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Abstract

The rapid growth of Internet users led to unwanted cyber issues, including cyberbullying, hate

speech, and many more. This paper deals with the reviewing of different techniques used to

detect hate speech by many scholars and researchers.Hate speech occurs when an individual or a

group of individuals attack or use derogatory or discriminatory words towards a group of people

based on characteristics such as origin, sexuality, ethnicity, religious background, socioeconomic

status, race, gender, and other factors. When such action takes place on social networking sites,

blogs, creative material, and other forms of online media, it is referred to as Online Hate Speech

[1]. Hate speech appears to be an inflammatory kind of interaction process that uses

misconceptions to express a hate ideology Hate speech focuses on various protected aspects,

including gender, religion, race, and disability [2]. Owing to hate speech, sometimes unwanted

crimes are going to happen as someone or a group of people get disheartened. Hence, it is

essential to monitor users' posts and filter the hate speech related post before it is spread.

However, Twitter receives more than six hundred tweets per second and about 500 million tweets

per day. Manually filtering any information from such a huge incoming traffic is almost

impossible. Concerning this aspect, many techniques have been published using different aspects

of machine learning and deep learning. Several attempts have been made to classify

hate speech using machine learning, this is targeted to the use of primitive NLP

feature engineering techniques
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CHAPTER-1

Introduction

Social media giants such as Facebook, Twitter, Instagram, Youtube that are curbing hate speech

are pushed to deal with the questions of infringing on rights to speak and post what they want.

For an instance, the native English speakers are frequent user of words like b*tch and h*e in day

to day language. It is noticeable nowadays that even the lyrics of songs consists of slurs such as

f*g and n*gga which is frequently used in online communication.

Insufficient data is one of the major issues to automate hate speech for detection of different

languages. However, there is sufficient dataset for the English language to train and test the

detection. Irregular datasets and annotation, making it tougher for regulated hate speech

detection.

Unavailability of in-depth annotation and classification, that is, in most cases the classes targeted

are solely hate and non-hate although the crucial target is addressing different classes (e.g.

racism, online bullying, body shaming, criticism). When it comes to hate speech detection,

twitter is the most relied social media as it contains enormous linguistic diversity in the content.

Most of the publicly available hate speech annotated data in English are from twitter. The dataset

which is used in

this paper is a publicly available hate speech dataset on CrowdFlower which has

been used previously in Davidson and Warmsley (2018) that consists of 25K tweets

in English. This publicly available dataset consisting of 25k tweets are categorized

into three classes with class labels.9

While the process of detection and classification of hate speech using NLP in social



media, it is Important have to have noise free and clean data in order to get accurate

results using machine learning techniques/algorithms. During processing of twitter

dataset, the tweets are mostly attached with useless or unknown strings, used with

informality.

Specifically, tweets also have a different formatting starting with authors usernames,

URLs, hashtags, which need to be removed/no-use or parsed.

Tweets are cleaned by removing extra spaces, tags, links, punctuations,numbers, time

date, locations. Then cleaned tweets are lowercase and tokenized. Next, the stop

words are removed. Lastly, the stemming is performed using the stemmer.

Hate crimes are unfortunately nothing new in society. However, social media and other means of

online communication have begun playing a larger role in hate crimes. For instance, suspects in

several recent hate-related terror attacks had an extensive social media history of hate-related

posts, suggesting that social media contributes to their radicalization . In some cases, social

media can play an even more direct role; video footage from the suspect of the 2019 terror attack

in Christchurch, New Zealand, was broadcast live on Facebook .

Vast online communication forums, including social media, enable users to express themselves

freely, at times, anonymously. While the ability to freely express oneself is a human right that

should be cherished, inducing and spreading hate towards another group is an abuse of this

liberty. For instance, The American Bar Association asserts that in the United States, hate speech

is legal and protected by the First Amendment, although not if it directly calls for violence As

such, many online forums such as Facebook, YouTube, and Twitter consider hate speech

harmful, and have policies to remove hate speech content Due to societal concerns and how



widespread hate speech is becoming on the Internet , there is strong motivation to study

automatic detection of hate speech. By automating its detection, the spread of hateful content can

be reduced. Detecting hate speech is a challenging task, however. First, there are disagreements

in how hate speech should be defined. This means that some content can be considered hate

speech to some and not to others, based on their respective definitions. We start by covering

competing definitions, focusing on the different aspects that contribute to hate speech. We are by

no means, nor can we be, comprehensive as new definitions appear regularly. Our aim is simply

to illustrate variances highlighting difficulties that arise from such.

Competing definitions provide challenges for evaluation of hate speech detection systems;

existing datasets differ in their definition of hate speech, leading to datasets that are not only

from different sources, but also capture different information. This can make it difficult to

directly access which aspects of hate speech to identify. We discuss the various datasets available

to train and measure the performance of hate speech detection systems in the next section.

Nuance and subtleties in language provide further challenges in automatic hate speech

identification, again depending on the definition.



CHAPTER-2 Literature Review

Any statement that disparages a person or a group based on a trait such as race, colour, ethnicity,

gender, sexual orientation, nationality, religion, or another attribute is characterised as violent

Speech. As a result of the massive increase of user-generated web content, particularly on social

media networks, the number of violent Speech is continually expanding. Interest in identifying

online violent Speech, particularly the automation of this process, has rapidly increased in recent

years, as has the societal impact of the phenomenon. Natural language processing, focusing

specifically on this topic, is essential since simple word filters are insufficient: What exactly is

it?The examples in this paper are offered to show how serious the problem of violent Speech is.

They are based on real-world data and do not reflect the authors' own views.

Aspects such as an utterance's domain, discourse context, and context, which includes

co-occurring media e.g.mobile gallery media, digital media, songs downloaded, might all

influence the content of a violent Speech message.

Joscha et. al, in their paper conceived and thought about different methods like Bag of words

models, n-grams for utilizing semantic data to work on the exhibition of opinion investigation.

The prior approaches didn't think about the semantic relationship between sentences or archives

parts. Research by A. Hogenboom et al. neither looked at the systemic variations nor gave a

technique to combine exposure units in the greatest way. They intended to further develop the

opinion examination by utilizing Rhetoric Structure Theory (RST) as it gives a progressive



portrayal at the report level. They proposed a mix of the matrix search and weighting to discover

the normal scores of opinion from the Rhetorical Structure Theory (RST) tree. They encoded the

twofold information into the arbitrary timberland by utilizing highlight designing as it

enormously decreased the intricacy of the unique RST tree. They presumed that AI raised decent

precision and gave a high F1 score of 71.9%.

Amir Hossein Yazdavar et al. in this paper gave a novel comprehension of the feeling

examination issue containing numerated information in drug audits. They broke down sentences

which contained quantitative terms to arrange them into stubborn or non-obstinate and

furthermore to recognize the extremity communicated by utilizing the fluffy set hypothesis. The

improvement of the fluffy information base was finished by talking to a few specialists from

different clinical focuses. Although the quantity of investigations has been done in this field

these don't consider the mathematical (quantitative) information contained in the audits while

perceiving the feeling extremity. Likewise, the preparation information utilized has a high area

reliance and thus can't be utilized in various spaces. They inferred that their proposed technique

of information designing dependent on fluffy sets was a lot less difficult, productive and has high

precision of more than 72% F1 esteem.

Ahmad Kamal in his paper planned an assessment mining system that works with objectivity or

subjectivity examination, including extraction and audit synopsis and so forth. He utilized a

regulated AI approach for subjectivity and objectivity order of audits. The different procedures

utilized by him were Naive Bayes, Decision Tree, Multilayer Perceptron and Bagging. He



likewise further developed mining execution by forestalling unimportant extraction and

commotion as in Kamal's paper.

Humera Shaziya et al. in this paper characterized film audits for feeling examination utilizing

WEKA Tool. They upgraded the prior work done in feeling order which dissects assessments

which express either good or negative opinion. In this paper, they likewise thought to be the way

that audits that have suppositions from more than one individual and a solitary survey might

communicate both the positive and negative feeling. They directed their test on WEKA and

presumed that Naive Bayes performs obviously superior to SVM for film surveys just as text.

Gullible Bayes has a precision of 85.1%.

Akshay Amolik et. al. in his paper made the dataset utilizing twitter posts of film audits and

related tweets about those motion pictures. Sentence level opinion investigation is performed on

these tweets. It is done in three stages. Initially, preprocessing is finished. Then, at that point, the

Feature vector is made utilizing significant highlights. At long last, by utilizing various

classifiers like Naive Bayes, Support vector machine, Ensemble classifier, k-implies and

Artificial Neural Networks, tweets were arranged into positive, negative and unbiased classes.

The outcomes show that we get 75 % precision structure SVM.

The above-mentioned issue has attracted researchers over the past few years and has therefore

proposed models using machine learning and deep learning techniques [8]–[14].



However, existing models do not meet the required needs, as many HS related tweets are still

available on Twitter and floating across the network. This prompted us to develop a model that

would capture the maximum number of HS related posts. The CNN model has been successfully

used by current researchers to address various issues related to the text domain, including

sentiment analysis, question answering, document classification, sentence clas-sification

[15]–[17], spam filtering and others . By following them, this research also uses a deep

convolutional neural network (DCNN) to address the hate speech detection issue. DCNN is

capable of capturing the semantics of the sentence by performing the convolution operations

over the tweets. We also tested other deep neural network-based models such as Long

Short-Term Memory (LSTM), and Convolutional-LSTM (C-LSTM) network for the same and

found the DCNN model is a better choice for this research.

Dataset Used

The dataset used in our experiments is a combination of the following two datasets:

a) 25k Twitter dataset[14]: This dataset comprises 24,802 labelled tweets which were randomly

sampled out of 85.4 million tweets and were labelled into hate, no hate and neither. We make this

dataset binary by considering offensive and neither as non-hate.

b) Hate speech and personal attack dataset in English social media This a

dataset available on zenodo.org. It is a binary dataset collected for the

European project for countering hate speech.



Feature Engineering

Feature engineering is the most important part of Machine learning to make any dataset

usable for training any machine learning or deep learning model. There exist various

types of features like semantic, lexicographic, sentiment-based and word embeddings. It

is very important to decide what features we use to optimize the accuracy of our models.

The following are the feature engineering techniques used :-

a) TF-IDF:

Term Frequency-Inverse Document Frequency (TF-IDF) is a technique used

to give weighted importance of a word or a phrase in a document or a corpus.

We used it to create feature vectors using the most common n-grams in our

dataset.[17]

b) Bag of Words (BoW):

BoW is a technique used to numerically express a document in our corpus

using the number of times a specific word or n-gram occurs.[16]

c) Word2vec Embeddings:

Word2vec  [8] is an algorithm that uses a neural network to learn word

embeddings. Its goal is to estimate each word’s position in a multi dimension

vector space based on the similarity of different words.



Functionality/Working and Code



Libraries Required

from pydub import AudioSegment

import glob

import moviepy.editor

import os

import math

import speech_recognition as sr

from pydub import AudioSegment

from pydub.silence import split_on_silence

import numpy as np

import pandas as pd

import nltk

from nltk.stem import WordNetLemmatizer

import string

import gensim

from gensim.models import Word2Vec

import joblib

from sklearn.feature_extraction.text import TfidfVectorizer



Table 1: Data Distribution of the Hate words

class SplitWavAudioMubin():

def __init__(self, folder, filename):

self.folder = folder

self.filename = filename

self.file path = folder + '\\' + filename

self.audio = AudioSegment.from_wav(self.filepath)

def get_duration(self):

return self.audio.duration_seconds

def single_split(self, from_min, to_min, split_filename):

t1 = from_min * 60 * 1000

t2 = to_min * 60 * 1000

split_audio = self.audio[t1:t2]

split_audio.export(self.folder + '\\' + split_filename,

format="wav")



def multiple_split(self, min_per_split):

total_mins = math.ceil(self.get_duration() / 60)

for i in range(0, total_mins, min_per_split):

split_fn = str(i) + '_' + self.filename

self.single_split(i, i+min_per_split, split_fn)

print(str(i) + ' Done')

if i == total_mins - min_per_split:

print('All splitted successfully')

Fig 2: Marking of words



Fig3: Pipeline For Project

Checking of file extracted

for i in files1:

print(i)

get_large_audio_transcription(i)



Fig 4: Data Set After extracting audio from video

Splitting the large audio file into chunks

def get_large_audio_transcription(path):

"""

Splitting the large audio file into chunks

and apply speech recognition on each of these chunks

"""

# open the audio file using pydub

sound = AudioSegment.from_wav(path)

# split audio sound where silence is 700 milliseconds or more and get

chunks

chunks = split_on_silence(sound,

# experiment with this value for your target audio file

min_silence_len = 500,

# adjust this per requirement

silence_thresh = sound.dBFS-14,

# keep the silence for 1 second, adjustable as well

keep_silence=500,

)



folder_name = "audio-chunks"

# create a directory to store the audio chunks

if not os.path.isdir(folder_name):

os.mkdir(folder_name)

whole_text = ""

# process each chunk

for i, audio_chunk in enumerate(chunks, start=1):

# export audio chunk and save it in

# the `folder_name` directory.

chunk_filename = os.path.join(folder_name, f"chunk{i}.wav")

audio_chunk.export(chunk_filename, format="wav")

# recognize the chunk

with sr.AudioFile(chunk_filename) as source:

audio_listened = r.record(source)

# try converting it to text

try:

text = r.recognize_google(audio_listened)

except sr.UnknownValueError as e:

print("Error:", str(e))

else:

text = f"{text.capitalize()}. "

print(chunk_filename, ":", text)

whole_text += text

#aud1.append(whole_text)

aud1.append(whole_text)

# return the text for all chunks detected

return whole_text



Preprocessing Of DataSet

def preprocess(tweet):

# Removing handles and hashtags

tweet = re.sub('@[^\s]+','',str(tweet))

tweet = re.sub(r'#', '', str(tweet))

# Removing URLS

tweet= re.sub('((www\.[^\s]+)|(https?://[^\s]+))','',str(tweet))

#removing all punctuation and special character

tweet = re.sub('[^a-zA-Z]',' ',str(tweet))

#removing extra white space

tweet = re.sub('[\s]+', ' ', str(tweet))

tweet = re.sub('[\n]+', ' ', str(tweet))

tweet=tweet.lower()

return tweet

train_data['tweet']= train_data['tweet'].apply(lambda x:preprocess(x))

train_data.head()

Removing of Null Values from the data

aud1=pd.DataFrame(aud1)

aud1.replace("[^a-zA-Z.]"," ",regex=True,inplace=True)

nan_value = float("NaN")

aud1.replace("", nan_value, inplace=True)

aud1.dropna(axis=0,how='any',thresh=None,subset=None,inplace=True)

data=aud1

#len(data)

headline=[]

for row in range(0,len(data.index)):

headline.append(''.join(str(x) for x in data.iloc[row]))

headline=str(headline)



Removal of Stop Words from every Sentence

headline.lower()

sentence=headline.split(".")

tokenText = []

for sent in sentence:

tok = nltk.word_tokenize(sent)

if len(tok) > 0:

tokenText.append(tok)

from nltk.corpus import stopwords

stop_words = set(stopwords.words('english'))

filtered_sentence_new = []

filtered_sentence_new = [word for word in tokenText if not word in

stopwords.words()]



DataSet After Extracting Audio

Lemmatization of Every Word

lemmatizer = WordNetLemmatizer()

def wordlema(text):

lem_text=" ".join([lemmatizer.lemmatize(i) for i in text])

return lem_text

lemtxt1 = []

for tok in filtered_sentence_new:

lemSent = wordlema(tok)

lemtxt1.append(lemSent)



Combining of Words into sentence after lemmatization

aud2=pd.DataFrame(lemtxt1)

aud2.replace("[^a-zA-Z.]"," ",regex=True,inplace=True)

nan_value = float("NaN")

aud2.replace("", nan_value, inplace=True)

aud2.dropna(axis=0,how='any',thresh=None,subset=None,inplace=True)

data2=aud2

#len(data)

headline_new=[]

for row in range(0,len(data2.index)):

headline_new.append(''.join(str(x) for x in data2.iloc[row]))

Loading of First embedding technique “Word2Vec”

w2v_model=gensim.models.Word2Vec(headline_new,workers=3,size=100,min_count

=40,window=10,sample=1e-3)

Implementing Word2Vec

def word2vectranform(Z):

zero=[]

for i in range(0,300):

zero.append(0)

length=[]

for i in range(0,len(Z)):

#print(i)

t=Z[i]

k1=[]

for j in range(0,len(t)):

k=t[j]



try:

ee=model[k]

k1.append(ee)

except:

ee=zero

k1.append(ee)

default=[]

for l in range(0,300):

default.append(0)

for u in range(0, len(k1)):

default=np.add(default,k1[u])

try:

default1=default/len(k1)

except:

default1=default

length.append(default1)

#print(len(length))

return length

def make_feature_vec(words):

#for sent in list_of_sent:

feature_vec=np.zeros((100,),dtype='float32')

nwords = 0

index2word_set= set(w2v_model.wv.index2word)

for word in words:

if word in index2word_set:

nwords +=1

feature_vec=np.add(feature_vec,w2v_model[word])

feature_vec=np.divide(feature_vec,nwords)

feature_vec = np.around(feature_vec,3)

return feature_vec



def get_avg_feature_vec(tweets):

c=0

tweet_feature_vec = np.zeros((len(tweets),100),dtype='float32')

for tweet in tweets:

tweet_feature_vec[c]=make_feature_vec(tweet)

c=c+1

return tweet_feature_vec

#tweets=[]

#for tweet in df['tweet']:

#tweets.append(tweet)

x1= get_avg_feature_vec(headline_new)

Fig 5: Data After Vectorization

Training Machine on GbBoost

from sklearn.ensemble import GradientBoostingClassifier

clf1_gb2 =

GradientBoostingClassifier(random_state=4,n_estimators=200,learning_rate=0

.1,max_depth=5)

clf1_gb2.fit(train_x,train_y)

print(clf1_gb2.score(train_x,train_y))



print(clf1_gb2.score(test_x,test_y))

pred_gb2 = clf1_gb2.predict(test_x)

pd.DataFrame(confusion_matrix(pred_gb2,test_y))

gboost_from_joblib =

joblib.load(r'C:\Users\ayush\OneDrive\Desktop\internship\PIckel

Files\word2vecsamp.pkl')

# Use the loaded model to make predictions

gboost_from_joblib.predict(x1)

Loading Tf-Idf Vectorizer

tfidf = TfidfVectorizer(ngram_range=(1,3),max_features=10000)

tfidf.fit(x_tf)

x_tf=tfidf.transform(x_tf)

svm_tf1=SVC(C=100,gamma=0.01,kernel='rbf')

svm_tf1.fit(x_train,y_train)

svm_pred=svm_tf1.predict(x_test)

pd.DataFrame(confusion_matrix(svm_pred,y_test))

svm_from_joblib =

joblib.load(r'C:\Users\ayush\OneDrive\Desktop\internship\PIckel

Files\tfidfsamp.pkl')

# Use the loaded model to make predictions

svm_from_joblib.predict(x_tf)

Loading of Fasttext Vectorizer

from gensim.models.fasttext import FastText

embedding_size = 100

window_size = 40

min_word = 5

down_sampling = 1e-2



ft_model = FastText(headline_new,

size=embedding_size,

window=window_size,

min_count=min_word,

sample=down_sampling,

sg=1,

iter=100)

def make_feature_vec(words):

#for sent in list_of_sent:

feature_vec=np.zeros((100,),dtype='float32')

nwords = 0

index2word_set= set(ft_model.wv.index2word)

for word in words:

if word in index2word_set:

nwords +=1

feature_vec=np.add(feature_vec,ft_model[word])

feature_vec=np.divide(feature_vec,nwords)

feature_vec = np.around(feature_vec,3)

return feature_vec



Fig 6: Predicted Data Set



Conclusion / Future Scope
This research addresses the issue of hate speech detection on Twitter using a deep

convolutional neural network. Initially, the machine learning based classifiers such as LR,

RF, NB, SVM, DT, GB, and KNN were used to identify the HS related tweets on Twitter

with the features extracted using tf-idf technique. However, the best ML model, i.e SVM,

is able to predict only 53% of HS tweets correctly on a 3:1 train-test dataset. The reason

behind the low prediction of HS tweets may include the imbalanced dataset, hence the

model biased towards the NHS tweets prediction as it is having the majority of instances.

Deep learning based CNN, LSTM, and their combinations C-LSTM models also have

similar results with the fixed partitioned dataset. The experimental outcome on both the

traditional machine learning based models and deep learning based models confirmed that

none of the models predicted the HS tweets with satisfactory accuracy on a fixed

partitioned train-test. Finally, 10-fold cross-validation was used with the proposed CNN

model and achieved the best prediction recall value of 0.88 for HS and 0.99 for NHS. The

experimental results confirmed the k-fold cross-validation technique is a better choice

with the imbalanced dataset. The current research addressed the HS issues with the textual

data only; however, images are also widely used for the same. Hence, in the future, the

researcher may include images with text or can analyse the video dataset to capture more

HS related posts from Twitter. This research only used the tweets written in the English

language, which can be further extended by mixing other languages such as Japanese,

Hindi, Tamil, etc. The developed model achieved the recall value of 0.88, which indicates

few tweets are not detected properly. In the future, a model may develop, which captures

all hate speech content from the OSN. To build a general framework using deep learning



models, the training dataset must have sufficient samples, in the future, the current dataset

may be extended to achieve better accuracy.
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