
 A Project Report

 on

 Web Scraping using python

Submitted in partial fulfilment of the

requirement for the award of the degree of

Bachelors of Technology in Computer Science and

Engineering

Under The Supervision

of MR. Arjun KP

Assistant Professor

Department of Computer Science and Engineering

Submitted by

18SCSE1010197 - Devanshu

18SCSE1010050 – Abhishek Mishra

SCHOOL OF COMPUTING SCIENCE
AND ENGINEERING,

GALGOTIAS UNIVERSITY, GREATER NOIDA

CANDIDATE’S DECLARATION

I/We hereby certify that the work which is being presented in the thesis/project/dissertation,

entitled “ Web Scraping using python ” in partial fulfilment of the requirements for the

award of the Bachelors of Technology in Computer Science and Engineering submitted in

the School of Computing Science and Engineering of Galgotias University, Greater Noida, is

an original work carried out during the period of July-2021 to December-2021, under the

supervision of Mr. Arjun KP , Assistant Professor , Department of Computer Science

and Engineering of School of Computing Science and Engineering , Galgotias University,

Greater Noida

The matter presented in the thesis/project/dissertation has not been submitted by me/us for

the award of any other degree of this or any other places.

18SCSE1010197 -Devanshu

18SCSE1010050-AbhishekMishra

This is to certify that the above statement made by the candidates is correct to the best of my

knowledge.

Supervisor

(Mr. Arjun KP, Assistant Professor)

 CERTIFICATE

The Final Thesis/Project/ Dissertation Viva-Voce examination of 18SCSE1010197 - Devanshu,

18SCSE1010050 – Abhishek Mishra has been held on and

his/her work is recommended for the award of Bachelors of Technology in Computer Science

and Engineering.

Signature of Examiner(s) Signature of Supervisor(s)

Signature of Project Coordinator Signature of Dean

Date:

Place:

 ACKNOWLEDGEMENT

The feeling of gratitude when we expressed a holy acknowledgement and it’s with deep sense of

gratitude that we acknowledge the able guidance.

We express our grateful thanks to Mr. Arjun K P, Associate professor, Department of Computer

Science and Engineering, Galgotias University for providing us an opportunity for the research

report on “ Web Scraping using python ” and for his

keen interest and the encouragement, which was required for the fulfilment of our capstone

project report. We would also like to thank him for giving us valuable guidance at all levels, help

and suggestions, which prove to be valuable for preparation of the report.

Finally, I would also like to thank all our friends for their cooperation and interest, which was

necessary for completing our project report.

Date:

 Devanshu & Abhishek Mishra

School of Computing Science &

Engineering, Galgotias University, Greater

Noida, Uttar Pradesh

ABSTRACT

The purpose of this thesis is to evaluate state of the art web scraping tools.

To support the process, an evaluation framework to compare web scraping

tools is developed and utilised, based on previous work and established

software comparison metrics. Twelve tools from different programming

languages are initially considered. These twelve tools are then reduced to six,

based on factors such as similarity and popularity. Nightmare.js, Puppeteer,

Selenium,Scrapy, HtmlUnit and rvest are kept and then evaluated. The

evaluation framework includes performance, features, reliability and ease

of use. Performance is measured in terms of run time, CPU usage and

memory usage. The feature evaluation is based on implementing and

completing tasks, with each feature in mind. In order to reason about

reliability, statistics regarding code quality and GitHub repository statistics

are used. The ease of use evaluation considers the installation process, official

tutorials and the documentation.

While all tools are useful and viable, results showed that Puppeteer is the

most complete tool. It had the best ease of use and feature results, while

staying among the top in terms of performance and reliability. If speed is

of the essence, HtmlUnit is the fastest. It does however use the most overall

resources. Selenium with Java is the slowest and uses the most amount of memory,

but is the second best performer in terms of features. Selenium with Python uses

the least amount of memory and the second least CPU power. If JavaScript pages

are to be accessed, Nightmare.js, Puppeteer, Selenium and HtmlUnit can be used.

Table of Contents

Title Page No.
Candidates Declaration I
Certificate II
Acknowledgement III
Abstract IV
Table of Contents V
List of Table VII
List of Figures VIII
Acronyms IX
Chapter 1: Getting Started with Scraping

Introduction
Setting up a Python development environment

Getting ready

How to do it...

Scraping Python.org with Requests and Beautiful Soup
Getting ready...

How to do it...

How it works...

Scraping Python.org in urllib3 and Beautiful Soup
Getting ready...

How to do it...

How it works

There's more...
Scraping Python.org with Scrapy
Getting ready...

How to do it...

How it works
Scraping Python.org with Selenium and PhantomJS
Getting ready

How to do it...

How it works

There's more...

Chapter 2: Data Acquisition and Extraction

Introduction
How to parse websites and navigate the DOM using BeautifulSoup
Getting ready

How to do it...

How it works

 There's more...

Searching the DOM with Beautiful Soup's find methods
Getting ready

Chapter 3: Processing Data

Introduction
Working with CSV and JSON data
Getting ready

How to do it

How it works

There's more...
Storing data using AWS S3
Getting ready

How to do it

How it works

There's more...

 Chapter 4: Creating a Simple Data API

 Introduction

 Creating a REST API with Flask-RESTful

 Getting ready

 How to do it

 How it works

 There's more...

Chapter 05: Creating Scraper Microservices with Docker Introduction

 Installing Docker

 Getting ready

 How to do it

 Getting ready

 How to do it

 Running a Docker container(RabbitMQ)

 Getting ready

 Creating and running an Elasticsearch container

 There's mor+e...

 Stopping/restarting a container and removing the image

 Creating a generic microservice with Nameko

 Creating a scraping microservice

Chapter 06: Making the Scraper as a Service Real

 Creating and configuring an Elastic Cloud trial account

 Accessing the Elastic Cloud cluster with curl

 Performing an Elasticsearch query with the Python API

 Modifying the API to search for jobs by skill

List of Table

S.No. Caption Page No.

5.1 Unit Testing 29

5.2 Integration Testing 30

5.3 System Testing 31

List of Figures/Images

S.No. Title Page No.

2.1 Existing Projects 10

4.1 Use Case Diagram 24

4.2 Activity Diagram 25

4.3 Class Diagram 26

4.4 State Chart Diagram 27

6.1 Home Page Screen 32

6.2 Title Suggestions 33

6.3 Movie Details 34

6.4 Movie Cast 34

6.5 Actor Details 35

6.6 Recommended Movies 35

6.7 Reviews with Sentiments 36

Acronyms

B.Tech. Bachelor of Technology

R.S. Recommendation Systems

NLP Natural Language Processing

API Application Programming Interface

C.F. Collaborative Filtering

SCSE School of Computing Science and Engineering

11

CHAPTER-1

1.1 General Introduction

The act of going through web pages and extracting selected text or
images. An excellent tool for getting new data or enriching your current
data.
Usually the first step of a data science project which requires a lot of data.
An alternative to API calls for data retrieval. Meaning, if you don’t have an
API or if it’s limited in some way.
Web scraping is not initially developed for research of social science, as a
effect, analysts using this method may incorporate unknown
suppositions into their own, because web scraping will not usually
require direct contact among the analyst and those who were formerly
collecting the information and inserting it online, data analysis issues
may simply arise. Research teams using web scraping techniques as
an information gathering method still have to be acquainted with the
accuracy and correct analysis of the details retrieved from the website.
One final problem analysts must address is the potential effect of web
scraping on a publication's functionality, as certain web scraping actions
unintentionally overpowered and close down a webpage. A web scraper
which is appropriately intended and executed, could assist analysts prevail
over obstacle to data access, gather online information more
resourcefully, and eventually respond investigation queries that cannot be
answered by conventional means of assortment and examination. The
below figure 1 shows the overview of how web scraping is done.

 Introduction

33

1.2 Problem Definition

This paper depends on R.S. that prescribes various things to users. This system

will prescribe movies to users. This system will give more. exact outcomes when

contrasted with the current systems. The current system chips away at individual

users' appraising. This might be some of the time futile for the users who have

various preferences from the recommendations shown by the system as each client

might have various preferences. This system ascertains the likenesses between

various users and then prescribes movies to them according to the evaluations given

by the various users of comparable preferences. This will give an exact

recommendation to the client. This is an electronic just an android system where

there is a film web administration which offers types of assistance to users to rate

movies, see recommendations, put remarks and see comparable movies. There are

systems that manage the self-recommendation rather than: considering the

preferences of users, we thereby assemble a system that admits the user's wishes and

then suggest a watch-rundown of movies which depends on their chosen kind. And

along these lines makes the watch more ideal and pleasant to the client. Given a bunch

of users with their past appraisals for a bunch of movies, would we be able to foresee

the rating they will allocate to a film they have not recently evaluated? Ex. Which

film would you like given that you have seen "The Avengers", "Avenger Age of

Ultron", "Avengers Endgame'' and users who saw these movies also liked "Avengers

Infinity war"?

1.3 Problem Purpose

R.S. is data filtering devices that try to foresee the rating for users and things,

dominatingly from huge information to suggest their preferences. Film R.S. gives a

component to help users in ordering users with comparable interests. The motivation

behind a R.S. essentially is to look for: content that would be fascinating to a person.

Additionally, it includes various elements to make customised arrangements of

valuable and intriguing substance explicit to

77

.

CHAPTER-2

Literature Survey

2.1 Literature Review
1 Renita Crystal Pereira et. al., provided web scraping summary and

techniques and tools that face several complexities as data extraction isn't that
simple. These strategies guarantee
2 that the data collected is correct, consistent and has better integrity,

because there is a large amount of data present which is hard to handle and retain.
Although there are a few problems faced by functional techniques that can be such
as the elevated amount of web scraping be able to cause rigid harm to the
websites. The measurement level of the web scraper will vary with the
measurement units of the original source file, making it very difficult to interpret the
data.

3 Using social networking sites and internet is amplifying day by day like

facebook, twitter,linked-in and some other, user knowledge is also high in the
internet available from everywhere. This as well offers hackers an advantage in
stealing information. Where the

4 concept of rising income comes into being, social networking is important

from a view of business point. Like with online shopping, it will also assist consumers
in getting fast shopping and also save time. On the other hand, there is advantage in
supporting the

5 company and profiting from it.
6 Kaushal Parikh et. al., [2] proposed a web scraping detection with the

help of machine learning It is valuable for research dependent companies. Web
scraping has forever been a difficult preventive attack. Every time a company places
its data on internet, it is probable that it could be copied and pasted and then utilized
in the other point of view without the corporation knowing itself about it. A lot of
protection mechanisms have already been in place but some of them continue to be
ignored. The significance of machine learning

7 therefore steps in. Machine learning is quite effective on pattern
detection. Therefore if we succeed in making the machine understand a cadence of

intruder then it will avoid these types
8 of threats from occurring.

88

Web scraping solutions are aimed primarily at translating complex data obtained
through networks into structured data that could be stored and examined in a central
database. Web scraping solutions thus have a significant impact on the result of the
cause.

Sameer Padghan et. al., [3] projected an approach where data
extraction is done from web pages in assistance with web scraping easily. This
method would enable the data to be scrapped from numerous websites that will
minimize human intervention, save time
and also enhance the quality of data relevance. It will also support the user in
gathering data from the site and to save the data to their intent and use it as the
individual wishes. The scraped
information may be used for database development or for research purposes and also
for different similar activities. The scraping used
would increase significantly and will often encroach on the framework to obtain the
details. However the scraping can be stopped by
using effective and safe-web scraping methods.

Web scraping is the process of using bots to extract content and data from a website.
Unlike screen scraping, which only copies pixels displayed onscreen, web scraping
extracts underlying HTML code and, with it, data stored in a database. The scraper
can then replicate entire website content elsewhere.
Web scraping is used in a variety of digital businesses that rely on data harvesting.

Legitimate use cases include:
Search engine bots crawling a site, analysing its content and then ranking it. Price

comparison sites deploying bots to auto-fetch prices and
product descriptions for allied seller websites.

Market research companies using scrapers to pull data from forums and social media
(e.g., for sentiment analysis).

Since all scraping bots have the same purpose—to access site data—it can be difficult
to distinguish between legitimate and malicious bots.
That said, several key differences help distinguish between the two.

Legitimate bots are identified with the organization for which they scrape. For example,

Googlebot identifies itself in its HTTP header as belonging to Google. Malicious bots,

conversely, impersonate legitimate traffic by

creating a false HTTP user agent.

1100

 Data Acquisition and Extraction

How to parse websites and navigate

the DOM using BeautifulSoup

When the browser displays a web page it builds a model of the content of the page in a representation

known as the document object model (DOM). The DOM is a hierarchical representation of the page's

entire content, as well as structural information, style information, scripts, and links to other content.

It is critical to understand this structure to be able to effectively scrape data from web

pages. We will look at an example web page, its DOM, and examine how to navigate the

DOM with Beautiful Soup.

Getting ready

We will use a small web site that is included in the www folder of the sample code. To follow along,

start a web server from within the www folder. This can be done with Python 3 as follows:

www $ python3 -m http.server 8080

Serving HTTP on 0.0.0.0 port 8080 (http://0.0.0.0:8080/) ...

The DOM of a web page can be examined in Chrome by right-clicking the page

and selecting Inspect. This opens the Chrome Developer Tools. Open a browser

page to http://localhost:8080/planets.html. Within chrome you can right click and

select 'inspect' to open developer tools (other browsers have similar tools).

1100

1111

How it works

beautiful Soup converts the HTML from the page into its own internal representation. This model has an identical

representation to the DOM that would be created by a browser. But Beautiful Soup also provides many powerful

capabilities for navigating the elements in the DOM, such as what we have seen when using the tag names as

properties. These are great for finding things when we know a fixed path through the HTML with the tag names.

Querying data with XPath and CSS selectors

CSS selectors are patterns used for selecting elements and are often used to define the elements that styles should

be applied to. They can also be used with lxml to select nodes in the DOM. CSS selectors are commonly used as

they are more compact than XPath and generally can be more reusable in code. Examples of common selectors

which may be used are as follows:

Scraping Challenges and Solution

Retrying failed page

downloads Supporting page

redirects

Waiting for content to be available in Selenium Limiting crawling to a single domain Processing

infinitely scrolling pages Controlling the depth of a crawl

Controlling the length of a crawl

Handling paginated websites

Handling forms and form-based authorization Handling basic authorization Preventing bans by

scraping via proxies Randomizing user agents

Caching responses

Retrying failed page downloads

Failed page requests can be easily handled by Scrapy using retry middleware. When installed, Scrapy

will attempt retries when receiving the following HTTP error codes:

[500, 502, 503, 504, 408]

1111

Supporting page redirects

Page redirects in Scrapy are handled using redirect middleware, which is enabled by

default. The process can be further configured using the following parameters:

REDIRECT_ENABLED: (True/False - default is True)

REDIRECT_MAX_TIMES: (The maximum number of redirections to follow for any

single request - default is 20)

How it works

The spider is defined as the following:

class Spider(scrapy.spiders.SitemapSpider):

name = 'spider'

sitemap_urls =

['https://www.nasa.gov/sitemap.xml'] def

parse(self, response):

print("Parsing: ", response)

print (response.request.meta.get('redirect_urls'))

This is identical to our previous NASA sitemap based crawler, with the addition of one

line printing the redirect_urls. In any call to parse, this metadata will contain all

redirects

that occurred to get to this page.

The crawling process is configured with the

following code: process = CrawlerProcess({

'LOG_LEVEL': 'DEBUG',

'DOWNLOADER_MIDDLEWARES':

{

"scrapy.downloadermiddlewares.redirect.RedirectMiddleware": 500 },

'REDIRECT_ENABLED': True,

'REDIRECT_MAX_TIMES': 2

http://www.nasa.gov/sitemap.xml%27

1122

Waiting for content to be available in

Selenium

A common problem with dynamic web pages is that even after the whole page has

loaded, and hence the get() method in Selenium has returned, there still may be content

that we need to access later as there are outstanding Ajax requests from the page that

are still pending completion. An example of this is needing to click a button, but the

button not being enabled until all data has been loaded asyncronously to the page after

loading.

Take the following page as an example: http:/ / the- internet. herokuapp. com/

dynamic_ loading/ 2. This page finishes loading very quickly and presents us with a

Start button:

1144

How it works

Let us break down the explanation:

1. We start by importing the required items from

Selenium: from selenium import webdriver

from selenium.webdriver.support import ui

2. Now we load the driver and the page:

driver = webdriver.PhantomJS()

driver.get("http://the-internet.herokuapp.com/dynamic_loading/2")

3. With the page loaded, we can retrieve the button:

button =

driver.find_element_by_xpath("//*/div[@id='start']/button")

4. And then we can click the button:

button.click()

print("clicked")

5. Next we create a WebDriverWait object:

wait = ui.WebDriverWait(driver, 10)

6. With this object, we can request Selenium's UI wait for certain events. This

also sets a maximum wait of 10 seconds. Now using this, we can wait until we

meet a criterion; that an element is identifiable using the following XPath:

wait.until(lambda driver:

driver.find_element_by_xpath("//*/div[@id='finish']"))

7. When this completes, we can retrieve the h4 element and get its enclosing

text: finish_element=driver.find_element_by_xpath("//*/div[@id='finish']/

h4")

print(finish_element.text)

http://the-internet.herokuapp.com/dynamic_loading/2

1166

Handling forms and forms-based

authorization

We are often required to log into a site before we can crawl its content. This is usually done through a

form where we enter a user name and password, press Enter, and then granted access to previously

hidden content. This type of form authentication is often called cookie authorization, as when we

authorize, the server creates a cookie that it can use to verify that you have signed in. Scrapy respects

these cookies, so all we need to do is somehow automate the form during our crawl.

We will crawl a page in the containers web site at the following URL:

http://localhost:5001/home/secured. On this page, and links from that page, there

is content we would like to scrape. However, this page is blocked by a login. When opening the page

in a browser, we are presented with the following login form, where we can enter darkhelmet as the

user name and vespa as the password

Upon pressing Enter we are authenticated and taken to our originally desired page. There's not a

great deal of content there, but the message is enough to verify that we have logged in, and our

scraper knows that too.

1177

How to do it

We proceed with the recipe as follows:

1. If you examine the HTML for the sign-in page, you will have noticed

the following form code:

<form action="/Account/Login" method="post"><div>

<label for="Username">Username</label>

<input type="text" id="Username" name="Username" value="" />

<span class="field-validation-valid" data-valmsg-

for="Username" data-valmsg-replace="true"></div>

<div>

<label for="Password">Password</label>

<input type="password" id="Password" name="Password" />

<span class="field-validation-valid" data-valmsg-

for="Password" data-valmsg-replace="true">

</div>

<input name="submit" type="submit" value="Login"/>

<input name=" RequestVerificationToken" type="hidden"

value="CfDJ8CqzjGWzUMJKkKCmxuBIgZf3UkeXZnVKBwRV_Wu4qUkprH8b_2jno5-

1 SGSNjFqlFgLie84xI2ZBkhHDzwgUXpz6bbBwER0v_-

fP5iTITiZi2VfyXzLD_beXUp5cgjCS5AtkIayWThJSI36InzBqj2A" /></form>

2. To get the form processors in Scrapy to work, we will need the IDs of the

username and password fields in this form. They are Username and

Password respectively. Now we can create a spider using this information.

This spider is in the script file, 06/09_forms_auth.py. The spider definition

starts with the following:

class Spider(scrapy.Spider):

name = 'spider'

start_urls = ['http://localhost:5001/home/secured']

login_user = 'darkhelmet'

login_pass = 'vespa'

3. We define two fields in the class, login_user and login_pass, to hold

the username we want to use. The crawl will also start at the specified

URL.

4. The parse method is then changed to examine if the page contains a login

form. This is done by using XPath to see if there is an input form of type

password and with an id of Password:

def parse(self, response):

print("Parsing: ",

response)

count_of_password_field

s =

int(float(response.xpath("count(//*/input[@type='password'

and @id='Password'])").extract()[0]))

if count_of_password_fields > 0:

print("Got a password page")

1177

5. If that field is found, we then return a FormRequest to Scrapy, generated

using its from_response method:

return scrapy.FormRequest.from_response(

response,

formdata={'Username': self.login_user,

'Password': self.login_pass},

callback=self.after_login)

1188

Searching, Mining and

Visualizing Data

Geocoding an IP address

Geocoding is the process of converting an address into geographic coordinates. These addresses can be
actual street addresses, which can be geocoded with various tools such as the Google maps geocoding API
(https:/ / developers. google. com/ maps/ documentation/ geocoding/ intro). IP addresses can be, and often
are, geocoded by various applications to determine where computers, and their users, are located. A very
common and valuable use is analyzing web server logs to determine the source of users of your website.
This is possible because an IP address does not only represent an address of the computer in terms of being
able to communicate with that computer, but often can also be converted into an approximate physical
location by looking it up in IP address / location databases.
There are many of these databases available, all of which are maintained by various registrars (such as
ICANN). There are also other tools that can report geographic locations for public IP addresses.
There are a number of free services for IP geolocation. We will examine one that is quite easy to use,
freegeoip.net.

1188

1199

2200

A Python script to demonstrate this is available in 08/01_geocode_address.py. The

is simple and consists of the following:

import json

import

requests

raw_json = requests.get("http://www.freegeoip.net/json/63.153.113.92").text

parsed = json.loads(raw_json)

print(json.dumps(parsed, indent=4,

sort_keys=True)) This has the following output:

{

"city": "Deer Lodge",

"country_code": "US",

"country_name": "United

States", "ip": "63.153.113.92",

"latitude": 46.3797,

"longitude": -112.7202,

"metro_code": 754,

"region_code": "MT",

"region_name": "Montana",

"time_zone":

"America/Denver", "zip_code":

"59722"

}

Note that your output for this IP address may vary, and surely will with

different IP addresses.

Creating a REST API with Flask-RESTful

We start with the creation of a simple REST API using Flask-RESTful. This initial API

will consist of a single method that lets the caller pass an integer value and which returns

a JSON blob. In this recipe, the parameters and their values, as well as the return value,

are not important at this time as we want to first simply get an API up and running using

Flask- RESTful.

Getting ready

Flask is a web microframework that makes creating simple web application

functionality incredibly easy. Flask-RESTful is an extension to Flask which does the

same for making REST APIs just as simple. You can get Flask and read more about it

at flask.pocoo.org.

Flask-RESTful can be read about

at https://flask-restful.readthedocs.io/en/latest/. Flask can be installed into

http://www.freegeoip.net/json/63.153.113.92

2200

your Python environment using pip install flask. and Flask-RESTful can

also be installed with pip install flask-restful.

The remainder of the recipes in the book will be in a subfolder of the

chapter's directory. This is because most of these recipes either require

multiple files to operate, or use the same filename (ie: apy.py).

 How to do it

The initial API is implemented in 09/01/api.py. The API itself and the logic of the API is implemented

in this single file: api.py. The API can be run in two manners, the first of which is by simply

executing the file as a Python script.

The API can then be launched with the following:

When run, you will initially see output similar to the following:

Starting the job listing API

* Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)

* Restarting with stat

Starting the job listing

API

* Debugger is active!

* Debugger pin code: 362-310-034

This program exposes a REST API on 127.0.0.1:5000, and we can make requests for job listings using a

GET request to the path /joblisting/<joblistingid>. We can try this with curl:

curl localhost:5000/joblisting/1

The result of this command will be the following:

{

"YouRequestedJobWithId": "1"

}

And just like that, we have a REST API up and running. Now let's see how it is implemented.

2222

Integrating the REST API with scraping code

In this recipe, we will integrate code that we wrote for scraping and getting a clean job listing from

StackOverflow with our API. This will result in a reusable API that can be used to perform on-demand

scrapes without the client needing any knowledge of the scraping process. Essentially, we will have

created a scraper as a service, a concept we will spend much time with in the remaining recipes of the

book.

Getting ready

The first part of this process is to create a module out of our preexisting code that was written in

Chapter 7, Text Wrangling and Analysis so that we can reuse it. We will reuse this code in several

recipes throughout the remainder of the book. Let's briefly examine the structure and contents of this

module before going and integrating it with the API. The code for the module is in the sojobs (for

StackOverflow Jobs) module in the project's modules folder.

2233

Storing data in Elasticsearch as the result

of a scraping request

In this recipe, we extend our API to save the data we received from the scraper into Elasticsearch. We will

use this later (in the next recipe) to be able to optimize requests by

using the content in Elasticsearch as a cache so that we do not repeat the scraping process

for jobs listings already scraped. Therefore, we can play nice with StackOverflows servers.

Make sure you have Elasticsearch running locally, as the code will

access Elasticsearch at

localhost:9200. There a good quick-start available at https:/ / www. elastic. co/ guide/ en/ elasticsearch/

reference/ current/ _ installation. html, or you can check out the docker Elasticsearch recipe in Chapter 10,

Creating Scraper Microservices with Docker if you'd

like to run it in Docker.

Once installed, you can check proper installation with the following

curl: curl 127.0.0.1:9200?pretty

If installed properly, you will get output similar to the following:

{

"name": "KHhxNlz",

"cluster_name": "elasticsearch",

"cluster_uuid":

"fA1qyp78TB623C8IKXgT4g", "version": {

"number": "6.1.1",

"build_hash":

"bd92e7f",

"build_date": "2017-12-17T20:23:25.338Z",

"build_snapshot": false,

"lucene_version": "7.1.0",

"minimum_wire_compatibility_version": "5.6.0",

http://www/

2244

How to do it

We will make a few small changes to our API code. The code from the previous recipe has

been copied into 09/04/api.py, with the few modifications made.

1. First, we add an import for elasticsearch-py:

from elasticsearch import Elasticsearch.

2. Now we make a quick modification to the get method of the JobListing class

(I've done the same in JobListingSkills, but it's omitted here for brevity):

class JobListing(Resource):

def get(self, job_listing_id):

print("Request for job listing with id: " + job_listing_id)

listing = get_job_listing_info(job_listing_id)

es = Elasticsearch()

es.index(index='joblistings', doc_type='job-listing',

id=job_listing_id, body=listing)

print("Got the following listing as a response: " +

listing)

return listing.

3. The two new lines create an Elasticsearch object, and then insert the resulting

document into ElasticSearch. Before the first time of calling the API, we can see that

there is no content, nor a 'joblistings' index, by using the following curl: curl

localhost:9200/joblistings.

4. Given we just installed Elasticsearch, this will result in the following error.

{"error":{"root_cause":[{"type":"index_not_found_exception","reason ":"no such

index","resource.type":"index_or_alias","resource.id":"joblistings"

,"index_uuid":"_na_","index":"joblistings"}],"type":"index_not_foun

d_exception","reason":"no such

index","resource.type":"index_or_alias","resource.id":"joblistings"

,"index_uuid":"_na_","index":"joblistings"},"status":404}.

5. Now start up the API by using python api.py. Then issue the curl to get the job

listing (curl localhost:5000/joblisting/122517). This will result in

output similar to the previous recipes. The difference now is that this document will

be stored in Elasticsearch.

6. Now reissue the previous curl for the index:

curl localhost:9200/joblistings

2255

7. And now you will get the following result (only the first few lines shown):

{

"joblistings

": {

"aliases":

{},

"mappings

": {

"job-listing": {

"properties": {

"CleanedWords

" { "type":

"text",

"fields": {

"keyword": {

"type":

"keyword",

"ignore_above": 256

},

"ID

": {

"type":

"text",

"fields": {

"keyword": {

"type":

"keyword",

"ignore_above": 256

},

8. The specific document that we just stored can be retrieved by using the

following curl:

curl localhost:9200/joblistings/job-listing/122517

9. Which will give us the following result (again, just the beginning of the

content shown):

{

"_index": "joblistings",

"_type": "job-listing",

"_id": "122517",

"_version": 1,

"found": true,

"_source": {

"ID":

"122517",

"JSON": {

"@context": "http://schema.org",

"@type": "JobPosting",

http://schema.org/

2255

"title": "SpaceX Enterprise Software Engineer, Full

Stack", "skills": [

"c#",

"sql",

"javascri

pt",

"asp.net

",

"angular

js"

],

"description": "<h2>About this job</h2>\r\n<p>Location

options: Paid relocation
Job

type: Permanent
Experience

level:

Mid-Level,

And just like that, with two lines of code, we have the document stored in our

Elasticsearch database. Now let's briefly examine how this worked.

2255

Checking Elasticsearch for a listing before

scraping

Now lets leverage Elasticsearch as a cache by checking to see if we already have stored a

job listing and hence do not need to hit StackOverflow again. We extend the API for

performing a scrape of a job listing to first search Elasticsearch, and if the result is found

there we return that data. Hence, we optimize the process by making Elasticsearch a job

listings cache.

How to do it

We proceed with the recipe as follows:

The code for this recipe is within 09/05/api.py. The JobListing class now has the

following implementation:

class JobListing(Resource):

def get(self, job_listing_id):

print("Request for job listing with id: " + job_listing_id)

es = Elasticsearch()

if (es.exists(index='joblistings', doc_type='job-listing',

id=job_listing_id)):

print('Found the document in ElasticSearch')

doc = es.get(index='joblistings', doc_type='job-listing',

id=job_listing_id)

return doc['_source']

listing = get_job_listing_info(job_listing_id)

es.index(index='joblistings', doc_type='job-listing',

id=job_listing_id, body=listing)

print("Got the following listing as a response: " + listing)

return listing

Before calling the scraper code, the API checks to see if the document already exists in

Elasticsearch. This is performed by the appropriately named 'exists' method, which we

pass the index, doc type and ID we are trying to get.

There's more...

The JobListingSkills API implementation follows a slightly different pattern. The

following is its code:

class JobListingSkills(Resource):

def get(self, job_listing_id):

print("Request for job listing's skills with id: " +

job_listing_id)

es = Elasticsearch()

if (es.exists(index='joblistings', doc_type='job-listing',

id=job_listing_id)):

print('Found the document in ElasticSearch')

doc = es.get(index='joblistings', doc_type='job-listing',

id=job_listing_id)

return doc['_source']['JSON']['skills']

skills = get_job_listing_skills(job_listing_id)

print("Got the following skills as a response: " + skills)

2255

Making the Scraper as a service

Real

In this recipe we will create and configure an Elastic Cloud trial account so that we can use Elasticsearch as a

hosted service. Elastic Cloud is a cloud service offered by the creators of Elasticsearch, and provides a completely

managed implementation of Elasticsearch.

While we have examined putting Elasticsearch in a Docker container, actually

running a container with Elasticsearch within AWS is very difficult due to a

number of memory requirements and other system configurations that are complicated

to get working within ECS. Therefore, for a cloud solution, we will use Elastic Cloud

How to do it

We'll proceed with the recipe as follows:

1. Open your browser and navigate to https:/ / www. elastic. co/ cloud/ as- aservice/signup. You will see

a page similar to the following:

http://www/

2266

1. Enter your email and press the Start Free Trial button. When the email arrives,
verify yourself. You will be taken to a page to create your cluster:

2. I'll be using AWS (not Google) in the Oregon (us-west-2) region in other examples, so I'll pick

both of those for this cluster. You can pick a cloud and region that works for you. You can leave

the other options as it is, and just press create. You will then be presented with your username

and password. Jot those down. The following screenshot gives an idea of how it displays the
username and password:

2277

2288

Connecting to the Elastic Cloud cluster

with Python

Now let's look at how to connect to Elastic Cloud using the Elasticsearch Python library.

Getting ready
The code for this recipe is in the 11/01/elasticcloud_starwars.py script. This

script will scrape Star Wars character data from the swapi.co API/website and put

it into the Elastic Cloud.

How to do it

We proceed with the recipe as follows:

1. Execute the file as a Python script:
$ python elasticcloud_starwars.py

2. This will loop through up to 20 characters and drop them into the sw index

with a document type of people. The code is straightforward (replace the

URL with

yours):
from elasticsearch import

Elasticsearch import requests

import json
if name == ' main ':

es =

Elasticsearch([

"https://elastic:tduhdExunhEWPjSuH73O6yLS@d7c72d3327076cc4daf552

810 3c46a27.us-west-2.aws.found.io:9243"

])
i = 1
while i<20:

r = requests.get('http://swapi.co/api/people/' +

str(i)) if r.status_code is not 200:

print("Got a " + str(r.status_code) + " so stopping")

break

j =

json.loads(r.content)

print(i, j)

#es.index(index='sw', doc_type='people', id=i,

body=json.loads(r.content))

i = i + 1

3. The connection is made using the URL with the username and password

added to it. The data is pulled from swapi.co using a GET request and then

with a call to .index() on the Elasticsearch object. You'll see output similar

to the

http://swapi.co/api/people/%27

3333

 Configuring Docker to authenticate with ECR

In this recipe, we will configure docker to be able to push our containers to the

Elastic Container Repository (ECR).

Getting ready

A key element of Docker is docker container repositories. We have previously used Docker

Hub to pull containers. But we can also push our containers to Docker Hub, or any Dockercompatible

container repository, such as ECR. But this is not without its troubles. The

docker CLI does not naturally know how to authenticate with ECR, so we have to jump through a

few hoops to get it to work.

Make sure that the AWS command line tools are installed. These are required to get Docker

authenticated

to work with ECR. Good instructions are found at https:/ / docs. aws. amazon. com/ cli/ latest/

userguide/

installing. html. Once the install is verified, you will need to configure the CLI to use the account

created

in the previous recipe. This can be done using the aws configure command, which will prompt you for

four items:

$ aws configure

AWS Access Key ID [None]: AKIA ------------------- QKCVQAA

AWS Secret Access Key [None]: KEuSaLgn4dpyXe ---------------------------- VmEKdhV

Default region name [None]: us-west-2

Default output format [None]: json

Swap the keys to be the ones you retrieved earlier, and set your default region and data type.

How to do it

We proceed with the recipe as follows:

1. Execute the following command. This returns a command to authenticate Docker with ECR:

$ aws ecr get-login --no-include-email --region us-west-2 docker

login -u AWS -p

eyJwYXlsb2FkIjoiN3BZVWY4Q2JoZkFwYUNKOUp6c1BkRy80VmRYN0Y2LzQ0

Y2pVNFJ

KZTA5alBrUEdSMHlNUk9TMytsTFVURGtxb3Q5VTZqV0xxNmRCVHJnL1FIb2lG

bEF0dV

ZhNFpEOUkxb1FxUTNwcUluaVhqS1FCZmU2WTRLNlQrbjE4VHdiOEpqbmtwWjJ

Jek8xR

lR2Y2Y5S3NGRlQrbDZhcktUNXZJbjNkb1czVGQ2TXZPUlg5cE5Ea2w4S29vamt6S

E10

Ym8rOW5mLzBvVkRRSDlaY3hqRG45d0FzNVA5Z1BPVUU5OVFrTEZGeENPUHJRZm

lTeHF qaEVPcGo3ZVAGM0WElKdy83bG4wSGMwMERNZWs2R0V4SENiWTRSS

XBUTUNJNThJblV3QUFBSDR3ZkFZSktvWklodmNOQVFjR29HOHdiUUlCQURC

b0Jna3Fo

a2lHOXcwQkJ3RXdIZ1lKWUlaSUFXVURCQUV1TUJFRURQdTFQVXQwRDFkN3c3Ry

s3Z0l

CRUlBN21Xay9EZnNOM3R5MS9iRFdRYlZtZjdOOURST2xhQWFFbTBFQVFndy9

JYlBjTz

hLc0RlNDBCLzhOVnR0YmlFK1FXSDBCaTZmemtCbzNxTkE9IiwidmVyc2lvbiI6IjIiL

CJ0eXBlIjoiREFUQV9LRVkiLCJleHBpcmF0aW9uIjoxNTE1NjA2NzM0fQ==

https://270157190882.dkr.ecr.us-west-2.amazonaws.com

3333

Creating a task to run our containers

In this recipe, we will create an ECS task. A task tells the ECR cluster manager which containers to run.

A task is a description of which containers in ECR to run and the parameters required for each. The task

description will feel a lot like that which we have

done with Docker Compose.
Getting ready

The task definition can be built with the GUI or started by submitting a task definition JSON file. We

will use the latter technique and examine the structure of the file, td.json, which describes how to run our

containers together. This file is in the 11/07 recipe folder. How to do it The following command

registers the task with ECS:

$ aws ecs register-task-definition --cli-input-json file://td.json

{

"taskDefinition"

: { "volumes":

[

],

"family": "scraper",

"memory": "4096",

"placementConstraints": [

]

],

"cpu": "1024",

"containerDefinitions": [

{

"name": "rabbitmq",

"cpu": 0,

"volumesFrom": [

],

"mountPoints": [

],

"portMappings": [

{

"hostPort": 15672,

"protocol": "tcp",

"containerPort": 15672

},

{

"hostPort": 5672,

"protocol": "tcp",

"containerPort": 5672

}

],

"environment": [
"hostPort": 5672,

"protocol": "tcp",

"containerPort": 567

"environment": [

],

"image": "414704166289.dkr.ecr.us-west-2.amazonaws.com/rabbitmq", "memory":

256,

"essential": true

3344

microservice",

"memory": 256,

"links": [

"rabbitmq"

]

},

{

"name": "api",

"cpu": 0,

"essential":

true,

"volumesFrom"

: [

],

"mountPoints": [

],

"portMappings": [

{

"hostPort": 80,

"protocol": "tcp",

"containerPort": 8080

}

],

"environment": [

{

"name": "AMQP_URI",

"value": "pyamqp://guest:guest@rabbitmq"

},

{

"name": "ES_HOST",

"value":

"https://elastic:tduhdExunhEWPjSuH73O6yLS@7dc72d3327076cc4daf5528103c46a27 . us-

west-2.aws.found.io:9243"

}

],

"image": "414704166289.dkr.ecr.us-west-2.amazonaws.com/scraper-restapi",

"memory": 128,

"links": [

"rabbitmq"

]

}

],

"requiresCompatibilities": [

"EC2"

],

"status": "ACTIVE",

"taskDefinitionArn": "arn:aws:ecs:us-west-

2:414704166289:taskdefinition/ scraper:7",

"requiresAttributes": [

"name": "com.amazonaws.ecs.capability.ecr-auth"

}

],

"revision": 7,

"compatibilities": [

3355

Starting and accessing the containers in AWS

In this recipe, we will start our scraper as a service by telling ECS to run our task

definition. Then we will check hat it is running by issuing a curl to get contents of a job

listing.

Getting ready

We need to do one quick thing before running the task. Tasks in ECS go through

revisions. Each time you register a task definition with the same name ("family"), ECS

defines a new revision number. You can run any of the revisions.

To run the most recent one, we need to list the task definitions for that family and find the

most recent revision number. The following lists all of the task definitions in the cluster.

At this point we only have one:

$ aws ecs list-task-definitions

{

"taskDefinitionArns": [

"arn:aws:ecs:us-west-2:414704166289:task-definition/scraper-as-

aservice: 17"

]

}

Notice my revision number is at 17. While this is my only currently registered

version of this task, I have registered (and unregistered) 16 previous revisions.

How to do it

We proceed with the recipe as follows:

1. Now we can run our task. We do this with the following command:

$ aws ecs run-task --cluster scraper-cluster --task-

definition scraper-as-a-service:17 --count 1

{

"tasks": [

{

"taskArn": "arn:aws:ecs:uswest-

2:414704166289:task/00d7b868-1b99-4b54-9f2a-0d5d0ae75197",

"version": 1,

"group": "family:scraper-as-a-service",

"containerInstanceArn": "arn:aws:ecs:uswest-

2:414704166289:container-instance/5959fd63-7fd6-4f0e-92aaea136dabd762",

"taskDefinitionArn": "arn:aws:ecs:uswest-

2:414704166289:task-definition/scraper-as-a-service:17",

"containers": [

{

"name": "rabbitmq",

"containerArn": "arn:aws:ecs:uswest-

2:414704166289:container/4b14d4d5-422c-

4ffaa64c- 476a983ec43b",

"lastStatus": "PENDING",

"taskArn": "arn:aws:ecs:uswest-

2:414704166289:task/00d7b868-1b99-4b54-9f2a-0d5d0ae75197",

"networkInterfaces": [

3366

{
"name": "scraper-microservice",
"containerArn": "arn:aws:ecs:uswest-
2:414704166289:container/511b39d2-5104-4962- a859-
86fdd46568a9",
"lastStatus": "PENDING",
"taskArn": "arn:aws:ecs:uswest-
2:414704166289:task/00d7b868-1b99-4b54-9f2a-0d5d0ae75197",
"networkInterfaces": [
]
},
{
"name": "api",
"containerArn": "arn:aws:ecs:uswest-
2:414704166289:container/0e660af7-
e2e8-4707-b04bb8df18bc335b", "lastStatus": "PENDING",
"taskArn": "arn:aws:ecs:uswest-
2:414704166289:task/00d7b868-1b99-4b54-9f2a-0d5d0ae75197",
"networkInterfaces": [
]
}
],
"launchType": "EC2",
"overrides": {
"containerOverrides": [
{
"name": "rabbitmq"
},
{
"name": "scraper-microservice"
},
{
"name": "api"
}
]
},
"lastStatus": "PENDING",
"createdAt": 1515739041.287,
"clusterArn": "arn:aws:ecs:uswest-
2:414704166289:cluster/scraper-cluster",
"memory": "4096",
"cpu": "1024",
"desiredStatus": "RUNNING",
"attachments": [
]
],
"failures": [
]
}
The output gives us a current status of the task. The very first time this is
run, it will take a little time to get going, as the containers are being
copied over to the EC2 instance. The main culprit of that delayu is the
scraper-microservice container with all of the NLTK data.

3377

2. You can check the status of the task with the following command:

$ aws ecs describe-tasks --cluster scraper-cluster --

task 00d7b868-1b99-4b54-9f2a-0d5d0ae75197

You will need to change the task GUID to match guid in the "taskArn"

property of the output from running the task. When all the containers are

running, we are ready to test the API.

3. To call our service, we will need to find the IP address or DNS name for

our cluster instance. you can get this from the output when we created the

cluster, through the portal, or with the following commands. First, describe

the cluster instances:

$ aws ecs list-container-instances --cluster scraper-cluster

{

"containerInstanceArns": [

"arn:aws:ecs:us-west-

2:414704166289:containerinstance/ 5959fd63-7fd6-

4f0e-92aa-ea136dabd762"

]

}

4. With the GUID for our EC2 instance, we can query its info and pull the

EC2 instance ID with the following:

$ aws ecs describe-container-instances --cluster scraper-cluster

-- container-instances 5959fd63-7fd6-4f0e-92aa-ea136dabd762

| grep "ec2InstanceId"

"ec2InstanceId": "i-08614daf41a9ab8a2",

5. With that instance ID, we can get the DNS name:

$ aws ec2 describe-instances --instance-ids i-

08614daf41a9ab8a2 | grep "PublicDnsName"

"PublicDnsName": "ec2-52-27-26-

220.uswest- 2.compute.amazonaws.com",

"PublicDnsName":

"ec2-52-27-26-220.us-west-2.compute.amazonaws.com"

"PublicDnsName":

"ec2-52-27-26-220.us-west-2.compute.amazonaws.com"

6. And with that DNS name, we can make a curl to get a job listing:

$ curl ec2-52-27-26-220.uswest-

2.compute.amazonaws.com/joblisting/122517 | head -n 6

And we get the following familiar result!

{

"ID": "122517",

"JSON": {

"@context": "http://schema.org",

"@type": "JobPosting",

"title": "SpaceX Enterprise Software Engineer, Full Stack",

Our scraper is now running in the cloud!

http://schema.org/

4400

	Web Scraping using python
	Under The Supervision of MR. Arjun KP
	Signature of Examiner(s) Signature of Supervisor(s)
	List of Table

	1.2 Problem Definition
	1.3 Problem Purpose
	Querying data with XPath and CSS selectors
	Scraping Challenges and Solution
	How it works
	Waiting for content to be available in Selenium
	How it works (1)
	Handling forms and forms-based authorization
	Searching, Mining and Visualizing Data
	Creating a REST API with Flask-RESTful

	How to do it
	We'll proceed with the recipe as follows:
	How to do it
	Getting ready
	How to do it (1)
	Creating a task to run our containers
	Starting and accessing the containers in AWS
	Getting ready

