedStratifiedKFold 

from sklearn.metrics import roc_curve, log_loss, plot_roc_curve, cohen_kappa_score, 

classification_report, plot_confusion_matrix 

 

"""# Code 

 

### Import dataset 

""" 

 

dataset = pd.read_csv("/content/drive/MyDrive/Heart Dataset/heart.csv") 

 

"""### Evaluation function""" 

 

def evaluation(y_test,y_pred): 

  acc=accuracy_score(y_test,y_pred) 

  rcl=recall_score(y_test,y_pred) 

  f1=f1_score(y_test,y_pred) 

  ps = precision_score(y_test,y_pred) 

  roc = roc_auc_score(y_test,y_pred) 

 

  metric_dict={'Accuracy': round(acc,3), 

               'Recall': round(rcl,3), 

               'F1 Score': round(f1,3), 

               'Precision': round(ps,3), 

               'ROC-AUC': round(roc,3) 

              } 

 

  return print(metric_dict) 

 

"""### Feature Engineering 

 

#### WOE encoder for thal 

""" 

 

woe = WOEEncoder(cols=['thal'], random_state=42, regularization=0) 

 

X = dataset['thal'] 

y = dataset.target 

encoded_df = woe.fit_transform(X, y) 

 

encoded_df 

 

"""#### Cross Validation Target Encoding""" 

 

class KFoldTargetEncoderTrain(base.BaseEstimator, base.TransformerMixin): 

 

    def __init__(self, 

colnames,targetName,n_fold=5,verbosity=True,discardOriginal_col=False): 
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        self.colnames = colnames 

        self.targetName = targetName 

        self.n_fold = n_fold 

        self.verbosity = verbosity 

        self.discardOriginal_col = discardOriginal_col 

 

    def fit(self, X, y=None): 

        return self 

 

 

    def transform(self,X): 

 

        #assert(type(self.targetName) == str) 

        #assert(type(self.colnames) == str) 

        #assert(self.colnames in X.columns) 

        #assert(self.targetName in X.columns) 

 

        mean_of_target = X[self.targetName].mean() 

        kf = KFold(n_splits = self.n_fold, shuffle = False, random_state=2019) 

 

 

 

        col_mean_name = self.colnames + '_' + 'Kfold_Target_Enc' 

        X[col_mean_name] = np.nan 

 

        for tr_ind, val_ind in kf.split(X): 

            X_tr, X_val = X.iloc[tr_ind], X.iloc[val_ind] 

#             print(tr_ind,val_ind) 

            X.loc[X.index[val_ind], col_mean_name] = 

X_val[self.colnames].map(X_tr.groupby(self.colnames)[self.targetName].mean()) 

 

        X[col_mean_name].fillna(mean_of_target, inplace = True) 

 

        if self.verbosity: 

 

            encoded_feature = X[col_mean_name].values 

            print('Correlation between the new feature, {} and, {} is 

{}.'.format(col_mean_name, 

                                                                                      self.targetName, 

                                                                                      

np.corrcoef(X[self.targetName].values, encoded_feature)[0][1])) 

        if self.discardOriginal_col: 

            X = X.drop(self.targetName, axis=1) 

             

 

        return X 

 

targetc = KFoldTargetEncoderTrain('thal','target',n_fold=5) 

new_dataset = targetc.fit_transform(dataset) 
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targetc = KFoldTargetEncoderTrain('cp','target',n_fold=5) 

new_dataset = targetc.fit_transform(new_dataset) 

 

targetc = KFoldTargetEncoderTrain('ca','target',n_fold=5) 

new_dataset = targetc.fit_transform(new_dataset) 

 

targetc = KFoldTargetEncoderTrain('slope','target',n_fold=5) 

new_dataset = targetc.fit_transform(new_dataset) 

 

targetc = KFoldTargetEncoderTrain('sex','target',n_fold=5) 

new_dataset = targetc.fit_transform(new_dataset) 

 

"""#### Creating new Dataset (After Feature Engineering)""" 

 

new_dataset['new_thal'] = encoded_df['thal'] 

 

new_dataset.to_csv("/content/drive/MyDrive/Heart Dataset/new_dataset.csv") 

 

new_dataset 

 

"""### Feature Selection""" 

 

train = new_dataset.copy() 

target = train.pop('target') 

 

num_features_opt = 15   # the number of features that we need to choose as a result 

num_features_max = 20   # the somewhat excessive number of features, which we 

will choose at each stage 

features_best = [] 

 

"""#### Pearson Correlation""" 

 

threshold = 0.9 

 

def highlight(value): 

    if value > threshold: 

        style = 'background-color: blue' 

    else: 

        style = 'background-color: black' 

    return style 

 

# Absolute value correlation matrix 

corr_matrix = new_dataset.corr().abs().round(2) 

upper = corr_matrix.where(np.triu(np.ones(corr_matrix.shape), 

k=1).astype(np.bool)) 

upper.style.format("{:.2f}").applymap(highlight) 

 

collinear_features = [column for column in upper.columns if any(upper[column] > 

threshold)] 

features_filtered = new_dataset.drop(columns = collinear_features) 

print('The number of features that passed the collinearity threshold: ', 
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features_filtered.shape[1]) 

features_best.append(features_filtered.columns.tolist()) 

 

"""#### Linear SVC""" 

 

lsvc = LinearSVC(C=0.1, penalty="l1", dual=False).fit(train, target) 

model = SelectFromModel(lsvc, prefit=True) 

X_new = model.transform(train) 

X_selected_df = pd.DataFrame(X_new, columns=[train.columns[i] for i in 

range(len(train.columns)) if model.get_support()[i]]) 

features_best.append(X_selected_df.columns.tolist()) 

 

"""#### Lasso""" 

 

lasso = LassoCV(cv=3).fit(train, target) 

model = SelectFromModel(lasso, prefit=True) 

X_new = model.transform(train) 

X_selected_df = pd.DataFrame(X_new, columns=[train.columns[i] for i in 

range(len(train.columns)) if model.get_support()[i]]) 

features_best.append(X_selected_df.columns.tolist()) 

 

"""#### Regressive Feature Elimination using Logistic Regression""" 

 

rfe_selector = RFE(estimator=LogisticRegression(), 

n_features_to_select=num_features_max, step=10, verbose=5) 

rfe_selector.fit(train, target) 

rfe_support = rfe_selector.get_support() 

rfe_feature = train.loc[:,rfe_support].columns.tolist() 

features_best.append(rfe_feature) 

 

"""#### Variance Threshold""" 

 

selector = VarianceThreshold(threshold=10) 

np.shape(selector.fit_transform(new_dataset)) 

features_best.append(list(np.array(new_dataset.columns)[selector.get_support(indic

es=False)])) 

 

"""#### Selecting the best features""" 

 

features_best 

 

main_cols = [] 

main_cols_opt = {feature_name : 0 for feature_name in 

new_dataset.columns.tolist()} 

for i in range(len(features_best)): 

    for feature_name in features_best[i]: 

        main_cols_opt[feature_name] += 1 

df_main_cols_opt = pd.DataFrame.from_dict(main_cols_opt, orient='index', 

columns=['Num']) 

df_main_cols_opt.sort_values(by=['Num'], 

ascending=False).head(num_features_opt) 
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main_cols = df_main_cols_opt.nlargest(num_features_opt, 'Num').index.tolist() 

if not 'target' in main_cols: 

    main_cols.append('target') 

main_cols 

 

"""#### Creating new Dataset (After Feature Selection)""" 

 

data = new_dataset[main_cols] 

 

data.to_csv("/content/drive/MyDrive/Heart Dataset/data.csv") 

 

#test = data.sample(frac = 0.2) 

 

#train = data.drop(test.index) 

 

#test.to_csv("/content/drive/MyDrive/Heart Dataset/test.csv") 

#train.to_csv("/content/drive/MyDrive/Heart Dataset/train.csv") 

 

"""## Model Selection using H2O AutoML""" 

 

h2o.init() 

 

train = h2o.import_file("/content/drive/MyDrive/Heart Dataset/train.csv") 

test = h2o.import_file("/content/drive/MyDrive/Heart Dataset/test.csv") 

 

# Identify predictors and response 

x = train.columns 

y = "target" 

x.remove(y) 

x.remove("C1") 

 

# For binary classification, response should be a factor 

train[y] = train[y].asfactor() 

test[y] = test[y].asfactor() 

 

# Run AutoML for 20 base models (limited to 1 hour max runtime by default) 

aml = H2OAutoML(max_models=20, seed=1) 

aml.train(x=x, y=y, training_frame=train) 

 

# View the AutoML Leaderboard 

lb = aml.leaderboard 

lb.head(rows=lb.nrows)  # Print all rows instead of default (10 rows) 

 

aml.leader 

 

"""## Model (XGBoost) 

 

### Train Test Split 

""" 
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data = pd.read_csv("/content/drive/MyDrive/Heart Dataset/data.csv") 

 

# Delete the Unnamed :0 etc columns 

data.drop(columns=data.columns[[0,1]],  

        axis=1,  

        inplace=True) 

 

X = data.iloc[:,:-1] 

Y = data.target 

 

seed = 7 

test_size = 0.33 

X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=test_size, 

random_state=seed) 

 

"""### Training model 

 

#### Parameter Tuning 

""" 

 

param_grid = { 

    "max_depth": [3, 4, 5, 7], 

    "learning_rate": [0.1, 0.01, 0.05], 

    "gamma": [0, 0.25, 1], 

    "reg_lambda": [0, 1, 10], 

    "scale_pos_weight": [1, 3, 5], 

    "subsample": [0.8], 

    "colsample_bytree": [0.5], 

} 

 

model_xgb = XGBClassifier() 

grid_cv = GridSearchCV(model_xgb, param_grid, n_jobs=-1, cv=3, 

scoring="roc_auc") 

_ = grid_cv.fit(X_train, y_train) 

 

print(grid_cv.best_score_) 

print(grid_cv.best_params_) 

 

"""#### Model Training""" 

 

final_model_xgb = XGBClassifier( 

    **grid_cv.best_params_, 

    objective="binary:logistic" 

) 

 

"""##### Learning Curve""" 

 

skplt.estimators.plot_learning_curve(final_model_xgb, X_train, y_train) 

plt.show() 

 

"""##### Model Fitting""" 
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final_model_xgb.fit(X_train, y_train) 

print(final_model_xgb) 

 

"""##### Feature Importance Plot""" 

 

skplt.estimators.plot_feature_importances(final_model_xgb, 

feature_names=X_train.columns, x_tick_rotation=80) 

plt.show() 

 

"""### Model Prediction""" 

 

# make predictions for test data 

y_pred_xgb = final_model_xgb.predict(X_test) 

y_pred_proba_xgb = final_model_xgb.predict_proba(X_test) 

predictions_xgb = [round(value) for value in y_pred_xgb] 

 

"""### Performance Evaluation""" 

 

evaluation(y_test,y_pred_xgb) 

 

"""#### Accuracy""" 

 

accuracy_xgb = accuracy_score(y_test, predictions_xgb) 

print("Accuracy: %.2f%%" % (accuracy_xgb * 100.0)) 

 

"""#### Kappa Score""" 

 

cks_xgb = cohen_kappa_score(y_test, y_pred_xgb) 

print("Cohen Kappa Score: ",cks_xgb) 

 

"""#### Log Loss""" 

 

logloss_xgb = log_loss(y_test, y_pred_proba_xgb) 

print("Log Loss: ",logloss_xgb) 

 

"""#### KS Statistics""" 

 

res_xgb = binary_ks_curve(y_test, y_pred_xgb) 

ks_stat_xgb = res_xgb[3] 

print("KS Statistic: ", ks_stat_xgb) 

 

"""#### Classification Report (Precision, Recall, F1- Score)""" 

 

print(classification_report(y_test, predictions_xgb)) 

 

"""#### Confusion Matrix""" 

 

plot_confusion_matrix(final_model_xgb, X_test, y_test)   

plt.show() 
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"""#### ROC Curve""" 

 

plot_roc_curve(final_model_xgb, X_test, y_test)   

plt.show() 

 

"""#### Kolmogorov-Smirnov plot""" 

 

fig, ax = plt.subplots() 

plot_ks_statistic(y_test, y_pred_proba_xgb, ax=ax) 

 

"""#### Precision-Recall Curve""" 

 

fig, ax = plt.subplots() 

plot_precision_recall(y_test, y_pred_proba_xgb, ax=ax) 

 

"""## Model (GBM) 

 

### Train Test Split 

""" 

 

data = pd.read_csv("/content/drive/MyDrive/Heart Dataset/data.csv") 

 

# Delete the Unnamed :0 etc columns 

data.drop(columns=data.columns[[0,1]],  

        axis=1,  

        inplace=True) 

 

X = data.iloc[:,:-1] 

Y = data.target 

 

seed = 7 

test_size = 0.33 

X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=test_size, 

random_state=seed) 

 

"""### Training model 

 

#### Parameter Tuning 

""" 

 

grid = dict() 

grid['n_estimators'] = [10, 50, 100, 500] 

grid['learning_rate'] = [0.0001, 0.001, 0.01, 0.1, 1.0] 

grid['subsample'] = [0.5, 0.7, 1.0] 

grid['max_depth'] = [3, 7, 9] 

 

model_gbm = GradientBoostingClassifier() 

 

grid_cv_gbm = GridSearchCV(model_gbm, grid, n_jobs=-1, cv=3, scoring="roc_auc") 

_ = grid_cv_gbm.fit(X_train, y_train) 
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print(grid_cv_gbm.best_score_) 

print(grid_cv_gbm.best_params_) 

 

"""#### Model Training""" 

 

final_model_gbm = GradientBoostingClassifier(**grid_cv_gbm.best_params_) 

 

"""##### Learning Curve""" 

 

skplt.estimators.plot_learning_curve(final_model_gbm, X_train, y_train) 

plt.show() 

 

"""##### Model Fitting""" 

 

final_model_gbm.fit(X_train, y_train) 

print(final_model_gbm) 

 

"""##### Feature Importance Plot""" 

 

skplt.estimators.plot_feature_importances(final_model_gbm, 

feature_names=X_train.columns, x_tick_rotation=80) 

plt.show() 

 

"""### Model Prediction""" 

 

# make predictions for test data 

y_pred_gbm = final_model_gbm.predict(X_test) 

y_pred_proba_gbm = final_model_gbm.predict_proba(X_test) 

predictions_gbm = [round(value) for value in y_pred_gbm] 

 

"""### Performance Evaluation""" 

 

evaluation(y_test,y_pred_gbm) 

 

"""#### Accuracy""" 

 

accuracy_gbm = accuracy_score(y_test, y_pred_gbm) 

print("Accuracy: ", (accuracy_gbm * 100.0)) 

 

"""#### Kappa Score""" 

 

cks_gbm = cohen_kappa_score(y_test, y_pred_gbm) 

print("Cohen Kappa Score: ",cks_gbm) 

 

"""#### Log Loss""" 

 

logloss_gbm = log_loss(y_test, y_pred_proba_gbm) 

print("Log Loss: ",logloss_gbm) 

 

"""#### KS Statistics""" 
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res_gbm = binary_ks_curve(y_test, y_pred_gbm) 

ks_stat_gbm = res_gbm[3] 

print("KS Statistic: ", ks_stat_gbm) 

 

"""#### Classification Report (Precision, Recall, F1- Score)""" 

 

print(classification_report(y_test, predictions_gbm)) 

 

"""#### Confusion Matrix""" 

 

plot_confusion_matrix(final_model_gbm, X_test, y_test)   

plt.show() 

 

"""#### ROC Curve""" 

 

plot_roc_curve(final_model_gbm, X_test, y_test)   

plt.show() 

 

"""#### Kolmogorov-Smirnov plot""" 

 

fig, ax = plt.subplots() 

plot_ks_statistic(y_test, y_pred_proba_gbm, ax=ax) 

 

"""#### Precision-Recall Curve""" 

 

fig, ax = plt.subplots() 

plot_precision_recall(y_test, y_pred_proba_gbm, ax=ax) 

 

Testing and Evaluation  

Mean Squared Error (MSE) 

The Mean Squared Error (MSE) is perhaps the simplest and most common loss 

function, often taught in introductory Machine Learning courses. To calculate the 

MSE, you take the difference between your model’s predictions and the ground 

truth, square it, and average it out across the whole dataset. 

The MSE will never be negative, since we are always squaring the errors. The MSE 

is formally defined by the following equation: 
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Where N is the number of samples we are testing against. The code is simple 

enough, we can write it in plain numpy and plot it using matplotlib: 

 
Fig 8:MSE Loss Function 

Advantage: The MSE is great for ensuring that our trained model has no outlier 

predictions with huge errors, since the MSE puts larger weight on theses errors due 

to the squaring part of the function. 

Disadvantage: If our model makes a single very bad prediction, the squaring part 

of the function magnifies the error. Yet in many practical cases we don’t care much 

about these outliers and are aiming for more of a well-rounded model that performs 

good enough on the majority. 

 

 

Root Mean Square Error 

Root Mean Square Error (RMSE) is a standard way to measure the error of a model 

in predicting quantitative data. Formally it is defined as follows: 
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Let’s try to explore why this measure of error makes sense from a mathematical 

perspective. Ignoring the division by n under the square root, the first thing we can 

notice is a resemblance to the formula for the Euclidean distance between two 

vectors in ℝⁿ: 

 

 

 

This tells us heuristically that RMSE can be thought of as some kind of 

(normalized) distance between the vector of predicted values and the vector of 

observed values. 

But why are we dividing by n under the square root here? If we keep n (the number 

of observations) fixed, all it does is rescale the Euclidean distance by a factor of 

√(1/n). It’s a bit tricky to see why this is the right thing to do, so let’s delve in a bit 

deeper. 

Imagine that our observed values are determined by adding random “errors” to each 

of the predicted values, as follows: 

 

These errors, thought of as random variables, might have Gaussian distribution with 

mean μ and standard deviation σ, but any other distribution with a square-integrable 

PDF (probability density function) would also work.  

We want to think of ŷᵢ as an underlying physical quantity, such as the exact distance 

from Mars to the Sun at a particular point in time. Our observed quantity yᵢ would 

then be the distance from Mars to the Sun as we measure it, with some errors 

coming from mis-calibration of our telescopes and measurement noise from 

atmospheric interference.The mean μ of the distribution of our errors would 
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correspond to a persistent bias coming from mis-calibration, while the standard 

deviation σ would correspond to the amount of measurement noise. Imagine now 

that we know the mean μ of the distribution for our errors exactly and would like to 

estimate the standard deviation σ. We can see through a bit of calculation that: 

 

 

Here E[…] is the expectation, and Var(…) is the variance. We can replace the 

average of the expectations E[εᵢ²] on the third line with the E[ε²] on the fourth line 

where ε is a variable with the same distribution as each of the εᵢ, because the errors 

εᵢ are identically distributed, and thus their squares all have the same expectation. 

Remember that we assumed we already knew μ exactly. That is, the persistent bias 

in our instruments is a known bias, rather than an unknown bias. So we might as 

well correct for this bias right off the bat by subtracting μ from all our raw 

observations. That is, we might as well suppose our errors are already distributed 

with mean μ = 0. Plugging this into the equation above and taking the square root of 

both sides then yields: 

 

 

To sum up our discussion, RMSE is a good measure to use if we want to estimate 

the standard deviation σ of a typical observed value from our model’s prediction, 

assuming that our observed data can be decomposed as: 

 

 

The random noise here could be anything that our model does not capture (e.g., 

unknown variables that might influence the observed values). If the noise is small, 

as estimated by RMSE, this generally means our model is good at predicting our 
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observed data, and if RMSE is large, this generally means our model is failing to 

account for important features underlying our data. 

 

 

 

 

Log Loss 

 

Log Loss is the most important classification metric based on probabilities. 

It's hard to interpret raw log-loss values, but log-loss is still a good metric for 

comparing models. For any given problem, a lower log-loss value means better 

predictions. Log Loss is a slight twist on something called the Likelihood 

Function. In fact, Log Loss is -1 * the log of the likelihood function. So, we will 

start by understanding the likelihood function. 

The likelihood function answers the question "How likely did the model think the 

actually observed set of outcomes was." If that sounds confusing, an example 

should help. 

Example 

A model predicts probabilities of [0.8, 0.4, 0.1] for three houses. The first two 

houses were sold, and the last one was not sold. So the actual outcomes could be 

represented numeically as [1, 1, 0]. 

Let's step through these predictions one at a time to iteratively calculate the 

likelihood function. 

• The first house sold, and the model said that was 80% likely. So, the 

likelihood function after looking at one prediction is 0.8. 

• The second house sold, and the model said that was 40% likely. There is a 

rule of probability that the probability of multiple independent events is the 

product of their individual probabilities. So, we get the combined likelihood 

from the first two predictions by multiplying their associated probabilities. 

That is 0.8 * 0.4, which happens to be 0.32. 

• Now we get to our third prediction. That home did not sell. The model said it 

was 10% likely to sell. That means it was 90% likely to not sell. So, the 

observed outcome of not selling was 90% likely according to the model. So, 

we multiply the previous result of 0.32 by 0.9. 

• We could step through all of our predictions. Each time we'd find the 

probability associated with the outcome that actually occurred, and we'd 

multiply that by the previous result. That's the likelihood. 

From Likelihood to Log Loss 

Each prediction is between 0 and 1. If you multiply enough numbers in this range, 
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the result gets so small that computers can't keep track of it. So, as a clever 

computational trick, we instead keep track of the log of the Likelihood. This is in a 

range that's easy to keep track of. We multiply this by negative 1 to maintain a 

common convention that lower loss scores are better. 

 

 

 

ROC-AUC 

 

AUC - ROC curve is a performance measurement for the classification problems at 

various threshold settings. ROC is a probability curve and AUC represents the 

degree or measure of separability. It tells how much the model is capable of 

distinguishing between classes. Higher the AUC, the better the model is at 

predicting 0 classes as 0 and 1 classes as 1. By analogy, the Higher the AUC, the 

better the model is at distinguishing between patients with the disease and no 

disease. 

The ROC curve is plotted with TPR against the FPR where TPR is on the y-axis and 

FPR is on the x-axis. 

 
Fig 9: AUC - ROC Curve 

Defining terms used in AUC and ROC Curve. 

TPR (True Positive Rate) / Recall /Sensitivity 
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Specificity 

 

 

FPR 

 

 

 

 

 
Fig 10:ROC Curve on Test Data 

 
 

AUCPR 

 

The area under the precision-recall curve (AUPRC) is a useful performance metric 

for imbalanced data in a problem setting where you care a lot about finding the 

positive examples. For example, perhaps you are building a classifier to detect 

pneumothorax in chest x-rays, and you want to ensure that you find all the 

pneumothoraces without incorrectly marking healthy lungs as positive for 

pneumothorax.  

 

If your model achieves a perfect AUPRC, it means your model found all of the 

positive examples/pneumothorax patients (perfect recall) without accidentally 

marking any negative examples/healthy patients as positive (perfect precision). The 
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“average precision” is one particular method for calculating the AUPRC. 

 
 

Fig 11: Extension of Precison-Recall curve to multi class 

 

Gini 

Gini Index, also known as Gini impurity, calculates the amount of probability of 

a specific feature that is classified incorrectly when selected randomly. If all the 

elements are linked with a single class then it can be called pure. 

Let’s perceive the criterion of the Gini Index, like the properties of 

entropy, the Gini index varies between values 0 and 1, where 0 expresses the 

purity of classification, i.e. All the elements belong to a specified class or only one 

class exists there. And 1 indicates the random distribution of elements across 

various classes. The value of 0.5 of the Gini Index shows an equal distribution of 

elements over some classes. 

While designing the decision tree, the features possessing the least value of the Gini 

Index would get preferred. You can learn another tree-based algorithm.The Gini 

Index is determined by deducting the sum of squared of probabilities of each class 

from one, mathematically, Gini Index can be expressed as: 
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where Pi denotes the probability of an element being classified for a distinct class. 

Classification and Regression Tree (CART) algorithm deploys the method of the 

Gini Index to originate binary splits. 

In addition, decision tree algorithms exploit Information Gain to divide a node and 

Gini Index or Entropy is the passageway to weigh the Information Gain. Gini index 

and Information Gain are used for the analysis of the real-time scenario, and data is 

real that is captured from the real-time analysis. In numerous definitions, it has also 

been mentioned as “impurity of data” or “how data is distributed. So we can 

calculate which data is taking less or more part in decision making. 

Accuracy 

Accuracy is one metric for evaluating classification models. 

Informally, accuracy is the fraction of predictions our model got right. Formally, 

accuracy has the following definition: 

Accuracy=Number of correct predictions/Total number of predictions 

For binary classification, accuracy can also be calculated in terms of positives and 

negatives as follows: 

Accuracy=TP+TNTP+TN+FP+FN 

Where TP = True Positives, TN = True Negatives, FP = False Positives, and FN = 

False Negatives. 

Let's try calculating accuracy for the following model that classified 100 tumors 

as malignant (the positive class) or benign (the negative class): 

True Positive (TP): 

• Reality: Malignant 

• ML model predicted: Malignant 

• Number of TP results: 1 

False Positive (FP): 

• Reality: Benign 

• ML model predicted: Malignant 

• Number of FP results: 1 
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False Negative (FN): 

• Reality: Malignant 

• ML model predicted: Benign 

• Number of FN results: 8 

True Negative (TN): 

• Reality: Benign 

• ML model predicted: Benign 

• Number of TN results: 90 

Accuracy=TP+TNTP+TN+FP+FN=1+901+90+1+8=0.91 

Accuracy comes out to 0.91, or 91% (91 correct predictions out of 100 total 

examples). That means our tumor classifier is doing a great job of identifying 

malignancies, right? 

Actually, let's do a closer analysis of positives and negatives to gain more insight 

into our model's performance. 

Of the 100 tumor examples, 91 are benign (90 TNs and 1 FP) and 9 are malignant 

(1 TP and 8 FNs). Of the 91 benign tumors, the model correctly identifies 90 as 

benign. That's good. However, of the 9 malignant tumors, the model only correctly 

identifies 1 as malignant—a terrible outcome, as 8 out of 9 malignancies go 

undiagnosed! 

 

While 91% accuracy may seem good at first glance, another tumor-classifier model 

that always predicts benign would achieve the exact same accuracy (91/100 correct 

predictions) on our examples. In other words, our model is no better than one that 

has zero predictive ability to distinguish malignant tumors from benign tumors. 

Precision 

In the simplest terms, Precision is the ratio between the True Positives and all the 

Positives. For our problem statement, that would be the measure of patients that we 

correctly identify having a heart disease out of all the patients actually having it. 

Mathematically: 

 

What is the Precision for our model? Yes, it is 0.843 or, when it predicts that a 

patient has heart disease, it is correct around 84% of the time. 

Precision also gives us a measure of the relevant data points. It is important that we 

don’t start treating a patient who actually doesn’t have a heart ailment, but our 

model predicted as having it. 
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Recall 

The recall is the measure of our model correctly identifying True Positives. Thus, 

for all the patients who actually have heart disease, recall tells us how many we 

correctly identified as having a heart disease. Mathematically: 

 

For our model, Recall  = 0.86. Recall also gives a measure of how accurately our 

model is able to identify the relevant data. We refer to it as Sensitivity or True 

Positive Rate. What if a patient has heart disease, but there is no treatment given to 

him/her because our model predicted so? That is a situation we would like to 

avoid! 

 

Confusion Matrix 

 

For imbalanced classification problems, the majority class is typically referred to as 

the negative outcome (e.g. such as “no change” or “negative test result“), and the 

minority class is typically referred to as the positive outcome (e.g. “change” or 

“positive test result”). 

 

The confusion matrix provides more insight into not only the performance of a 

predictive model, but also which classes are being predicted correctly, which 

incorrectly, and what type of errors are being made. 

The simplest confusion matrix is for a two-class classification problem, with 

negative (class 0) and positive (class 1) classes. 

In this type of confusion matrix, each cell in the table has a specific and well-

understood name, summarized as follows: 

 

1 

2 

3 

               | Positive Prediction | Negative Prediction 

Positive Class | True Positive (TP)  | False Negative (FN) 

Negative Class | False Positive (FP) | True Negative (TN)  
The precision and recall metrics are defined in terms of the cells in the confusion 

matrix, specifically terms like true positives and false negatives. 
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Fig 12: Confusion Matrix on Test Data 

 

Evaluation 

 
Fig. 13 Accuracy 

 
Fig. 2 Cohen Kappa Score 

 
Fig. 3 Log Loss 



Page | 48  

 

 
Fig. 4 KS Statistics 

 
Fig. 5 Classification Report 

 
Fig. 6 Confusion Matrix 
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Fig. 7 ROC Curve 

 
Fig. 8 KS Statistics Plot 
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Fig. 9 Precision Recall Plot 

Conclusion 
 

The aim of this project was to create a system that was able to detect whether a 

patient has a heart disease or not. Our first concern was to transform the dataset 

with less correlations. This led us to transform some of our features using Weight 

of Evidence and k-fold Target encoders. Using multiple feature selection 

algorithms such as the Logistic Regression and Pearson correlation, top 15 features 

were extracted from all the new and old features. H2O AutoML was used for the 

automatic model selection process which gave the gradient boosting machine as the 

best classifier for the problem.  

 

After fitting the model on training dataset, the model was tested on a previously 

unseen testing data. The accuracy on the testing set was found to be 93% while the 

other metrics such as precision score, f1 score, recall score and kappa score was 

found to be 92.5%, 93.3%, 94.2% and 84.05% respectively. 
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