
1

A Project Report

on

ANIMAL IMAGE CLASSIFIER USING DEEP

LEARNING

Submitted in partial fulfillment of the

 requirement for the award of the degree of

Bachelor of Technology in

Computer Science

Under The Supervision of

Dr. C Ramesh Kumar

 Professor

Submitted By

 Mayank Sharma - 18SCSE1010626

 Amrendra pratap - 18SCSE1010576

SCHOOL OF COMPUTING SCIENCE AND ENGINEERING

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING /

DEPARTMENT OF COMPUTERAPPLICATION

GALGOTIAS UNIVERSITY, GREATER NOIDA

INDIA

 DECEMBER, 2021

2

SCHOOL OF COMPUTING SCIENCE AND
ENGINEERING

GALGOTIAS UNIVERSITY, GREATER NOIDA

CANDIDATE’S DECLARATION

I/We hereby certify that the work which is being presented in the project, entitled “ANIMAL

IMAGE CLASSIFIER USING DEEP LEARNING.” in partial fulfillment of the requirements

for the award of the Bachelor of Technology submitted in the School of Computing Science and

Engineering of Galgotias University, Greater Noida, is an original work carried out during the

period of September, 2021 to December and 2021, under the supervision of Dr. C. Ramesh

Kumar, Professor, Department of Computer Science and Engineering, of School of Computing

Science and Engineering, Galgotias University, Greater Noida

The matter presented in the project has not been submitted by me/us for the award of any

other degree of this or any other places.

 Mayank Sharma,18SCSE1010626

Amrendra Pratap,18SCSE1010576

This is to certify that the above statement made by the candidates is correct to the best of my

knowledge.

 Dr. C. Ramesh Kumar

 Assistant Professor

3

CERTIFICATE

The Final Project Viva-Voce examination of Mayank Sharma 18SCSE1010626 has been held on

_________________ and his/her work is recommended for the award of Bachelor of

Technology.

Signature of Examiner(s) Signature of Supervisor(s)

Signature of Project Coordinator Signature of Dean

Date: December, 2021

Place: Greater Noida

4

Abstract

Convolutional Neural Network (CNN) is an algorithm taking an image as input then assigning

weights and biases to all the aspects of an image and thus differentiates one from the other.

Neural networks can be trained by using batches of images, each of them having a label to

identify the real nature of the image. A batch can contain few tenths to hundreds of images. For

each and every image, the network prediction is compared with the corresponding existing label,

and the distance between network prediction and the truth is evaluated for the whole batch. Then,

the network parameters are modified to minimize the distance and thus the prediction capability

of the network is increased. The training process continues for every batch similarly. The main

goal of this project is to develop a system that can identify images of cats, dogs, bird, horses etc.

The input image will be analyzed and then the output is predicted. The model that is

implemented can be extended to a website or any mobile device as per the need. The animal

dataset can be downloaded from the Kaggle website. The dataset contains a set of images of cats

and dogs. Our main aim here is for the model to learn various distinctive features of cat and dog.

Once the training of the model is done it will be able to differentiate images of cat and dog.

Key Words: Image Classification, Convolutional Neural Network, Kaggle, Deep Learning.

5

Table of Contents

Title

 Page No.

Candidates Declaration I

Acknowledgement II

Abstract III

Contents IV

List of Table V

List of Figures VI

Acronyms VII

Chapter 1 Introduction 1

 1.1 Introduction 2

 1.2 Formulation of Problem

 1.2.1 Tool and Technology Used

Chapter 2 Literature Survey/Project Design 5

Chapter 3 Functionality/Working of Project 9

Chapter 4 Results and Discussion 11

Chapter 5 Conclusion and Future Scope 41

 5.1 Conclusion 41

 5.2 Future Scope 42

 Reference 43

 Publication/Copyright/Product 45

6

List of Table

S.No. Caption Page No.

1 Classification Matrix 29

2 Confusion Matrix 32

7

List of Figures

S.No. Title Page No.

1 Architecture of CNN 17

2 Epoch 26

3 Training And Validation Accuracy 28

4 Training of CNN 36

5 Input Image of Cat 37

6 Output of Classifier 37

7 Input Image of Dog 37

8 Output Image of Classifier 38

8

Acronyms

B.Tech. Bachelor of Technology

CNN Convolutional Neural Network

KNN K- Nearest Neighbour

CIFAR-10 Canadian Institute Of Advanced Research

MNIST Modified National Institute of Standards And Technology

GPU Graphics Processing Unit

SCSE School of Computing Science and Engineering

9

CHAPTER-1

Introduction

1.1 Introduction

The Image classification is one of the fundamental problems in computer vision. It forms basis

for many other computer vision tasks such as object recognition, image segmentation and object

detection. The task of categorizing images into one of several predefined classes is called image

classification. Though the task of classifying images is easy for human beings, it is very difficult

for an automated system. By using machine learning techniques, images can be classified. These

machine learning algorithms falls under the category of deep learning. Deep learning is a type of

neural network algorithms in which each layer is responsible for extracting one or more features

of the image. A neural network is a computational model that is similar to a human brain. It is

collection of nodes called as neurons. These nodes are organized into layers where each neuron

in the one layer takes some input processes it and passes the output to the neuron in the next

layer. Different layers may perform different kinds of transformations.Data transfers from the

input layer (first layer) to the output layer (last layer) by traversing various hidden layers. One of

the most popular techniques used for improving the accuracy of image classification is

Convolutional Neural Networks (CNN). Neural Network Image classification can be done using

both supervised classification algorithms and unsupervised classification algorithms. Supervised

classification uses training data along with human intervention whereas in unsupervised

classification human intervention is not required as it is fully computer operated. The supervised

10

classification has two phases namely training phase and classification phase. In training phase

the classifier is given information about classes. This is the phase where learning of a model

takes place. In classification phase it uses the information provided by the training data and

classifies the image into one of the predefined classes. Various algorithms such as minimum

distance algorithm, K-Nearest neighbour algorithm, Nearest Clustering algorithm, Fuzzy C -

Means algorithm, Maximum likelihood algorithm and so on are used for the purpose of

classification of images. Ever since Alex Krizhevsky, Geoff Hinton and Ilya Sutskevar won

ImageNet in 2012, Convolutional Neural Networks (CNNs) have become the standard for image

classification.

11

1.2

Problem Formulation

We are given a set of dog and cat images. The task is to build a model to predict the

category of an animal.

1.2.1 Tools And Technology Used

 Python Interpreter

 Anaconda Prompt

 Spyder

12

CHAPTER-2

Literature Survey

Tianmei Guo et. al.[1] explained that deep Belief Networks and Convolutional Neural Networks

are commonly used models in deep learning. Among different type of models, convolutional

neural networks has been demonstrated high performance on image classification. He built a

simple neural network and the experiments are based on benchmarking datasets MINIST and

CIFAR-10. On the basis of the convolutional neural network, different methods of learning rate

set and different optimization algorithm of solving the optimal parameters of the influence on

image classification are analyzed. Emine CENGIL et. al.[2] described that although several

algorithms for image classification have been developed over the years, they have not been used

with the discovery of Convolutional Neural Networks. Convolutional Neural Networks provide

better results than existing methods in the literature due to advantages such as processing by

extracting hidden features, allowing parallel processing thanks to parallel structure, and real time

operation. He used The caffe library, which is often used for deep learning to train and test with

images of cats and dogs taken from the kaggle dataset. 10,000 tagged data is used for training

and 5,000 unlabeled data is used for testing. Owing to Convolutional Neural Networks allow

parallel processing, GPU technology has been used. Travis Williams et. al.[3] explained that

Convolutional Neural Networks (CNN) is a type of deep neural network that has a structure and

approach that differs from other deep neural networks. Their strength and design is usage on

13

two-dimensional data, like images and videos. He developed a Convolutional Neural Networks

(CNN) to classify handwritten digits. An algorithm is used to convert Data into wavelet domain

to attain greater accuracy. Applying CNN on the raw pixels of images generates accurate results.

However, the size and complexity of these images in the spatial domain causes the efficiency of

the algorithm to decrease. By converting the images into the wavelet domain, they can be

processed at a lower dimension, with faster processing times. Furthermore, given the varying

frequencies represented in each subband, multiple CNNs performed on each subband, or a

combination of them, can increase the accuracy of the classification. Sayali Jog et. al.[4]

explained that remote sensing is the method used to detect and measure target characteristics

using electromagnetic energy in the form of heat, light and radio waves. The process of

producing thematic map from remotely sensed imagery is called image classification. Accuracy

of classification depends on satellite image quality. Four steps are used for image classification,

first is pre processing of image followed by selection of particular criteria feature to describe the

pattern then selection of classifier and lastly accuracy assessment of the image classification. For

classification, multispectral satellite images are used. Image classification can be supervised and

unsupervised. There are various supervised classifiers namely minimum distance, support vector

machine, maximum likelihood, and parallelepiped. The performance of these classifiers is judged

on the basis of kappa coefficient and overall accuracy.

14

Project Design

Classifier

Take Images

Dataset

Training With CPU

Class 2

Class 1

Input Image

Flow Chart of the Proposed System

15

Chapter – 3

Working of Project

We are building a simple convolutional neural network (CNN) of six layers that can identify and

classify the images into one of the two predefined classes. In general, most of the machine

learning applications requires GPU (Graphics processing unit) because of high number of

computations on large amount of data. Since GPUs have almost 200 times more processors than

CPU, it improves the performance of neural networks. As the number of layers in the network

increases, the number of computations increases and hence the need for GPUs increases.

Therefore, in order to build a neural network that can work on CPU as well a very small

network is build.

There are various software libraries that are focused on machine learning. Few of them are

Theano, Scikit-learn and Tensorflow. In proposed system, a convolutional neural network based

image classifier is build using Tensorflow which is an open source software library focused on

machine learning. [5] It is implemented using python language and ubuntu operating system.

Python is used because of its simplicity and ease to learn. It provides various tools that are

helpful in making machine learning applications. Apart from this, OpenCV (Open Source

Computer Vision library) which is an open source C++ library for image processing and

computer vision is used to read the images.

MODULE-1 (Input and Output Layers)

16

Convolutional neural network has input layers, output layers and hidden layers. The hidden

layers are consists of convolutional layer, flattened layer and a fullyconnected layer.

Input Layer: Input layer in CNN should contain image data. Image data is represented by three

dimensional matrix as we saw earlier. You need to reshape it into a single column. Suppose you

have image of dimension 28 x 28 =784, you need to convert it into 784 x 1 before feeding into

input. If you have “m” training examples then dimension of input will be (784, m).

 Output Layer: Output layer contains the label which is in the form of one-hot encoded.

MODULE-2 (Hidden Layers)

Convolutional Layer: Convolutional layer is the building block of convolutional neural

network. The main task of convolutional layer is to extract features. It consists of one or more

convolutional layers followed by one or more fully connected layers. This architecture is

designed to support 2D structure of input such as images. This is done by using local

connections and tied weights. The input to the convolutional layer is an x*x*r image where ‘x’ is

height and width of image and ‘r’ is the number of channels. The convolutional layer will have

filters of size y*y*r where ‘y’ is smaller than the size of image. A filter sized chunk from the

image is selected and convolution (dot product) is calculated with the filter. This will result in a

17

single number as output to which a bias is added. Here convolution (dot product) is nothing but

matrix multiplication of y*y*r sized chunk of image and y*y*r sized filter. Filter is slided over

the whole input image to calculate the output across the image. The number of pixels through

which the sliding takes place is called stride. All these outputs are concatenated to have an

activation map or feature map. After each convolution, the size of the image decreases.

Therefore, it is a standard practice to add zeros on the boundary of input layer such that the

output is same as input layer. This is called as padding.

 The Figure 1 shows the architecture of the proposed convolutional neural network.

Pooling layer: Pooling layer is used to reduce the dimensionality of the feature map in order to

reduce the processing time. The sole purpose of pooling layer is to reduce the spatial size (height,

width). This reduces the number of parameters; hence the number of computations is also

reduced. There are three different types of pooling. They are max pooling, average pooling, min

pooling. The most commonly used pooling is max pooling where we take a filter of size f*f and

apply the maximum operation over the f*f sized part of image. Mostly pooling is done with a

filter of size 2*2 with a stride of 2. This reduces the image size into half

18

Flattening Layer: The output of a convolutional layer is a multi-dimensional Tensor. A

flattening layer is used in order to convert this into a single dimensional tensor. This is done

using the reshape operation of tensorflow framework. It gets the output from the previous

convolutional layers and flattens its structure to create a single feature vector which can be used

by the fully connected layer to perform classification.

Fully connected layer: This layer performs the classification of the image based on the features

extracted by the previous convolutional layers. In fully connected layer, every neuron is

connected with every neuron of previous layer. A softmax function is used to convert the output

of neural network into probability for each class.

After deciding the network architecture, focus should be given on parameters of the network.

The best set of parameters can be found using back propagation technique. In this technique,

random set of parameters are used at first. These values are changed such that for every training

image we get correct output. Gradient descent is an optimizer method that is quick in finding the

correct parameters. Cost is a single number that indicates the accuracy of the classifier increases

as the cost decreases. Therefore, training is done till the cost remains constant. After training is

done, the parameters and architecture are saved in a binary file called as model. A new image is

sent as input to the same network and the probability of the new image is calculated. This is

called as inference or prediction.

Instead of feeding the whole training data to the network, it is divided into batches of images

called as epochs. Each epoch may contain 16 or 32 images and it takes more than 50 iterations to

train the whole dataset.

Computer vision and neural networks are the hot new IT of machine learning techniques. With

advances of neural networks and an ability to read images as pixel density numbers, numerous

companies are relying on this technique for more data. For example, speed camera uses computer

vision to take pictures of license plate of cars who are going above the speeding limit and match

19

the license plate number with their known database to send the ticket to. Although this is more

related to Object Character Recognition than Image Classification, both uses computer vision

and neural networks as a base to work.

A more realistic example of image classification would be Facebook tagging algorithm. When

you upload an album with people in them and tag them in Facebook, the tag algorithm breaks

down the person’s picture pixel location and store it in the database. Because each picture has its

own unique pixel location, it is relatively easy for the algorithm to realize who is who based on

previous pictures located in the database. Of course the algorithm can make mistake from time to

time, but the more you correct it, the better it will be at identifying your friends and

automatically tag them for you when you upload. However, the Facebook tag algorithm is built

with artificial intelligence in mind. This means that the tagging algorithm is capable of learning

based on our input and make better classifications in the future.

We will not focus on the AI aspect, but rather on the simplest way to make an image

classification algorithm. The only difference between our model and Facebook’s will be that ours

cannot learn from it’s mistake unless we fix it. However, for a simple neural network project, it

is sufficient.

Since it is unethical to use pictures of people, we will be using animals to create our model. My

friend

The first step is to gather the data. This in my opinion, will be the most difficult and annoying

aspect of the project. Remember that the data must be labeled. Thankfully, Kaggle has labeled

images that we can easily download. The set we worked with can be found here: animal-10

dataset. If your dataset is not labeled, this can be be time consuming as you would have to

manually create new labels for each categories of images. Another method is to create new labels

and only move 100 pictures into their proper labels, and create a classifier like the one we will

https://www.kaggle.com/alessiocorrado99/animals10
https://www.kaggle.com/alessiocorrado99/animals10

20

and have that machine classify the images. This will lead to errors in classification, so you may

want to check manually after each run, and this is where it becomes time consuming.

Now that we have our datasets stored safely in our computer or cloud, let’s make sure we have a

training data set, a validation data set, and a testing data set. Training data set would contain 85–

90% of the total labeled data. This data would be used to train our machine about the different

types of images we have. Validation data set would contain 5–10% of the total labeled data. This

will test how well our machine performs against known labeled data. The testing data set would

contain the rest of the data in an unlabeled format. This testing data will be used to test how well

our machine can classify data it has never seen. The testing data can also just contain images

from Google that you have downloaded, as long as it make sense to the topic you are classifying.

Let’s import all the necessary libraries first:

import pandas as pd

import numpy as np

import itertools

import keras

from sklearn import metrics

from sklearn.metrics import confusion_matrix

from keras.preprocessing.image import ImageDataGenerator,

img_to_array, load_img

from keras.models import Sequential

from keras import optimizers

from keras.preprocessing import image

from keras.layers import Dropout, Flatten, Dense

from keras import applications

from keras.utils.np_utils import to_categorical

21

import matplotlib.pyplot as plt

import matplotlib.image as mpimg

%matplotlib inline

import math

import datetime

import time

Defining Dimensions and locating images:

#Default dimensions we found online

img_width, img_height = 224, 224

#Create a bottleneck file

top_model_weights_path = ‘bottleneck_fc_model.h5’# loading up our

datasets

train_data_dir = ‘data/train’

validation_data_dir = ‘data/validation’

test_data_dir = ‘data/test’

number of epochs to train top model

epochs = 7 #this has been changed after multiple model run

batch size used by flow_from_directory and predict_generator

batch_size = 50

In this step, we are defining the dimensions of the image. Depending on your image size, you can

change it but we found best that 224, 224 works best. Then we created a bottleneck file system.

This will be used to convert all image pixels in to their number (numpy array) correspondent and

store it in our storage system. Once we run this, it will take from half hours to several hours

22

depending on the numbers of classifications and how many images per classifications. Then we

simply tell our program where each images are located in our storage so the machine knows

where is what. Finally, we define the epoch and batch sizes for our machine. For neural

networks, this is a key step. We found that this set of pairing was optimal for our machine

learning models but again, depending on the number of images that needs to be adjusted.

Importing transfer learning model VGG16:

#Loading vgc16 model

vgg16 = applications.VGG16(include_top=False,

weights=’imagenet’)datagen = ImageDataGenerator(rescale=1. / 255)

#needed to create the bottleneck .npy files

This is importing the transfer learning aspect of the convolutional neural network. Transfer

learning is handy because it comes with pre-made neural networks and other necessary

components that we would otherwise have to create. There are many transfer learning model. I

particularly like VGG16 as it uses only 11 convolutional layers and pretty easy to work with.

However, if you are working with larger image files, it is best to use more layers, so I

recommend resnet50, which contains 50 convolutional layers.

For our image classifier, we only worked with 6 classifications so using transfer learning on

those images did not take too long, but remember that the more images and classifications, the

longer this next step will take. But thankfully since you only need to convert the image pixels to

numbers only once, you only have to do the next step for each training, validation and testing

only once- unless you have deleted or corrupted the bottleneck file.

Creation of the weights and feature using VGG16:

#__this can take an hour and half to run so only run it once.

#once the npy files have been created, no need to run again.

Convert this cell to a code cell to run.__start =

23

datetime.datetime.now()

generator = datagen.flow_from_directory(

 train_data_dir,

 target_size=(img_width, img_height),

 batch_size=batch_size,

 class_mode=None,

 shuffle=False)

nb_train_samples = len(generator.filenames)

num_classes = len(generator.class_indices)

predict_size_train = int(math.ceil(nb_train_samples / batch_size))

bottleneck_features_train = vgg16.predict_generator(generator,

predict_size_train)

np.save(‘bottleneck_features_train.npy’, bottleneck_features_train)

end= datetime.datetime.now()

elapsed= end-start

print (‘Time: ‘, elapsed)

Since we are making a simple image classifier, there is no need to change the default settings.

Just follow the above steps for the training, validation, and testing directory we created above.

However, you can add different features such as image rotation, transformation, reflection and

distortion.

24

Once the files have been converted and saved to the bottleneck file, we load them and prepare

them for our convolutional neural network. This is also a good way to make sure all your data

have been loaded into bottleneck file. Remember to repeat this step for validation and testing set

as well.

Creating a bottleneck file for the training data. (Same step for validation and testing):

#training data

generator_top = datagen.flow_from_directory(

 train_data_dir,

 target_size=(img_width, img_height),

 batch_size=batch_size,

 class_mode=’categorical’,

 shuffle=False)

nb_train_samples = len(generator_top.filenames)

num_classes = len(generator_top.class_indices)

load the bottleneck features saved earlier

train_data = np.load(‘bottleneck_features_train.npy’)

get the class labels for the training data, in the original order

train_labels = generator_top.classes

convert the training labels to categorical vectors

train_labels = to_categorical(train_labels,

num_classes=num_classes)

25

Creating our Convolutional Neural Network code:

#This is the best model we found. For additional models, check out

I_notebook.ipynbstart = datetime.datetime.now()

model = Sequential()

model.add(Flatten(input_shape=train_data.shape[1:]))

model.add(Dense(100, activation=keras.layers.LeakyReLU(alpha=0.3)))

model.add(Dropout(0.5))

model.add(Dense(50, activation=keras.layers.LeakyReLU(alpha=0.3)))

model.add(Dropout(0.3))

model.add(Dense(num_classes,

activation=’softmax’))model.compile(loss=’categorical_crossentropy’

,

 optimizer=optimizers.RMSprop(lr=1e-4),

 metrics=[‘acc’])history = model.fit(train_data, train_labels,

 epochs=7,

 batch_size=batch_size,

 validation_data=(validation_data,

validation_labels))model.save_weights(top_model_weights_path)(eval_

loss, eval_accuracy) = model.evaluate(

 validation_data, validation_labels, batch_size=batch_size,

verbose=1)print(“[INFO] accuracy: {:.2f}%”.format(eval_accuracy *

100))

print(“[INFO] Loss: {}”.format(eval_loss))

end= datetime.datetime.now()

26

elapsed= end-start

print (‘Time: ‘, elapsed)

Now we create our model. First step is to initialize the model with Sequential(). After that we

flatten our data and add our additional 3 (or more) hidden layers. This step is fully customizable

to what you want. We made several different models with different drop out, hidden layers and

activation. But since this is a labeled categorical classification, the final activation must always

be softmax. It is also best for loss to be categorical crossenthropy but everything else in

model.compile can be changed. Then after we have created and compiled our model, we fit our

training and validation data to it with the specifications we mentioned earlier. Finally, we create

an evaluation step, to check for the accuracy of our model training set versus validation set.

This is our model now training the data and then validating it. An epoch is how many times the

model trains on our whole data set. Batch can be explained as taking in small amounts, train and

take some more. Each epoch must finish all batch before moving to the next epoch. Training

with too little epoch can lead to underfitting the data and too many will lead to overfitting the

data. You also want a loss that is as low as possible. The pictures below will show the accuracy

and loss of our data set

27

Code for visualization of the Accuracy and Loss:

#Graphing our training and validation

acc = history.history[‘acc’]

val_acc = history.history[‘val_acc’]

loss = history.history[‘loss’]

val_loss = history.history[‘val_loss’]

epochs = range(len(acc))

plt.plot(epochs, acc, ‘r’, label=’Training acc’)

plt.plot(epochs, val_acc, ‘b’, label=’Validation acc’)

plt.title(‘Training and validation accuracy’)

plt.ylabel(‘accuracy’)

plt.xlabel(‘epoch’)

plt.legend()

plt.figure()

plt.plot(epochs, loss, ‘r’, label=’Training loss’)

plt.plot(epochs, val_loss, ‘b’, label=’Validation loss’)

plt.title(‘Training and validation loss’)

plt.ylabel(‘loss’)

plt.xlabel(‘epoch’)

plt.legend()

plt.show()

28

29

Even though according to this graph, it showed that epoch 3 was the best as that was the point of

intersection between accuracy and loss, when we ran the model on 3 epoch, it underperformed.

So this graph is not an absolute indicator of how many epoch to run on your model.

This picture below shows how well the machine we just made can predict against unseen data.

Notice it says that its testing on test_data. Accuracy is the second number. However, this is not

the only method of checking how well our machines performed

There are two great methods to see how well your machine can predict or classify. One of them

is the classification metrics and the other is the confusion matrix.

To use classification metrics, we had to convert our testing data into a different numpy format,

numpy array, to read. That is all the first line of code is doing. The second cell block takes in the

converted code and run it through the built in classification metrics to give us a neat result.

Please note that unless you manually label your classes here, you will get 0–5 as the classes

instead of the animals. The important factors here are precision and f1-score. The higher the

30

score the better your model is. Here is a great blog on medium that explains what each of those

are.

Now to make a confusion matrix. There are lots on online tutorial on how to make great

confusion matrix. Ours is a variation of some we found online

#Since our data is in dummy format we put the numpy array into a

dataframe and call idxmax axis=1 to return the column

label of the maximum value thus creating a categorical variable

#Basically, flipping a dummy variable back to it’s categorical

variablecategorical_test_labels =

pd.DataFrame(test_labels).idxmax(axis=1)

categorical_preds =

pd.DataFrame(preds).idxmax(axis=1)confusion_matrix=

confusion_matrix(categorical_test_labels, categorical_preds)

#To get better visual of the confusion matrix:def

plot_confusion_matrix(cm, classes,

 normalize=False,

 title=’Confusion matrix’,

 cmap=plt.cm.Blues):

#Add Normalization Option

 ‘’’prints pretty confusion metric with normalization option ‘’’

 if normalize:

 cm = cm.astype(‘float’) / cm.sum(axis=1)[:, np.newaxis]

 print(“Normalized confusion matrix”)

 else:

https://towardsdatascience.com/accuracy-precision-recall-or-f1-331fb37c5cb9

31

 print(‘Confusion matrix, without normalization’)

print(cm)

 plt.imshow(cm, interpolation=’nearest’, cmap=cmap)

 plt.title(title)

 plt.colorbar()

 tick_marks = np.arange(len(classes))

 plt.xticks(tick_marks, classes, rotation=45)

 plt.yticks(tick_marks, classes)

 fmt = ‘.2f’ if normalize else ‘d’

 thresh = cm.max() / 2.

 for i, j in itertools.product(range(cm.shape[0]),

range(cm.shape[1])):

 plt.text(j, i, format(cm[i, j], fmt),

horizontalalignment=”center”, color=”white” if cm[i, j] > thresh

else “black”)

 plt.tight_layout()

 plt.ylabel(‘True label’)

 plt.xlabel(‘Predicted label’)

The numpy array we created before is placed inside a dataframe. Confusion matrix works best on

dataframes. The 3rd cell block with multiple iterative codes is purely for color visuals. The only

important code functionality there would be the ‘if normalize’ line as it standardizes the data.

32

As we can see in our standardized data, our machine is pretty good at classifying which animal is

what. Chickens were misclassified as butterflies most likely due to the many different types of

pattern on butterflies. In addition, butterflies was also misclassified as spiders because of

probably the same reason. Both elephants and horses are rather big animals, so their pixel

distribution may have been similar.

The final phase is testing on images. The cell blocks below will accomplish that:

def read_image(file_path):

 print(“[INFO] loading and preprocessing image…”)

 image = load_img(file_path, target_size=(224, 224))

 image = img_to_array(image)

 image = np.expand_dims(image, axis=0)

 image /= 255.

 return imagedef test_single_image(path):

 animals = [‘butterflies’, ‘chickens’, ‘elephants’, ‘horses’,

‘spiders’, ‘squirells’]

33

 images = read_image(path)

 time.sleep(.5)

 bt_prediction = vgg16.predict(images)

 preds = model.predict_proba(bt_prediction)

 for idx, animal, x in zip(range(0,6), animals , preds[0]):

 print(“ID: {}, Label: {} {}%”.format(idx, animal, round(x*100,2)

))

 print(‘Final Decision:’)

 time.sleep(.5)

 for x in range(3):

 print(‘.’*(x+1))

 time.sleep(.2)

 class_predicted = model.predict_classes(bt_prediction)

 class_dictionary = generator_top.class_indices

 inv_map = {v: k for k, v in class_dictionary.items()}

 print(“ID: {}, Label: {}”.format(class_predicted[0],

inv_map[class_predicted[0]]))

 return load_img(path)path =

‘data/test/yourpicturename’test_single_image(path)

The first def function is letting our machine know that it has to load the image, change the size

and convert it to an array. Second def function is using transfer learning’s prediction model and

an iterative function to help predict the image properly. The path is where we define the image

location and finally the test_single_image cell block will print out the final result, depending on

the prediction from the second cell block.

34

Chapter-4

Results And Discussions

As a result we build a deep convolutional neural network for image classification. Despite of

using only a subset of the images an accuracy of 90.10% was obtained. If the whole dataset was

being used the accuracy would have been even better.

This project shows a classification process using convolutional neural networks which is a deep

learning architecture. Although there are many algorithms that perform image classification,

convolutional neural network is considered to be a standard image classification technique.

Convolutional neural network uses GPU technology because of large number of layers which

increases the number of computers. Therefore, in this project, we presented a very small

convolutional neural network which can work on CPU as well. This network classifies the

images into one the two predefined classes say Cat and Dog. This same network can be used for

other datasets as well.

Convolutional neural network for image classification is implemented using python language in

ubuntu operating system. Tensorflow which is an open source library focused on machine

learning applications is used. OpenCV which is an open source library for computer vision is

used to read the images from the dataset. Python is a high level, interpreted, object oriented

scripting language that is easy to learn, read and maintain. It supports both functional and object

oriented programming. It can be easily integrated with other programming languages. One of the

reasons why python is mostly used for machine learning applications is its syntax. Since the

syntax of python is mathlike, it is easy for programmers to express their ideas mathematically. It

has particular tools that are very helpful in developing machine learning applications.

35

Frameworks, libraries and extensions like NumPy make python to accomplish the tasks easily.

Languages like Java, Ruby need hard coding because of their complexity whereas python is

considered as a toy language because of its simple syntax and many features. Since python can

do a lot things easily, which helps for complex set of machine learning tasks it is considered as a

best language for implementing machine learning tasks.

Tensorflow is an open source software library developed by google brain team for numerical

computations using data flow graphs. It is a symbolic math library used for machine learning

applications such as deep neural networks. The nodes of the graph represent operations whereas

the edges of the graph represent multidimensional data arrays. Tensorflow provides flexibility to

deploy the computation on more than one GPU or CPU.

The subset of Kaggle dog-cat dataset is used as training data. 2,000 images are used as training

data and 400 images are used as testing data. The output of training phase is a classifier which

can classify the given input. image as either cat or dog. If the given input image is dog then the

output shows probability of dog as one or greater than probability of cat. Similarly, if input

image is cat then the output shows that probability of cat as one or greater than probability of

dog. Figure 4 shows the training of the dataset. Figure 5 shows the input image which is a cat

and figure 6 shows the output of the classifier as “Given image is a cat”. Similarly Figure 7

shows the input image which is a dog and Figure 8 shows the output of the classifier as “Given

image is a dog”.

36

Figure 4: Training of the convolutional neural network

Figure 5: Input image of Cat

37

Figure 6: Output of classifier when input is cat

Figure 7: Input image of Dog

38

Figure 8: Output of the classifier when the image is dog

39

Chapter-5

Conclusion And Future Scope

5.1 Conclusion

In this report, I discussed how to train a CNN model to classify Dogs vs. Cats images. I trained

the models from scratch at first and then using Transfer Learning, I got over 95% accuracy.

Meanwhile, two ways of the model outputs visualization have been demonstrated, which can

help us gain more insight into how the model works. One of the original tasks for this project is

applying the CNN model to detect whether animals or pets are sick or not? In real life, it may be

difficult to know if subtle changes in the animals indicate a health problem. Using the CNN

model, I may be able to keep track of animals’ behavior in order to prevent extreme illnesses.

The discharge from eyes or nose may indicate a possible upper respiratory infection; or skin

irritation or hair loss may be a sign of allergies, external parasites, or another skin condition.

Because of the time limitations, I did not collect enough dataset for this kind of study. For the

future works, I will keep collecting datasets for a month or a year in order to find the correlation

between illnesses and animal behavior.

40

5.2 Future Scope

Through the deep learning model, I will be able to predict the probability of a symptom for every

animal picture or video. Future work might also include robotic systems that monitor the state of

the household animals, adjust food distribution depending on image readings or alert when the

animals from any kind of illness. Moreover, different types of models can be employed to see,

which one fits the needs the most. The project shouldn’t be limited to VGG models.

41

Refrences

[1] Tianmei Guo, Jiwen Dong ,Henjian Li'Yunxing Gao, “Simple Convolutional Neural

Network on Image Classification” , IEEE 2nd International Conference on Big Data

Analytics at Beijing, China on 10-12 March 2017.

[2] Emine CENGIL , Ahmet ÇINAR , Zafer GÜLER, “A GPU-Based Convolutional Neural

Network Approach for Image Classification”, International Conference on Artificial

Intelligence and Data Processing Symposium at Malatya, Turkey on 16- 17 September

2017.

[3] Travis Williams, Robert Li, “Advanced Image Classification using Wavelets and

Convolutional Neural Networks”, 15th International Conference on Machine Learning

and Applications at Anaheim, CA, USA on 18-20 December 2016.

[4] Sayali Jog , Mrudul Dixit, “Supervised Classification of Satellite Images”, Conference on

Advances on signal processing at Pune, India on 9-11 June 2016.

[5] Mart´in Abadi et.al. TensorFlow: Large-scale machine learning on heterogeneous

systems, 2015. Software available from tensorflow.org.

[6] Tianmei Guo, Jiwen Dong ,Henjian Li'Yunxing Gao, “Simple Convolutional Neural

Network on Image Classification” , IEEE 2nd International Conference on Big Data

Analytics at Beijing, China on 10-12 March 2017.

[7] Emine CENGIL , Ahmet ÇINAR , Zafer GÜLER, “A GPU-Based Convolutional Neural

Network Approach for Image Classification”, International Conference on Artificial

Intelligence and Data Processing Symposium at Malatya, Turkey on 16- 17 September

42

2017.

[8] Travis Williams, Robert Li, “Advanced Image Classification using Wavelets and

Convolutional Neural Networks”, 15th International Conference on Machine Learning

and Applications at Anaheim, CA, USA on 18-20 December 2016.

[9] Sayali Jog , Mrudul Dixit, “Supervised Classification of Satellite Images”, Conference on

Advances on signal processing at Pune, India on 9-11 June 2016.

[10] Mart´in Abadi et.al. TensorFlow: Large-scale machine learning on heterogeneous

systems, 2015. Software available from tensorflow.org.

	CANDIDATE’S DECLARATION

