
A Project Report

on

Android Encryption Using Various Algorithms

Submitted in partial fulfillment of the

 requirement for the award of the degree of

Bachelor of Technology in Computer Science and

Engineering

Under The Supervision of
Mr. Ravindra Kumar Chahar

Associate Professor

Submitted By

18SCSE1010089 – Saket Joshi
18SCSE1010672 – Shivank Verma

SCHOOL OF COMPUTING SCIENCE AND ENGINEERING DEPARTMENT OF
COMPUTER SCIENCE AND ENGINEERING / DEPARTMENT OF

COMPUTERAPPLICATION
GALGOTIAS UNIVERSITY, GREATER NOIDA

INDIA
DECEMBER - 2021

SCHOOL OF COMPUTING SCIENCE AND ENGINEERING
GALGOTIAS UNIVERSITY, GREATER NOIDA

CANDIDATE’S DECLARATION

I/We hereby certify that the work which is being presented in the thesis/project/dissertation, entitled “Android

Encryption Using Various Algorithms” in partial fulfillment of the requirements for the award of the BACHELOR

OF TECHNOLOGY IN COMPUTER SCIENCE AND ENGINEERING submitted in the School of Computing

Science and Engineering of Galgotias University, Greater Noida, is an original work carried out during the period

of JULY 2021 TO DECEMBER 2021, under the supervision of MR. RAVINDRA KUMAR CHAHAR, ASSOCIATE

PROFESSOR, Department of Computer Science and Engineering/Computer Application and Information and

Science, of School of Computing Science and Engineering , Galgotias University, Greater Noida

The matter presented in the thesis/project/dissertation has not been submitted by me/us for the award of any

other degree of this or any other places.

18SCSE1010089 – SAKET JOSHI

18SCSE1010672 – SHIVANK VERMA

This is to certify that the above statement made by the candidates is correct to the best of my knowledge.

 MR. Ravindra Kumar Chahar

 Associate Professor

CERTIFICATE

The Final Thesis/Project/ Dissertation Viva-Voce examination of 18SCSE1010089 – SAKET JOSHI,

18SCSE1010672 – SHIVANK VERMA has been held on _________________ and his/her work is recommended

for the award of BACHELOR OF TECHNOLOGY IN COMPUTER SCIENCE AND ENGINEERING.

Signature of Examiner(s) Signature of Supervisor(s)

Signature of Project Coordinator Signature of Dean

Date:

Place:

Abstract

The rise of internet has created a major challenge for securing sensitive
information sent over the network. Several solutions have been proposed in the
past to protect user data. Encryption algorithm is one of them. At present,
various types of encryption algorithms like AES, DES, RSA and others are
available. In this report, we have proposed an algorithm for ourselves which is
128-bit text size and 128-bit key size. We have compared the proposed
algorithm with different algorithm comparisons. The result is showing our
proposed algorithm gives better performance. By the difference we see that our
recommended encryption process's average runtime is 0.006 sec which is less
than other algorithms (AES, DES). It also protects various cryptanalytic attacks
- key attack, brute force attack, man in the middle attack and it is also suitable
for the implementation of software and hardware.

Keywords: encryption, decryption, symmetric, 128-bit, secret key, brute force
attacks

Table of Contents

Title Page No.

Abstract I

Chapter 1 Introduction 1
 1.1 Introduction 1
 1.1.1 Decryption 1
 1.1.2 AES

1.1.3 DES
1.1.4 Vigenere Cipher

1

1.2 Formulation of Problem 6

1.2.1 Tool and Technology Used 7

Chapter 2 Literature Survey/Project Design 8

CHAPTER-1
Introduction

1.1 Introduction

Encryption is changing the way of information is displayed so that it is masked
and the only way its true form can be viewed with a clear set of instruction. In its
simple sense, Encryption is the process of encoding all user data or information
using symmetric or asymmetric key in such a way that even if an unauthorized
party tries to access the data without keys, they won’t be able to read it.

1.1.1 Decryption

Decryption is the reverse process of encryption. It is the process of decoding all
encrypted data using symmetric or asymmetric key in such a way that only
authorized parties can access the data and can read it.

The main purpose of developing a cryptosystem is to protect the user’s data
privacy. Information’s are transferred from one user to another. In that case,
possibilities of data losing or stealing data still remain there. So it is necessary
for us to inspect the overall access of data from any unauthorized public or
interceptor. So, to protect the information’s from being lost or stolen,
encryption is used/cryptosystem is necessary.

1.1.2. Data Encryption Standard

Data Encryption Standard (DES) is a symmetric key block cipher. In DES the key
length is 112 bits or 168 bits and block size is 64-bits length. Now a day the
increasing computational power is available which makes DES weak. For this
reason, it can be attack by Brute Force Attacks other cryptanalytic attacks. In triple
DES algorithm the size of block and key increased.

Without any doubt, AES is the strongest algorithm ever because it supports any
combination of data and key length. In AES the number of round is variable and
depends on length of the key. It uses 10 rounds for 128 bit keys, 12 rounds for
192 bit keys, 14 rounds for 256 bit keys that can be divide into 4 basic
operational blocks. These blocks are considered as array of bytes and organized
as a matrix of the order of 4*4, which is called as state and subject to rounds
where various transformations are done.

The XOR logical functions can be applied to binary bits and also considered as an
encryption cipher. In the encryption context the strength of XOR cipher depends
on the length and the nature of the key. The XOR cipher with a lengthy random
key can ensure better security performance. But large XOR key increases
unpredictability and can confront brute force attack. In our algorithm, we have
used 128-bit block size and 128-bit key size and also use a XOR in our
permutation function.

1.2.Formulation of Problem

 To develop an algorithm for data security in an android platform.

 To maintain the security of the system by preventing cryptanalytic attack

like key attacks and brute force attacks.

1.2.1. Tool and Technology Used

Front End – Android Studio 3.0

Android Studio is the official[7] integrated development environment (IDE) for Google's Android operating
system, built on JetBrains' IntelliJ IDEA software and designed specifically for Android development.[8] It is
available for download on Windows, macOS and Linux based operating systems or as a subscription-based
service in 2020.[9][10] It is a replacement for the Eclipse Android Development Tools (E-ADT) as the primary

IDE for native Android application development.

Android Studio was announced on May 16, 2013 at the Google I/O conference. It was in early access preview
stage starting from version 0.1 in May 2013, then entered beta stage starting from version 0.8 which was released

in June 2014.[11] The first stable build was released in December 2014, starting from version 1.0.[12]

On May 7, 2019, Kotlin replaced Java as Google's preferred language for Android app development.[13] Java is
still supported, as is C++.

Android Studio is the official Integrated Development Environment (IDE) for Android app development, based

on IntelliJ IDEA . On top of IntelliJ's powerful code editor and developer tools, Android Studio offers even

more features that enhance your productivity when building Android apps, such as:

 A flexible Gradle-based build system

 A fast and feature-rich emulator

 A unified environment where you can develop for all Android devices

 Apply Changes to push code and resource changes to your running app without restarting your app

 Code templates and GitHub integration to help you build common app features and import sample code

 Extensive testing tools and frameworks

 Lint tools to catch performance, usability, version compatibility, and other problems

 C++ and NDK support

The following is a list of Android Studio's major releases:

Version Release date

Arctic Fox (2020.3.1) July 2021

4.2 May 2021

4.1 Oct 2020

4.0 May 2020

3.6 February 2020

https://www.jetbrains.com/idea/

Version Release date

3.5 August 2019

3.4 April 2019[29]

3.3 January 2019

3.2 September 2018

3.1 March 2018

3.0 October 2017

2.3 March 2017

2.2 September 2016

2.1 April 2016

2.0 April 2016

1.5 November 2015

1.4 September 2015

1.3 July 2015

1.2 April 2015

1.1 February 2015

1.0

December 2014

System requirement

https://en.wikipedia.org/wiki/Android_Studio#cite_note-29

Basic system requirements for Android Studio[7]

 Microsoft Windows Mac Linux

Operating System
Version

Microsoft Windows 7/8/10 (32-
or 64-bit)

The Android Emulator only
supports 64-bit Windows.

Mac OS X 10.10
(Yosemite) or higher,
up to 10.14 (macOS
Mojave)

GNOME or KDE desktop

Tested on gLinux based on
Debian (4.19.67-2rodete2).

Random Access
Memory (RAM)

4 GB RAM minimum; 8 GB RAM recommended.

Free digital storage
2 GB of available digital storage minimum, 4 GB Recommended (500 MB for IDE + 1.5 GB

for Android SDK and emulator system image).

Minimum required
JDK version

Java Development Kit 8

Minimum screen
resolution

1280 x 800

.

 Back End – Java

Java is a programming language and computing platform first released by Sun
Microsystems in 1995. There are lots of applications and websites that will not work
unless you have Java installed, and more are created every day. Java is fast, secure,
and reliable. From laptops to datacenters, game consoles to scientific
supercomputers, cell phones to the Internet, Java is everywhere!

 Environment – JDK and JRE

JDK is a software development environment used for making applets and Java
applications. The full form of JDK is Java Development Kit. Java developers can use it
on Windows, macOS, Solaris, and Linux. JDK helps them to code and run Java
programs. It is possible to install more than one JDK version on the same computer.

JRE is a piece of a software which is designed to run other software. It contains the
class libraries, loader class, and JVM. In simple terms, if you want to run Java
program you need JRE. If you are not a programmer, you don’t need to install JDK,
but just JRE to run Java programs. Though, all JDK versions comes bundled with Java
Runtime Environment, so you do not need to download and install the JRE
separately in your PC. The full form of JRE is Java Runtime Environment.

https://en.wikipedia.org/wiki/Android_Studio#cite_note-:0-7
https://en.wikipedia.org/wiki/Android_software_development
https://en.wikipedia.org/wiki/Java_Development_Kit

 Operating System – Android, Windows

Android is an open source and Linux-based Operating System for mobile devices
such as smartphones and tablet computers. Android was developed by the Open
Handset Alliance, led by Google, and other companies.

Android offers a unified approach to application development for mobile devices
which means developers need only develop for Android, and their applications
should be able to run on different devices powered by Android.

AES

AES is implemented in software and hardware throughout the world to encrypt
sensitive data. It is essential for government computer security, cybersecurity and
electronic data protection.

The National Institute of Standards and Technology (NIST) started development of
AES in 1997 when it announced the need for an alternative to the Data Encryption
Standard (DES), which was starting to become vulnerable to brute-force attacks.

NIST stated that the newer, advanced encryption algorithm would be unclassified
and must be "capable of protecting sensitive government information well into
the [21st] century." It was intended to be easy to implement in hardware and
software, as well as in restricted environments -- such as a smart card -- and offer
decent defenses against various attack techniques.

AES was created for the U.S. government with additional voluntary, free use in
public or private, commercial or noncommercial programs that provide
encryption services. However, nongovernmental organizations choosing to use
AES are subject to limitations created by U.S. export control.

How AES encryption works
AES includes three block ciphers:

AES-128 uses a 128-bit key length to encrypt and decrypt a block of messages.
AES-192 uses a 192-bit key length to encrypt and decrypt a block of messages.
AES-256 uses a 256-bit key length to encrypt and decrypt a block of messages.
Each cipher encrypts and decrypts data in blocks of 128 bits using cryptographic
keys of 128, 192 and 256 bits, respectively.

Symmetric, also known as secret key, ciphers use the same key for encrypting and
decrypting. The sender and the receiver must both know -- and use -- the same

secret key.

The government classifies information in three categories: Confidential, Secret or
Top Secret. All key lengths can be used to protect the Confidential and Secret
level. Top Secret information requires either 192- or 256-bit key lengths.

There are 10 rounds for 128-bit keys, 12 rounds for 192-bit keys and 14 rounds for
256-bit keys. A round consists of several processing steps that include
substitution, transposition and mixing of the input plaintext to transform it into
the final output of ciphertext.

Image displaying the relationships between keys, ciphers and ciphertext in AES
AES uses 128-, 192- or 256-bit keys to encrypt and decrypt data.
The AES encryption algorithm defines numerous transformations that are to be
performed on data stored in an array. The first step of the cipher is to put the
data into an array, after which the cipher transformations are repeated over
multiple encryption rounds.

The first transformation in the AES encryption cipher is substitution of data using
a substitution table. The second transformation shifts data rows. The third mixes
columns. The last transformation is performed on each column using a different
part of the encryption key. Longer keys need more rounds to complete.

Features of AES :-
NIST specified the new AES algorithm must be a block cipher capable of handling
128-bit blocks, using keys sized at 128, 192 and 256 bits.

Other criteria for being chosen as the next AES algorithm included the following:

Security. Competing algorithms were to be judged on their ability to resist attack
as compared to other submitted ciphers. Security strength was to be considered
the most important factor in the competition.
Cost. Intended to be released on a global, nonexclusive and royalty-free basis, the
candidate algorithms were to be evaluated on computational and memory
efficiency.
Implementation. Factors to be considered included the algorithm's flexibility,
suitability for hardware or software implementation, and overall simplicity.

Difference between AES-128 and AES-256 :-

Security experts consider AES safe against brute-force attacks. A brute-force
attack is when a threat actor checks all possible key combinations until the correct
key is found. The key size employed for AES encryption therefore needs to be

large enough so that it cannot be cracked by modern computers, even considering
advancements in processor speeds based on Moore's law.

A 256-bit encryption key is significantly more difficult for brute-force attacks to
guess than a 128-bit key; however, because the latter takes so long to guess, even
with a huge amount of computing power, it is unlikely to be an issue for the
foreseeable future, as a malicious actor would need to use quantum computing to
generate the necessary brute force.

Still, 256-bit keys also require more processing power and can take longer to
execute. When power is an issue -- particularly on small devices -- or where
latency is likely to be a concern, 128-bit keys are likely to be a better option.

When hackers want to access a system, they will aim for the weakest point. This is
typically not the encryption of a system, regardless of whether it's a 128-bit key or
a 256-bit key. Users should make sure the software under consideration does
what they want it to do, that it protects user data in the way it's expected to and
that the overall process has no weak points.

Additionally, there should be no gray areas or uncertainty about data storage and
handling. For example, if data resides in the cloud, users should know the location
of the cloud. Most importantly, the security software that has been selected
should be easy to use to ensure that users do not need to perform unsecure
workarounds to do their jobs.

Is AES secure?
Security experts maintain that AES is secure when implemented properly.
However, AES encryption keys need to be protected. Even the most extensive
cryptographic systems can be vulnerable if a hacker gains access to the encryption
key.

To ensure the security of AES keys:

 Use strong passwords.
 Use password managers.
 Implement and require multifactor authentication (MFA).
 Deploy firewalls and antimalware software.
 Conduct security awareness training to prevent employees from falling

victim to social engineering and phishing attacks.

DES

The DES (Data Encryption Standard) algorithm is a symmetric-key block cipher
created in the early 1970s by an IBM team and adopted by the National Institute
of Standards and Technology (NIST). The algorithm takes the plain text in 64-bit
blocks and converts them into ciphertext using 48-bit keys.

Since it’s a symmetric-key algorithm, it employs the same key in both encrypting
and decrypting the data. If it were an asymmetrical algorithm, it would use
different keys for encryption and decryption.

History of DES Algorithm
DES is based on the Feistel block cipher, called LUCIFER, developed in 1971 by IBM
cryptography researcher Horst Feistel. DES uses 16 rounds of the Feistel structure,
using a different key for each round.

DES became the approved federal encryption standard in November 1976 and
was subsequently reaffirmed as the standard in 1983, 1988, and 1999.

DES’s dominance came to an end in 2002, when the Advanced Encryption
Standard (AES) replaced the DES encryption algorithm as the accepted standard,
following a public competition to find a replacement. The NIST officially withdrew
FIPS 46-3 (the 1999 reaffirmation) in May 2005, although Triple DES (3DES),
remains approved for sensitive government information through 2030.

Triple DES Algorithm
Triple DES is a symmetric key-block cipher which applies the DES cipher in
triplicate. It encrypts with the first key (k1), decrypts using the second key (k2),
then encrypts with the third key (k3). There is also a two-key variant, where k1
and k3 are the same keys.

Key Takeaways

 The NIST had to replace the DES algorithm because its 56-bit key lengths
were too small, considering the increased processing power of newer
computers. Encryption strength is related to the key size, and DES found
itself a victim of the ongoing technological advances in computing. It
reached a point where 56-bit was no longer good enough to handle the new
challenges to encryption.

 Note that just because DES is no longer the NIST federal standard, it doesn’t
mean that it’s no longer in use. Triple DES is still used today, but it’s
considered a legacy encryption algorithm. Note that NIST plans to disallow
all forms of Triple-DES from 2024 onward.

DES Algorithm Steps
To put it in simple terms, DES takes 64-bit plain text and turns it into a 64-bit
ciphertext. And since we’re talking about asymmetric algorithms, the same key is
used when it’s time to decrypt the text.

The algorithm process breaks down into the following steps:

 The process begins with the 64-bit plain text block getting handed over to an
initial permutation (IP) function.

 The initial permutation (IP) is then performed on the plain text.
 Next, the initial permutation (IP) creates two halves of the permuted block,

referred to as Left Plain Text (LPT) and Right Plain Text (RPT).
 Each LPT and RPT goes through 16 rounds of the encryption process.
 Finally, the LPT and RPT are rejoined, and a Final Permutation (FP) is

performed on the newly combined block.
 The result of this process produces the desired 64-bit ciphertext.

The encryption process step (step 4, above) is further broken down into five
stages:

 Key transformation
 Expansion permutation
 S-Box permutation
 P-Box permutation
 XOR and swap

For decryption, we use the same algorithm, and we reverse the order of the 16
round keys.

DES Modes of Operation
Experts using DES have five different modes of operation to choose from.

 Electronic Codebook (ECB). Each 64-bit block is encrypted and decrypted
independently

 Cipher Block Chaining (CBC). Each 64-bit block depends on the previous one
and uses an Initialization Vector (IV)

 Cipher Feedback (CFB). The preceding ciphertext becomes the input for the
encryption algorithm, producing pseudorandom output, which in turn is
XORed with plaintext, building the next ciphertext unit

 Output Feedback (OFB). Much like CFB, except that the encryption algorithm
input is the output from the preceding DES

 Counter (CTR). Each plaintext block is XORed with an encrypted counter. The
counter is then incremented for each subsequent block

DES Implementation and Testing
DES implementation requires a security provider. However, there are many
available providers to choose from, but selecting one is the essential initial step in
implementation. Your selection may depend on the language you are using, such
as Java, Python, C, or MATLAB.

Once you decide on a provider, you must choose whether to have a random
secret key generated by the Key Generator or create a key yourself, using a
plaintext or byte array.

Vigenere Cipher

The Vigenère cipher is a method of encrypting alphabetic text by using a series of
interwoven Caesar ciphers, based on the letters of a keyword. It employs a form
of polyalphabetic substitution.

First described by Giovan Battista Bellaso in 1553, the cipher is easy to understand
and implement, but it resisted all attempts to break it until 1863, three centuries
later. Many people have tried to implement encryption schemes that are
essentially Vigenère ciphers. In 1863, Friedrich Kasiski was the first to publish a
general method of deciphering Vigenère ciphers.

In the 19th century the scheme was misattributed to Blaise de Vigenère (1523–
1596), and so acquired its present name.

Description :-

In a Caesar cipher, each letter of the alphabet is shifted along some number of
places. For example, in a Caesar cipher of shift 3, a would become D, b would
become E, y would become B and so on. The Vigenère cipher has several Caesar
ciphers in sequence with different shift values.

To encrypt, a table of alphabets can be used, termed a tabula recta, Vigenère
square or Vigenère table. It has the alphabet written out 26 times in different
rows, each alphabet shifted cyclically to the left compared to the previous
alphabet, corresponding to the 26 possible Caesar ciphers. At different points in
the encryption process, the cipher uses a different alphabet from one of the rows.
The alphabet used at each point depends on a repeating keyword.[citation
needed]

For example, suppose that the plaintext to be encrypted is

attackatdawn.
The person sending the message chooses a keyword and repeats it until it
matches the length of the plaintext, for example, the keyword "LEMON":

LEMONLEMONLE
Each row starts with a key letter. The rest of the row holds the letters A to Z (in
shifted order). Although there are 26 key rows shown, a code will use only as
many keys (different alphabets) as there are unique letters in the key string, here
just 5 keys: {L, E, M, O, N}. For successive letters of the message, successive letters
of the key string will be taken and each message letter enciphered by using its

corresponding key row. The next letter of the key is chosen, and that row is gone
along to find the column heading that matches the message character. The letter
at the intersection of [key-row, msg-col] is the enciphered letter.

For example, the first letter of the plaintext, a, is paired with L, the first letter of
the key. Therefore, row L and column A of the Vigenère square are used, namely
L. Similarly, for the second letter of the plaintext, the second letter of the key is
used. The letter at row E and column T is X. The rest of the plaintext is enciphered
in a similar fashion:

Plaintext: attackatdawn
Key: LEMONLEMONLE
Ciphertext: LXFOPVEFRNHR
Decryption is performed by going to the row in the table corresponding to the
key, finding the position of the ciphertext letter in that row and then using the
column's label as the plaintext. For example, in row L (from LEMON), the
ciphertext L appears in column A, so a is the first plaintext letter. Next, in row E
(from LEMON), the ciphertext X is located in column T. Thus t is the second
plaintext letter.

Source Code :-

MainActivity.java

package Main;

import android.os.Bundle;
import android.view.View;

import androidx.appcompat.app.AppCompatActivity;
import androidx.fragment.app.Fragment;
import androidx.fragment.app.FragmentManager;
import androidx.fragment.app.FragmentTransaction;

import com.example.Algorithms.R;

import Encryption.EncryptionMain;
import Hash.HashMain;

public class MainActivity extends AppCompatActivity {
 EncryptionMain encryptionMain;
 HashMain hashMain;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 Fragment fragment = new MainFragment();
 FragmentManager fragmentManager = getSupportFragmentManager();
 fragmentManager.beginTransaction().replace(R.id.container,
fragment).commit();
 }

 public void goToEncryption(View view) {
 encryptionMain = new EncryptionMain();
 FragmentManager manager = getSupportFragmentManager();
 FragmentTransaction transaction = manager.beginTransaction();

transaction.setCustomAnimations(android.R.anim.fade_in,android.R.anim.fade_o
ut, android.R.anim.fade_in, android.R.anim.fade_out);

 transaction.replace(R.id.container, encryptionMain);
 transaction.addToBackStack(null);
 transaction.commit();
 }

 public void goToHash(View view) {
 hashMain = new HashMain();
 FragmentManager manager = getSupportFragmentManager();
 FragmentTransaction transaction = manager.beginTransaction();

transaction.setCustomAnimations(android.R.anim.fade_in,android.R.anim.fade_o
ut, android.R.anim.fade_in, android.R.anim.fade_out);
 transaction.replace(R.id.container, hashMain);
 transaction.addToBackStack(null);
 transaction.commit();
 }

 public void encryptionButtonClick(View view) {
 try {
 switch (view.getId()) {
 case R.id.Swtich:
 encryptionMain.switchAlgho(view);
 break;
 case R.id.Encrypt_Buuton:
 encryptionMain.encrypt(view);
 break;
 case R.id.Decrypt_Buuton:
 encryptionMain.decrypt(view);
 break;
 case R.id.copy_button:
 encryptionMain.copyToClipboard(view);
 break;
 case R.id.reset_button:
 encryptionMain.reset(view);
 break;
 }
 }
 catch (Exception e){
 e.printStackTrace();
 }

 }

 public void HashButtonClick(View view) {
 try {
 switch (view.getId()) {
 case R.id.Swtich:
 hashMain.switchAlgho(view);
 break;
 case R.id.hash_Buuton:
 hashMain.hash(view);
 break;
 case R.id.copy_button:
 hashMain.copyToClipboard(view);
 break;
 case R.id.reset_button:
 hashMain.reset(view);
 break;
 }
 }
 catch (Exception e){
 e.printStackTrace();
 }

 }
}

AES.java

package Encryption.Algorithms;

import android.util.Base64;
import android.util.Log;

import java.security.MessageDigest;

import javax.crypto.Cipher;
import javax.crypto.spec.SecretKeySpec;

public class AES {
 public String AESencrypt (byte[] key, byte[] clear) throws Exception {

 MessageDigest md = MessageDigest.getInstance("md5");
 byte[] digestOfPassword = md.digest(key);

 SecretKeySpec skeySpec = new SecretKeySpec(digestOfPassword, "AES");
 Cipher cipher = Cipher.getInstance("AES/ECB/PKCS7Padding");
 cipher.init(Cipher.ENCRYPT_MODE, skeySpec);
 byte[] encrypted = cipher.doFinal(clear);
 return Base64.encodeToString(encrypted, Base64.DEFAULT);

 }
 public String AESdecrypt (String key,byte[] encrypted) throws Exception {
 MessageDigest md = MessageDigest.getInstance("md5");
 byte[] digestOfPassword = md.digest(key.getBytes("UTF-16LE"));

 SecretKeySpec skeySpec = new SecretKeySpec(digestOfPassword, "AES");
 Cipher cipher = Cipher.getInstance("AES/ECB/PKCS7Padding");
 cipher.init(Cipher.DECRYPT_MODE, skeySpec);
 byte[] decrypted = cipher.doFinal(encrypted);
 return new String(decrypted, "UTF-16LE");
 }
}

Caesarcipher.java

package Encryption.Algorithms;

public class Caesarcipher {
 String message;
 char ch;
 char NumbTest[] = {'0','1', '2', '3', '4', '5', '6', '7', '8', '9'};
 public String caesarcipherEnc (String message,int key){
 String encryptedMessage = "";
 int n = 1;
 for (int i = 0; i < message.length(); i++) {
 n = 1;
 ch = message.charAt(i);
 for (int j = 0; j < NumbTest.length; j++)
 {
 if (ch == NumbTest[j])
 {

 if((char)key+ch>'9')
 break;
 ch = (char) (ch + key);
 encryptedMessage += ch;
 n = 0;
 break;
 }
 }
 if (n == 0)
 {
 continue;
 } else
 if (ch >= 'a' && ch <= 'z')
 {
 ch = (char) (ch + key);

 if (ch > 'z') {
 ch = (char) (ch - 'z' + 'a' - 1);
 }

 encryptedMessage += ch;
 } else if (ch >= 'A' && ch <= 'Z') {
 ch = (char) (ch + key);

 if (ch > 'Z') {
 ch = (char) (ch - 'Z' + 'A' - 1);
 }

 encryptedMessage += ch;
 } else
 encryptedMessage += ch;
 }

 return encryptedMessage;
 }
 public String caesarcipherDec (String message,int key)
 {
 String decryptedMessage = "";
 int n = 1;
 for (int i = 0; i < message.length(); i++) {
 n = 1;
 ch = message.charAt(i);
 for (int j = 0; j < NumbTest.length; j++) {
 if (ch == NumbTest[j]) {

 if((char)key+ch>'9')
 break;
 ch = (char) (ch - key);
 decryptedMessage += ch;
 n = 0;
 break;
 }
 }
 if (n == 0)
 {
 continue;
 } else if (ch >= 'a' && ch <= 'z') {
 ch = (char) (ch - key);

 if (ch < 'a') {
 ch = (char) (ch + 'z' - 'a' + 1);
 }

 decryptedMessage += ch;
 } else if (ch >= 'A' && ch <= 'Z') {
 ch = (char) (ch - key);

 if (ch < 'A') {
 ch = (char) (ch + 'Z' - 'A' + 1);
 }

 decryptedMessage += ch;

 } else
 decryptedMessage += ch;
 }
 return decryptedMessage;
 }
}

DES.java

package Encryption.Algorithms;

import android.util.Base64;
import android.util.Log;

import java.security.MessageDigest;

import javax.crypto.Cipher;
import javax.crypto.spec.SecretKeySpec;

public class DES {
 public String encrypt (byte[] key, byte[] clear) throws Exception {

 MessageDigest md = MessageDigest.getInstance("md5");
 byte[] digestOfPassword = md.digest(key);

 SecretKeySpec skeySpec = new SecretKeySpec(digestOfPassword, "DESede");
 Cipher cipher = Cipher.getInstance("DESede/CBC/PKCS5Padding");
 cipher.init(Cipher.ENCRYPT_MODE, skeySpec);
 byte[] encrypted = cipher.doFinal(clear);
 return Base64.encodeToString(encrypted, Base64.DEFAULT);

 }
 public String decrypt (String key,byte[] encrypted) throws Exception {
 MessageDigest md = MessageDigest.getInstance("md5");
 byte[] digestOfPassword = md.digest(key.getBytes("UTF-16LE"));

 SecretKeySpec skeySpec = new SecretKeySpec(digestOfPassword, "DESede");
 Cipher cipher = Cipher.getInstance("DESede/CBC/PKCS5Padding");
 cipher.init(Cipher.DECRYPT_MODE, skeySpec);
 byte[] decrypted = cipher.doFinal(encrypted);
 return new String(decrypted, "UTF-16LE");
 }
}

PlayFair.java

package Encryption.Algorithms;

public class PlayFair {

private String t1="";

 public String getT1() {
 return t1;
 }

 public PlayFair(String t1) {
 this.t1 = t1;
 }

 public class Basic {
 String allChar = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";

 boolean indexOfChar(char c) {
 for (int i = 0; i < allChar.length(); i++) {
 if (allChar.charAt(i) == c)
 return true;
 }
 return false;
 }
 }

 Basic b = new Basic();
 char keyMatrix[][] = new char[5][5];

 boolean repeat(char c) {
 if (!b.indexOfChar(c)) {
 return true;
 }
 for (int i = 0; i < keyMatrix.length; i++) {
 for (int j = 0; j < keyMatrix[i].length; j++) {
 if (keyMatrix[i][j] == c || c == 'J')
 return true;
 }
 }

 return false;
 }

 public void insertKey(String key) {
 key = key.toUpperCase();
 key = key.replaceAll("J", "I");
 key = key.replaceAll(" ", "");
 int a = 0, b = 0;

 for (int k = 0; k < key.length(); k++) {
 if (!repeat(key.charAt(k))) {
 keyMatrix[a][b++] = key.charAt(k);
 if (b > 4) {
 b = 0;
 a++;
 }
 }
 }

 char p = 'A';

 while (a < 5) {
 while (b < 5) {
 if (!repeat(p)) {
 keyMatrix[a][b++] = p;

 }
 p++;
 }
 b = 0;
 a++;
 }

 for (int i = 0; i < 5; i++) {

 for (int j = 0; j < 5; j++) {

 }
 }
 t1=t1.concat("\n");
 for(int i=0;i < 5;i++)
 {
 for(int j=0;j < 5;j++)

 t1 = t1 +" "+ keyMatrix[i][j];

 t1=t1.concat("\n");

 }
 }

 int rowPos(char c) {
 for (int i = 0; i < keyMatrix.length; i++) {
 for (int j = 0; j < keyMatrix[i].length; j++) {
 if (keyMatrix[i][j] == c)
 return i;
 }
 }
 return -1;
 }

 int columnPos(char c) {
 for (int i = 0; i < keyMatrix.length; i++) {
 for (int j = 0; j < keyMatrix[i].length; j++) {
 if (keyMatrix[i][j] == c)
 return j;
 }
 }
 return -1;
 }

 public String encryptChar(String plain) {
 plain = plain.toUpperCase();
 char a = plain.charAt(0), b = plain.charAt(1);
 String cipherChar = "";
 int r1, c1, r2, c2;
 r1 = rowPos(a);
 c1 = columnPos(a);
 r2 = rowPos(b);
 c2 = columnPos(b);

 if (c1 == c2) {
 ++r1;
 ++r2;
 if (r1 > 4)

 r1 = 0;

 if (r2 > 4)
 r2 = 0;
 cipherChar += keyMatrix[r1][c2];
 cipherChar += keyMatrix[r2][c1];
 } else if (r1 == r2) {
 ++c1;
 ++c2;
 if (c1 > 4)
 c1 = 0;

 if (c2 > 4)
 c2 = 0;
 cipherChar += keyMatrix[r1][c1];
 cipherChar += keyMatrix[r2][c2];

 } else {
 cipherChar += keyMatrix[r1][c2];
 cipherChar += keyMatrix[r2][c1];
 }
 return cipherChar;
 }

 public String Encrypt(String plainText, String key) {
 insertKey(key);
 String cipherText = "";
 plainText = plainText.replaceAll("j", "i");
 plainText = plainText.replaceAll(" ", "");
 plainText = plainText.toUpperCase();
 int len = plainText.length();

 if (len / 2 != 0) {
 plainText += "X";
 ++len;
 }

 for (int i = 0; i < len - 1; i = i + 2) {
 cipherText += encryptChar(plainText.substring(i, i + 2));
 cipherText += " ";
 }
 return cipherText;

 }

 public String decryptChar(String cipher) {
 cipher = cipher.toUpperCase();
 char a = cipher.charAt(0), b = cipher.charAt(1);
 String plainChar = "";
 int r1, c1, r2, c2;
 r1 = rowPos(a);
 c1 = columnPos(a);
 r2 = rowPos(b);
 c2 = columnPos(b);

 if (c1 == c2) {
 --r1;
 --r2;
 if (r1 < 0)
 r1 = 4;

 if (r2 < 0)
 r2 = 4;
 plainChar += keyMatrix[r1][c2];
 plainChar += keyMatrix[r2][c1];
 } else if (r1 == r2) {
 --c1;
 --c2;
 if (c1 < 0)
 c1 = 4;

 if (c2 < 0)
 c2 = 4;
 plainChar += keyMatrix[r1][c1];
 plainChar += keyMatrix[r2][c2];

 } else {
 plainChar += keyMatrix[r1][c2];
 plainChar += keyMatrix[r2][c1];
 }
 return plainChar;
 }

 public String Decrypt(String cipherText, String key) {

 String plainText = "";
 cipherText = cipherText.replaceAll("j", "i");
 cipherText = cipherText.replaceAll(" ", "");
 cipherText = cipherText.toUpperCase();
 int len = cipherText.length();
 for (int i = 0; i < len - 1; i = i + 2) {
 plainText += decryptChar(cipherText.substring(i, i + 2));
 plainText += " ";

 }
 return plainText;
 }

}

Vigenere.java

package Encryption.Algorithms;

public class Vigenere {
 public String Vigenereencrypt (String text, String key)
 {

 String res = "";
 text = text.toUpperCase();
 key = key.toUpperCase();
 for (int i = 0, j = 0; i < text.length(); i++) {
 char c = text.charAt(i);
 if (c < 'A' || c > 'Z') continue;
 res += (char) ((c + key.charAt(j) - 2 * 'A') % 26 + 'A');
 j = ++j % key.length();
 }
 return res;

 }
 public String Vigeneredecrypt (String text, String key)
 {
 String res = "";
 text = text.toUpperCase();
 key = key.toUpperCase();
 for (int i = 0, j = 0; i < text.length(); i++) {
 char c = text.charAt(i);
 if (c < 'A' || c > 'Z') continue;
 res += (char) ((c - key.charAt(j) + 26) % 26 + 'A');
 j = ++j % key.length();
 }

 return res;

 }
}

CHAPTER-2
Literature Survey

Cioc.I.Bet .al in 2015 explained a method used for increasing the security of
sending text messages using public text communication services like email and
SMS. It utilizes content encryption before sending the message through email
or cell phone (SMS), so, even the message is received and seen by another
unapproved individual, it can't be comprehended. So, that application was
executed in LabVIEW and can be used for sending encoded content email
between at least two clients, utilizing open email administrations. For
encryption, their proposed application utilizes content encryption strategy like
balanced and deviated encryption, utilizing private encryption key or private or
open encryption key. For sending encoded SMS using that application, the
instant message must be recently scrambled, and after that the encoded
message will be replicated to the content window of the application for
sending SMS running on the cell phone. A comparable application can be
additionally created for cell phones with working frameworks like Android, iOS,
Windows portable and so forth their application can be utilized likewise with
any instant message administration, similar to yippee detachment, Facebook
Messenger and so on.

	CANDIDATE’S DECLARATION
	Table of Contents
	1.1 Introduction
	1.1.1 Decryption
	1.1.2. Data Encryption Standard
	1.2.Formulation of Problem
	1.2.1. Tool and Technology Used
	System requirement

