
A Project/Dissertation Review Report

on

DRIVER DROWSINESS DETECTION SYSTEM
USING CONVOLUTIONAL NEURAL NETWORK

Submitted in partial fulfillment of the

requirement for the award of the degree of

BTECH IN COMPUTER SCIENCEENGINEERING

Under The Supervision of

Dr. JOHN A
Associate Professor

Submitted By

Name Of Student Enrollment number
UTKARSH GOYAL 18021140054
ABHISHEK CHAUDHARY 18021140111

SCHOOL OF COMPUTING SCIENCE AND ENGINEERING
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

GALGOTIAS UNIVERSITY, GREATER NOIDA
INDIA

SCHOOL OF COMPUTING SCIENCE AND ENGINEERING
GALGOTIAS UNIVERSITY, GREATER NOIDA

CANDIDATE’S DECLARATION

I/We hereby certify that the work which is being presented in the thesis/project/dissertation, entitled

“DRIVER DROWSINESS DETECTION SYSTEM” in partial fulfillment of the requirements for the award of

the B.TECH submitted in the School of Computing Science and Engineering of Galgotias University,

Greater Noida, is an original work carried out during the period of month, Year to Month and Year,

under the supervision of Dr. John A (Associate Professor), Department of Computer Science and

Engineering/Computer Application and Information and Science, of School of Computing Science

and Engineering , Galgotias University, Greater Noida

The matter presented in the thesis/project/dissertation has not been submitted by me/us for the

award of any other degree of this or any other places.

UTKARSH GOYAL 18SCSE1140006

Abhishek Chaudhary 18SCSE1140065

This is to certify that the above statement made by the candidates is correct to the best of my

knowledge.

 Dr. John A

(Associate Professor)

CERTIFICATE

The Final Thesis/Project/ Dissertation Viva-Voce examination of UTKARSH GOYAL

|18SCSE1140006,ABHISHEK CHAUDHARY |18SCSE1140065has been held on

_________________ and his/her work is recommended for the award of BACHELOR OF

COMPUTER SCIENCE AND TECHNOLOGY.

Signature of Examiner(s) Signature of Supervisor(s)

Signature of Project Coordinator Signature of Dean

Date: November, 2013

Place: Greater Noida

ABSTRACT

Driver fatigue is one of the major causes of accidents in the world. Detecting the drowsiness
of the driver is one of the surest ways of measuring driver fatigue. In this project we aim to
develop a prototype drowsiness detection system

This document is the research conducted and the project made in the field of computer
engineering to develop a system for driver drowsiness detection to prevent accidents from
happening because of driver fatigue and sleepiness. The report proposed the results and
solutions on the limited implementation of the various techniques that are introduced in the
project.

Whereas the implementation of the project give the real world idea of how the system works
and what changes can be done in order to improve the utility of the overall system.
Furthermore, the paper states the overview of the observations made by the authors in order
to help further optimization in the mentioned field to achieve the utility at a better efficiency
for a safer road.

This system works by monitoring the eyes of the driver and sounding an alarm when he/she
is drowsy. The system so designed is a non-intrusive real-time monitoring system. The
priority is on improving the safety of the driver without being obtrusive. In this project the
eye blink of the driver is detected. If the drivers eyes remain closed for more than a certain
period of time, the driver is said to be drowsy and an alarm is sounded.

The programming for this is done in OpenCV using the Haarcascade library for the detection
of facial features. The aim of this project is to develop a prototype drowsiness detection
system. The focus will be placed on designing a system that will accurately monitor the open
or closed state of the driver’s eyes in real- time.

TABLE OF CONTENT

1. INTRODUCTION

2. PROPOSED SOLUTION

2.1 WHY OPENCV

2.2 COMPUTER VISION

2.3 CNN Module

2.4 Facial Landmark

2.5 Dlib

3. WORK PLAN LAYOUT

4. CONCLUSION

INTRODUCTION

Driver fatigue is a significant factor in a large number of vehicle accidents. Recent statistics
estimate that annually 1,200 deaths and 76,000 injuries can be attributed to fatigue related
crashes. Because of the hazard that drowsiness presents on the road, methods need to be
developed for counteracting its affects.

The aim of this project is to develop a prototype drowsiness detection system. The focus
will be placed on designing a system that will accurately monitor the open or closed state
of the driver’s eyes in real-time.
By monitoring the eyes, it is believed that the symptoms of driver fatigue can be detected early
enough to avoid a car accident. Detection of fatigue involves the observation of eye
movements and blink patterns in a sequence of images of a face.
This is where OpenCV came in. OpenCV is an open source computer vision library. It is
designed for computational efficiency and with a strong focus on real time applications. It helps
to build sophisticated vision applications quickly and easily. OpenCV satisfied the low
processing power and high speed requirements of
our application.

We have used the Haartraining applications in OpenCV to detect the face and eyes. This
creates a classifier given a set of positive and negative samples. The steps were as follows:-

• Gather a data set of face and eye. These should be stored in one or more directories indexed
by a text file. A lot of high quality data is required for the classifier to work well.

• The utility application createsamples() is used to build a vector output file. Using this file
we can repeat the training procedure. It extracts the positive samples from images before
normalizing and resizing to specified width and height.

• The Viola Jones cascade decides whether or not the object in an image is similar to the
training set. Any image that doesn’t contain the object of interest can be turned into
negative sample. So in order to learn any object it is required to take a sample of negative
background image.

• Training of the image is done using boosting. In training we learn the group of classifiers
one at a time. Each classifier in the group is a weak classifier. These weak classifiers are
typically composed of a single variable decision tree called stumps. In training the decision
stump learns its classification decisions from its data and also learns a weight for its vote from
its accuracy on the data. Between training each classifier one by one, the data points are
reweighted so that more attention is paid to the data points where errors were made. This
process continues until the total error over the dataset arising from the combined weighted vote
of the decision trees falls below a certain threshold

LITERATURE SURVEY

Driver Drowsiness Detection System and Techniques
According to the experts it has been observed that when the drivers do not take break they tend
to run a high risk of becoming drowsy. Study shows that accidents occur due to sleepy drivers in
need of a rest, which means that road accidents occurs more due to drowsiness rather than drink-
driving. Attention assist can warn of inattentiveness and drowsiness in an extended speed range
and notify drivers of their current state of fatigue and the driving time since the last break, offers
adjustable sensitivity and, if a warning is emitted, indicates nearby service areas in the
COMAND navigation system.

Implementation of the Driver Drowsiness Detection System
This paper is about making cars more intelligent and interactive which may notify or resist user
under unacceptable conditions, they may provide critical information of real time situations to
rescue or police or owner himself. Driver fatigue resulting from sleep disorders is an important
factor in the increasing number of accidents on today's roads. In this paper, we describe a real-
time safety prototype that controls the vehicle speed under driver fatigue. To advance a
system to detect fatigue symptoms in drivers and control the speed of vehicle to avoid
accidents is the purpose of such a mode. In this paper, we propose a driver drowsiness detection
system in which sensor like eye blink sensor are used for detecting drowsiness of driver. If the
driver is found to have sleep, buzzer will start buzzing and then turns the vehicle ignition off .

Detecting Driver Drowsiness Based on Sensors
Researchers have attempted to determine driver drowsiness using the following measures:
vehicle-based measures; behavioural measures and physiological measures. A detailed review
on these measures will provide insight on the present systems, issues associated with them and
the enhancements that need to be done to make a robust system. This paper reviews the three
measures as to the sensors used and discuss the advantages and limitations of each. The various
ways through which drowsiness has been experimentally manipulated is also discussed. It is
concluded that by designing a hybrid drowsiness detection system that combines non-intrusive
physiological measures with other measures one would accurately determine the drowsiness
level of a driver. A number of road accidents might then be avoided if an alert is sent to a driver
that is deemed drowsy.

Why OpenCV
Specific
OpenCV was designed for image processing. Every function and data structure has
been designed with an Image Processing application in mind. Meanwhile, Matlab, is
quite generic. You can get almost everything in the world by means of toolboxes. It
may be financial toolboxes or specialized DNA toolboxes.

Speedy
Matlab is just way too slow. Matlab itself was built upon Java. Also Java was built
upon C. So when we run a Matlab program, our computer gets busy trying to interpret
and compile all that complicated Matlab code.
Then it is turned into Java, and finally executes the code.

If we use C/C++, we don’t waste all that time. We directly provide machine
language code to the computer, and it gets executed. So ultimately we get more
image processing, and not more interpreting.
After doing some real time image processing with both Matlab and OpenCV, we
usually got very low speeds, a maximum of about 4-5 frames being processed per
second with Matlab. With OpenCV however, we get actual real time processing at
around 30 frames being processed per second.

Sure we pay the price for speed – a more cryptic language to deal with, but it’s
definitely worth it. We can do a lot more, like perform some really complex
mathematics on images using C and still get away with good enough speeds for your
application.

Efficient
Matlab uses just way too much system resources. With OpenCV, we can get away with
as little as 10mb RAM for a real-time application. Although with today’s computers, the
RAM factor isn’t a big thing to be worried about. However, our drowsiness detection
system is to be used inside a car in a way that is non-intrusive and small; so a low
processing requirement is vital.

Convolutional Neural Networks (CNN) Model

• The model we used is built with Keras using Convolutional Neural Networks (CNN).
A convolutional neural network is a special type of deep neural network which
performs extremely well for image classification purposes. A CNN basically consists
of an input layer, an output layer and a hidden layer which can have multiple numbers
of layers. A convolution operation is performed on these layers using a filter that
performs 2D matrix multiplication on the layer and filter.The CNN model architecture
consists of the following layers:Convolutional layer; 32 nodes, kernel size
3Convolutional layer; 32 nodes, kernel size 3Convolutional layer; 64 nodes, kernel size
3Fully connected layer; 128 nodesThe final layer is also a fully connected layer with 2
nodes. In all the layers, a Relu activation function is used except the output layer in
which we used Softmax.

• A convolution is the simple application of a filter to an input that results in an activation.
Repeated application of the same filter to an input results in a map of activations called a
feature map, indicating the locations and strength of a detected feature in an input, such
as an image.

• The innovation of convolutional neural networks is the ability to automatically learn a
large number of filters in parallel specific to a training dataset under the constraints of a
specific predictive modeling problem, such as image classification. The result is highly
specific features that can be detected anywhere on input images.

• CNN is a type of neural network model which allows us to extract higher
representations for the image content. Unlike the classical image recognition
where you define the image features yourself, CNN takes the image’s raw
pixel data, trains the model, then extracts the features automatically for better
classification.

FACIAL LANDMARKS

Facial landmarks are used to localize and represent salient regions of the face, such as:
• Eyes
• Eyebrows
• Nose
• Mouth
• Jawline

Facial landmarks have been successfully applied to face alignment, head pose
estimation, face swapping, blink detection and much more.
In today’s blog post we’ll be focusing on the basics of facial landmarks, including:
1. Exactly what facial landmarks are and how they work.
2. How to detect and extract facial landmarks from an image using dlib,
OpenCV, and Python.
Detecting facial landmarks is a subset of the shape prediction problem. Given an
input image (and normally an ROI that specifies the object of interest), a shape
predictor attempts to localize key points of interest along the shape.
In the context of facial landmarks, our goal is detect important facial structures on
the face using shape prediction methods.
Detecting facial landmarks is therefore a two step process:

• Step #1: Localize the face in the image.
• Step #2: Detect the key facial structures on the face ROI.

Understanding dlib’s facial landmark detector

The pre-trained facial landmark detector inside the dlib library is used to estimate the
location of 68 (x, y)-coordinates that map to facial structures on the face.

The indexes of the 68 coordinates can be visualized on the image below:

Figure2: Visualizing the 68 facial landmark coordinates from the iBUG 300-W dataset (higher

resolution).

These annotations are part of the 68 point iBUG 300-W dataset which the dlib facial
landmark predictor was trained on.

It’s important to note that other flavors of facial landmark detectors exist, including
the 194 point model that can be trained on the HELEN dataset.

Regardless of which dataset is used, the same dlib framework can be leveraged to
train a shape predictor on the input training data — this is useful if you would like to
train facial landmark detectors or custom shape predictors of your own.

Complete work plan layout

Step 1 – Take Image as Input from a Camera
With a webcam, we will take images as input. So to access the webcam, we made
an infinite loop that will capture each frame. We use the method provided by
OpenCV, cv2.VideoCapture(0) to access the camera and set the capture object
(cap). cap.read() will read each frame and we store the image in a frame variable.

Step 2 – Detect Face in the Image and Create a Region of Interest (ROI)
To detect the face in the image, we need to first convert the image into grayscale as
the OpenCV algorithm for object detection takes gray images in the input. We
don’t need color information to detect the objects. We will be using haar cascade
classifier to detect faces. This line is used to set our classifier face =
cv2.CascadeClassifier(‘ path to our haar cascade xml file’). Then we perform
the detection using faces = face.detectMultiScale(gray). It returns an array of
detections with x,y coordinates, and height, the width of the boundary box of the
object. Now we can iterate over the faces and draw boundary boxes for each face.

Step 3 – Detect the eyes from ROI and feed it to the classifier
The same procedure to detect faces is used to detect eyes. First, we set the cascade
classifier for eyes in leye and reye respectively then detect the eyes using left_eye
= leye.detectMultiScale(gray). Now we need to extract only the eyes data from
the full image. This can be achieved by extracting the boundary box of the eye and
then we can pull out the eye image from the frame with this code.

l_eye only contains the image data of the eye. This will be fed into our CNN
classifier which will predict if eyes are open or closed. Similarly, we will be
extracting the right eye into r_eye.

Step 4 – Classifier will Categorize whether Eyes are Open or Clos

We are using CNN classifier for predicting the eye status. To feed our image into the
model, we need to perform certain operations because the model needs the correct
dimensions to start with. First, we convert the color image into grayscale using r_eye =
cv2.cvtColor(r_eye, cv2.COLOR_BGR2GRAY). Then, we resize the image to 24*24
pixels as our model was trained on 24*24 pixel images cv2.resize(r_eye, (24,24)). We
normalize our data for better convergence r_eye = r_eye/255 (All values will be between
0-1). Expand the dimensions to feed into our classifier. We loaded our model using model
= load_model(‘models/cnnCat2.h5’) . Now we predict each eye with our model lpred =
model.predict_classes(l_eye). If the value of lpred[0] = 1, it states that eyes are open, if
value of lpred[0] = 0 then, it states that eyes are closed.

Step 5 – Calculate Score to Check whether Person is Drowsy
The score is basically a value we will use to determine how long the person has
closed his eyes. So if both eyes are closed, we will keep on increasing score and when
eyes are open, we decrease the score. We are drawing the result on the screen using
cv2.putText() function which will display real time status of the person.

https://en.wikipedia.org/wiki/Convolutional_neural_network

SOURCE CODE

 #Importing OpenCV Library for basic image processing functions
 import cv2
 # Numpy for array related functions
 import numpy as np
 # Dlib for deep learning based Modules and face landmark detection
 import dlib
 #face_utils for basic operations of conversion
 from imutils import face_utils

#Initializing the camera and taking the instance
 cap = cv2.VideoCapture(0)

#Initializing the face detector and landmark detector

 detector = dlib.get_frontal_face_detector()
 predictor = dlib.shape_predictor("C:\\Users\\utkarsh\\Desktop\\NEW Project\\Driver-
 Drowsiness-Detection-master\\shape_predictor_68_face_landmarks.dat")
 #status marking for current state2
 sleep = 0
 drowsy = 0
 active = 0
 status=""
 color=(0,0,0)
 def compute(ptA,ptB):
 dist = np.linalg.norm(ptA - ptB)
 return dist
 def blinked(a,b,c,d,e,f):
 up = compute(b,d) + compute(c,e)
 down = compute(a,f)
 ratio = up/(2.0*down)

 #Checking if it is blinked
 if(ratio>0.25):
 return 2
 elif(ratio>0.21 and ratio<=0.25):
 return 1

 else:
 return 0
 while True:
 _, frame = cap.read()
 gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

 faces = detector(gray)
 #detected face in faces array
 for face in faces:
 x1 = face.left()
 y1 = face.top()
 x2 = face.right()
 y2 = face.bottom()

 face_frame = frame.copy()
 cv2.rectangle(face_frame, (x1, y1), (x2, y2), (0, 255, 0), 2)

 landmarks = predictor(gray, face)
 landmarks = face_utils.shape_to_np(landmarks)

 #The numbers are actually the landmarks which will show eye
 left_blink = blinked(landmarks[36],landmarks[37],
 landmarks[38], landmarks[41], landmarks[40], landmarks[39])
 right_blink = blinked(landmarks[42],landmarks[43],
 landmarks[44], landmarks[47], landmarks[46], landmarks[45])

 #Now judge what to do for the eye blinks
 if(left_blink==0 or right_blink==0):
 sleep+=1
 drowsy=0
 active=0
 if(sleep>6):
 status="SLEEPING !!!"
 color = (255,0,0)

 elif(left_blink==1 or right_blink==1):
 sleep=0
 active=0

 drowsy+=1
 if(drowsy>6):
 status="Drowsy !"
 color = (0,0,255)

 else:
 drowsy=0
 sleep=0
 active+=1
 if(active>6):
 status="Active :)"
 color = (0,255,0)

 cv2.putText(frame, status, (100,100), cv2.FONT_HERSHEY_SIMPLEX, 1.2, color,3)

 for n in range(0, 68):
 (x,y) = landmarks[n]
 cv2.circle(face_frame, (x, y), 1, (255, 255, 255), -1)

 cv2.imshow("Frame", frame)
 cv2.imshow("Result of detector", face_frame)
 key = cv2.waitKey(1)
 if key == ord('q'):
 break;
 cap.release()
 cv2.destroyAllWindows()

OUTPUT

Face landmark detection mechanism
As you can see from above, we initialize the face landmark detector by using the pretrained

model. The model is based on ensemble regression trees because the model will predict

continuous numbers. You can read the details about the model.

That model is trained on the iBUG-300 W dataset, where it contains images and their

corresponding 68 face landmark points. In general, those landmark points belong to the nose, the

eyes, the mouth, and the edge of a face. You can download the dataset.

Here is the visualization of the face landmark locations below:

The image is created by Brandon Amos from CMU that creates OpenFace

Implement the face landmark detection
Now you know how the face landmark detection algorithm works. Now let’s implement the

algorithm. For implementing that, you can see the code below along with explanations on each

line of code:

By combining all the code as one, now let’s try the code! If the code doesn’t have any errors, the

webcam will display the result along with the keypoints. In my case, here is the result:

The image is captured by the author.

Face Landmark Detection with Mediapipe
Mediapipe is a tool for implementing ML-based computer vision solutions. The tool is created by

Google.

This tool contains varieties computer vision solutions, such as face detection, pose estimation,

object detection, and many more.

The advantage of this library is that you can apply the solutions on many platforms, such as web,

mobile, PC, and many more.

I’ve already explained in the previous section to you how to implement face landmark detection

using dlib. Now let’s implement the face landmark detection using Mediapipe.

The mechanism

The library uses the BlazeFace model for detecting face landmarks. BlazeFace is a deep learning

model that is already optimized for low spec devices like smartphones. Therefore, we can use the

model in real-time.

BlazeFace contains two main steps. First, the model detects one or more faces on an image.

Second, the image detects around 468 face keypoints by using regression.

Different from the dlib library, this model detects 3D coordinates. Those x and y coordinates are

normalized from the image scale. The z coordinate is retrieved by taking the relative calculation

between the screen and the model x coordinates. You can read more details.

Here is the flattened mesh from a face with their corresponding indexes:

Dlib
Dlib is a modern C++ toolkit containing machine learning algorithms and tools for creating
complex software in C++ to solve real world problems. It is used in both industry and academia
in a wide range of domains including robotics, embedded devices, mobile phones, and large high
performance computing environments. Dlib's open source licensing allows you to use it in any
application, free of charge.

To follow or participate in the development of dlib subscribe to dlib on github. Also be sure to
read the how to contribute page if you intend to submit code to the project.

To quickly get started using dlib, follow these instructions to build dlib.

Major Features

• Documentation
o Unlike a lot of open source projects, this one provides complete and precise

documentation for every class and function. There are also debugging modes that
check the documented preconditions for functions. When this is enabled it will
catch the vast majority of bugs caused by calling functions incorrectly or using
objects in an incorrect manner.

o Lots of example programs are provided
o I consider the documentation to be the most important part of the library. So if you

find anything that isn't documented, isn't clear, or has out of date documentation,
tell me and I will fix it.

• High Quality Portable Code
o Good unit test coverage. The ratio of unit test lines of code to library lines of code

is about 1 to 4.
o The library is tested regularly on MS Windows, Linux, and Mac OS X systems.

However, it should work on any POSIX system and has been used on Solaris,
HPUX, and the BSDs.

o No other packages are required to use the library. Only APIs that are provided by an
out of the box OS are needed.

o There is no installation or configure step needed before you can use the library. See
the How to compile page for details.

o All operating system specific code is isolated inside the OS abstraction layers which
are kept as small as possible. The rest of the library is either layered on top of the
OS abstraction layers or is pure ISO standard C++.

• Machine Learning Algorithms
o Deep Learning
o Conventional SMO based Support Vector Machines

for classification and regression
o Reduced-rank methods for large-scale classification and regression

http://dlib.net/license.html
https://github.com/davisking/dlib
http://dlib.net/howto_contribute.html
http://dlib.net/compile.html
http://dlib.net/compile.html
http://dlib.net/ml.html#add_layer
http://dlib.net/ml.html#svm_nu_trainer
http://dlib.net/ml.html#svr_trainer
http://dlib.net/ml.html#svm_c_ekm_trainer
http://dlib.net/ml.html#krr_trainer

o Relevance vector machines for classification and regression
o General purpose multiclass classification tools
o A Multiclass SVM
o A tool for solving the optimization problem associated with structural support

vector machines.
o Structural SVM tools for sequence labeling
o Structural SVM tools for solving assignment problems
o Structural SVM tools for object detection in images as well as more powerful (but

slower) deep learning tools for object detection.
o Structural SVM tools for labeling nodes in graphs
o A large-scale SVM-Rank implementation
o An online kernel RLS regression algorithm
o An online SVM classification algorithm
o Semidefinite Metric Learning
o An online kernelized centroid estimator/novelty detector and offline support

vector one-class classification
o Clustering algorithms: linear or kernel k-means, Chinese Whispers, and Newman

clustering.
o Radial Basis Function Networks
o Multi layer perceptrons

• Numerical Algorithms
o A fast matrix object implemented using the expression templates technique and

capable of using BLAS and LAPACK libraries when available.
o Numerous linear algebra and mathematical operations are defined for the matrix

object such as the singular value decomposition, transpose, trig functions, etc.
o General purpose unconstrained non-linear optimization algorithms using

the conjugate gradient, BFGS, and L-BFGS techniques
o Levenberg-Marquardt for solving non-linear least squares problems
o Box-constrained derivative-free optimization via the BOBYQA algorithm
o An implementation of the Optimized Cutting Plane Algorithm
o Several quadratic program solvers
o Combinatorial optimization tools for solving optimal assignment and min cut/max

flow problems as well as the CKY algorithm for finding the most probable parse
tree

o A big integer object
o A random number object

• Graphical Model Inference Algorithms
o Join tree algorithm for exact inference in a Bayesian network.
o Gibbs sampler markov chain monte carlo algorithm for approximate inference in a

Bayesian network.
o Routines for performing MAP inference in chain-structured, Potts, or general factor

graphs.
• Image Processing

o Routines for reading and writing common image formats.
o Automatic color space conversion between various pixel types

http://dlib.net/ml.html#rvm_trainer
http://dlib.net/ml.html#rvm_regression_trainer
http://dlib.net/ml.html#one_vs_one_trainer
http://dlib.net/ml.html#svm_multiclass_linear_trainer
http://dlib.net/ml.html#structural_svm_problem
http://dlib.net/ml.html#structural_svm_problem
http://dlib.net/ml.html#structural_sequence_labeling_trainer
http://dlib.net/ml.html#structural_assignment_trainer
http://dlib.net/ml.html#structural_object_detection_trainer
http://dlib.net/ml.html#loss_mmod_
http://dlib.net/ml.html#structural_graph_labeling_trainer
http://dlib.net/ml.html#svm_rank_trainer
http://dlib.net/ml.html#krls
http://dlib.net/ml.html#svm_pegasos
http://dlib.net/ml.html#vector_normalizer_frobmetric
http://dlib.net/ml.html#kcentroid
http://dlib.net/ml.html#svm_one_class_trainer
http://dlib.net/ml.html#find_clusters_using_kmeans
http://dlib.net/ml.html#kkmeans
http://dlib.net/ml.html#chinese_whispers
http://dlib.net/ml.html#newman_cluster
http://dlib.net/ml.html#newman_cluster
http://dlib.net/ml.html#rbf_network_trainer
http://dlib.net/ml.html#mlp
http://dlib.net/linear_algebra.html#matrix
http://dlib.net/dlib/matrix/matrix_la_abstract.h.html#svd
http://dlib.net/dlib/matrix/matrix_utilities_abstract.h.html#trans
http://dlib.net/dlib/matrix/matrix_math_functions_abstract.h.html#sin
http://dlib.net/optimization.html#cg_search_strategy
http://dlib.net/optimization.html#bfgs_search_strategy
http://dlib.net/optimization.html#lbfgs_search_strategy
http://dlib.net/optimization.html#solve_least_squares_lm
http://dlib.net/optimization.html#find_min_bobyqa
http://dlib.net/optimization.html#oca
http://dlib.net/optimization.html#solve_qp_using_smo
http://dlib.net/optimization.html#solve_qp2_using_smo
http://dlib.net/optimization.html#solve_qp3_using_smo
http://dlib.net/optimization.html#solve_qp4_using_smo
http://dlib.net/optimization.html#max_cost_assignment
http://dlib.net/optimization.html#min_cut
http://dlib.net/optimization.html#min_cut
http://dlib.net/optimization.html#find_max_parse_cky
http://dlib.net/algorithms.html#bigint
http://dlib.net/algorithms.html#rand
http://dlib.net/bayes.html#bayesian_network_join_tree
http://dlib.net/bayes.html#bayesian_network_gibbs_sampler
http://dlib.net/optimization.html#find_max_factor_graph_viterbi
http://dlib.net/optimization.html#find_max_factor_graph_potts
http://dlib.net/optimization.html#find_max_factor_graph_nmplp
http://dlib.net/imaging.html#load_image
http://dlib.net/imaging.html#save_bmp

o Common image operations such as edge finding and morphological operations
o Implementations of the SURF, HOG, and FHOG feature extraction algorithms.
o Tools for detecting objects in images including frontal face detection and object

pose estimation.
o High quality face recognition

• Threading
o The library provides a portable and simple threading API
o A message passing pipe for inter-thread and inter-process communication
o A timer object capable of generating events that are regularly spaced in time
o Threaded objects
o Threaded functions
o Parallel for loops
o A thread_pool with support for futures

• Networking
o The library provides a portable and simple TCP sockets API
o An object to help you make TCP based servers
o iostream and streambuf objects that enables TCP sockets to interoperate with the

C++ iostreams library
o A simple HTTP server object you can use to embed a web server into your

applications
o A message passing pipe for inter-thread and inter-process communication
o A tool used to implement algorithms using the Bulk Synchronous Parallel

(BSP) computing model
• Graphical User Interfaces

o The library provides a portable and simple core GUI API
o Implemented on top of the core GUI API are numerous widgets
o Unlike many other GUI toolkits, the entire dlib GUI toolkit is threadsafe

• Data Compression and Integrity Algorithms
o A CRC 32 object
o MD5 functions
o Various abstracted objects representing parts of data compression algorithms. Many

forms of the PPM algorithm are included.
• Testing

o A thread safe logger object styled after the popular Java logger log4j
o A modular unit testing framework
o Various assert macros useful for testing preconditions

• General Utilities
o A type-safe object to convert between big and little endian byte orderings
o A command line parser with the ability to parse and validate command lines with

various types of arguments and options
o An XML parser
o An object that can perform base64 conversions
o Many container classes
o Serialization support
o Many memory manager objects that implement different memory pooling strategies

http://dlib.net/imaging.html#get_surf_points
http://dlib.net/imaging.html#hog_image
http://dlib.net/imaging.html#extract_fhog_features
http://dlib.net/imaging.html#object_detector
http://dlib.net/imaging.html#get_frontal_face_detector
http://dlib.net/imaging.html#shape_predictor
http://dlib.net/imaging.html#shape_predictor
http://dlib.net/dnn_face_recognition_ex.cpp.html
http://dlib.net/api.html#threads
http://dlib.net/other.html#pipe
http://dlib.net/network.html#bridge
http://dlib.net/other.html#timer
http://dlib.net/api.html#threaded_object
http://dlib.net/api.html#thread_function
http://dlib.net/api.html#parallel_for
http://dlib.net/api.html#thread_pool
http://dlib.net/api.html#sockets
http://dlib.net/network.html#server
http://dlib.net/network.html#iosockstream
http://dlib.net/network.html#sockstreambuf
http://dlib.net/network.html#server_http
http://dlib.net/other.html#pipe
http://dlib.net/network.html#bridge
http://dlib.net/network.html#bsp_context
http://dlib.net/network.html#bsp_context
http://dlib.net/api.html#gui_core
http://dlib.net/api.html#gui_widgets
http://dlib.net/algorithms.html#crc32
http://dlib.net/algorithms.html#md5
http://dlib.net/compression.html
http://dlib.net/other.html#logger
http://dlib.net/other.html#dlib_testing_suite
http://dlib.net/metaprogramming.html
http://dlib.net/other.html#byte_orderer
http://dlib.net/parsing.html#cmd_line_parser
http://dlib.net/parsing.html#xml_parser
http://dlib.net/parsing.html#base64
http://dlib.net/containers.html
http://dlib.net/other.html#serialize
http://dlib.net/other.html#memory_manager

OPEN CV

OpenCV is a cross-platform library using which we can develop real-time computer vision
applications. It mainly focuses on image processing, video capture and analysis including
features like face detection and object detection.

Let’s start the chapter by defining the term "Computer Vision".

Computer Vision

Computer Vision can be defined as a discipline that explains how to reconstruct, interrupt, and
understand a 3D scene from its 2D images, in terms of the properties of the structure present in
the scene. It deals with modeling and replicating human vision using computer software and
hardware.

Computer Vision overlaps significantly with the following fields −

• Image Processing − It focuses on image manipulation.

• Pattern Recognition − It explains various techniques to classify patterns.

• Photogrammetry − It is concerned with obtaining accurate measurements from images.

Computer Vision Vs Image Processing
Image processing deals with image-to-image transformation. The input and output of image
processing are both images.

Computer vision is the construction of explicit, meaningful descriptions of physical objects
from their image. The output of computer vision is a description or an interpretation of
structures in 3D scene.

Applications of Computer Vision
Here we have listed down some of major domains where Computer Vision is heavily used.

Robotics Application
• Localization − Determine robot location automatically

• Navigation

• Obstacles avoidance

• Assembly (peg-in-hole, welding, painting)

• Manipulation (e.g. PUMA robot manipulator)

• Human Robot Interaction (HRI) − Intelligent robotics to interact with and serve people

Medicine Application

• Classification and detection (e.g. lesion or cells classification and tumor detection)
• 2D/3D segmentation
• 3D human organ reconstruction (MRI or ultrasound)
• Vision-guided robotics surgery

Industrial Automation Application

• Industrial inspection (defect detection)
• Assembly
• Barcode and package label reading
• Object sorting
• Document understanding (e.g. OCR)

Security Application
• Biometrics (iris, finger print, face recognition)

• Surveillance − Detecting certain suspicious activities or behaviors

Transportation Application

• Autonomous vehicle
• Safety, e.g., driver vigilance monitoring

Features of OpenCV Library

Using OpenCV library, you can −

• Read and write images

• Capture and save videos

• Process images (filter, transform)

• Perform feature detection

• Detect specific objects such as faces, eyes, cars, in the videos or images.

• Analyze the video, i.e., estimate the motion in it, subtract the background, and track
objects in it.

OpenCV was originally developed in C++. In addition to it, Python and Java bindings were
provided. OpenCV runs on various Operating Systems such as windows, Linux, OSx, FreeBSD,
Net BSD, Open BSD, etc.

This tutorial explains the concepts of OpenCV with examples using Java bindings.

OpenCV Library Modules
Following are the main library modules of the OpenCV library.

Core Functionality
This module covers the basic data structures such as Scalar, Point, Range, etc., that are used to
build OpenCV applications. In addition to these, it also includes the multidimensional
array Mat, which is used to store the images. In the Java library of OpenCV, this module is
included as a package with the name org.opencv.core.

Image Processing
This module covers various image processing operations such as image filtering, geometrical
image transformations, color space conversion, histograms, etc. In the Java library of OpenCV,
this module is included as a package with the name org.opencv.imgproc.

Video
This module covers the video analysis concepts such as motion estimation, background
subtraction, and object tracking. In the Java library of OpenCV, this module is included as a
package with the name org.opencv.video.

Video I/O

This module explains the video capturing and video codecs using OpenCV library. In the Java
library of OpenCV, this module is included as a package with the name org.opencv.videoio.

calib3d
This module includes algorithms regarding basic multiple-view geometry algorithms, single and
stereo camera calibration, object pose estimation, stereo correspondence and elements of 3D
reconstruction. In the Java library of OpenCV, this module is included as a package with the
name org.opencv.calib3d.

features2d
This module includes the concepts of feature detection and description. In the Java library of
OpenCV, this module is included as a package with the name org.opencv.features2d.

Objdetect
This module includes the detection of objects and instances of the predefined classes such as
faces, eyes, mugs, people, cars, etc. In the Java library of OpenCV, this module is included as a
package with the name org.opencv.objdetect.

Highgui
This is an easy-to-use interface with simple UI capabilities. In the Java library of OpenCV, the
features of this module is included in two different packages
namely, org.opencv.imgcodecs and org.opencv.videoio.

Principles of CNN

Convolution

 A convolution sweeps the window through images then calculates its input and filter dot product

 pixel values. This allows convolution to emphasize the relevant features.

 1D Convolution Operation with features(filter)

Look at this input. We will encase the window elements with a small window, dot multiplies it

with the filter elements, and save the output. We will repeat each operation to derive 5 output

elements as [0,0,0,1,0]. From this output, we can know that the feature change(1 becomes 0) in

sequence 4. The filter has done well to identify the input values. Similarly, this happened for 2D

Convolutions as well.

 2D Convolution Operation with features(filter) — Source

 With this computation, you detect a particular feature from the input image and produce feature

maps (convolved features) which emphasizes the important features. These convolved features

will always change depending on the filter values affected by the gradient descent to minimize

prediction loss.

Furthermore, The more filters deployed, the more features that CNN will extract. This allows

more features found but with the cost of more training time. There is a sweet spot for the number

of layers, usually, I will put 6 for 150 x 150 size of image.

https://github.com/PetarV-/TikZ/tree/master/2D%20Convolution

Feature map in each layer of CNN (source)

However, what about the corner or side values. They do not have enough adjacent blocks to fit

the filter. Should we remove them?

No, because you would lose important information. Therefore, what you want to do instead

is padding; you pad the adjacent feature map output with 0. By inserting 0 to its adjacent, you no

longer need to exclude these pixels.

Essentially, these convolution layers promote weight sharing to examine pixels in kernels and

develop visual context to classify images. Unlike Neural Network (NN) where the weights are

independent, CNN’s weights are attached to the neighboring pixels to extract features in every

part of the image.

Max Pooling

https://stackoverflow.com/questions/52741291/creating-a-cnn-model-in-keras-with-feature-maps-from-each-of-the-previous-filter

We take the maximum max pooling slices of each 2x2 filtered areas (source)

CNN uses max pooling to replace output with a max summary to reduce data size and processing

time. This allows you to determine features that produce the highest impact and reduces the risk

of overfitting.

Max pooling takes two hyperparameters: stride and size. The stride will determine the skip of

value pools while the size will determine how big the value pools in every skip.

Activation Function (ReLU and Sigmoid)

After each convolutional and max pooling operation, we can apply Rectified Linear Unit (ReLU).

The ReLU function mimics our neuron activations on a “big enough stimulus” to introduce

nonlinearity for values x>0 and returns 0 if it does not meet the condition. This method has been

effective to solve diminishing gradients. Weights that are very small will remain as 0 after the

ReLU activation function.

The CNN Big Picture + Fully Connected Layer

http://cs231n.github.io/convolutional-networks/

CNN architectures with convolutions, pooling (subsampling), and fully connected layers for
softmax activation function

Finally, we will serve the convolutional and max pooling feature map outputs with Fully

Connected Layer (FCL). We flatten the feature outputs to column vector and feed-forward it to

FCL. We wrap our features with softmax activation function which assign decimal probabilities

for each possible label which add up to 1.0. Every node in the previous layer is connected to the

last layer and represents which distinct label to output.

The end results? You will be able to classify the dogs and cat images as below.

Finding the perfect image classification with softmax (Source)

Cleaning and Preventing Overfitting in CNN

https://colab.sandbox.google.com/drive/1v0VWuWnmP1Ns-PAUCiksxbzpy3AopXjc

Unfortunately, CNN is not immune to overfitting. If not monitored properly, the model can get

trained too much that it could not generalize unseen data. Through my experiences, I have made

many beginner overfitting mistakes and how I resolve them as following:

Using test set as the validation set to test the model

Even though we do not use the test set to train the model, the model could adjust the loss function

with the test set. This will base the training on the test dataset and is a common cause of

overfitting. Therefore, during the training, we need to use validation sets then ultimately test the

finished model with the unseen test set.

Dataset is relatively small

When dataset is small, it is very easy to specialize onto a few set of rules and forget to generalize.

For example, if your model only sees boots as shoes, then the next time you show high heels, it

would not recognize them as shoes.

Therefore, in the case of small training data set, you need to artificially boost the diversity and

number of training examples. One way of doing this is to add image augmentations and creating

new variants. These include translating images and creating dimension changes such as zoom,

crop, flips, etc.

Image augmentation Source

Over Memorization

Too many neurons, layers, and training epochs promote memorization and inhibit generalize. The

more you train your model, the more likely it becomes too specialized. To counter this, you could

reduce the complexity by removing a few hidden layers and neurons per layer.

Alternatively, you could also use regularization techniques such as Dropout to remove activation

unit in every gradient step training. Each epoch training deactivates different neurons.

Since the number of gradient steps is usually high, all neurons will averagely have same

occurrences for dropout. Intuitively, the more you drop out, the less likely your model

memorizes.

https://www.javatpoint.com/pytorch-data-augmentation-process

Drop out images

Dealing with color images

You can also easily include images with 3 layers of color channels: Red Green Blue (RGB).

During convolution, you use 3 separate convolutions for each color channel and train 3-level

stack of filters. This allows you to retrieve 3D feature maps.

How could we do better? — Transfer Learning

As the use cases become complex, the complexity of the model needs to improve as well. With a

few layers of CNN, you could determine simple features to classify dogs and cats. However, at

the deep learning stage, you might want to classify more complex objects from images and use

more data. Therefore, rather than training them yourself, transfer learning allows you to

leverage existing models to classify quickly.

Transfer learning is a technique that reuses an existing model to the current model. You could

produce on top of existing models that were carefully designed by experts and trained with

millions of pictures.

However, there are a few caveats that you need to follow. First, you need to modify the final layer

to match the number of possible classes. Second, you will need to freeze the parameters and set

the trained model variables to immutable. This prevents the model from changing significantly.

One famous Transfer Learning that you could use is MobileNet. It is created for mobile devices

which have less memory and computational resources. You can find MobileNet in Tensorflow

Hub which gathers many pretrained models. You can just simply add your own FCL Layer on top

of these models.

Conclusion: CNN to perceive our visual world

CNN is a tough subject but a rewarding technique to learn. It teaches us how we perceive images

and learn useful applications to classify images and videos. After learning CNN, I realized that I

could use this for my project at Google to detect phishing attacks.

https://www.tensorflow.org/hub
https://www.tensorflow.org/hub

REFERENCE

1. DRIVER FATIGUE AND ROAD ACCIDENTS A LITERATURE REVIEW and

POSITION PAPER" (PDF). Royal Society for the Prevention of Accidents.
February 2001. Archived from the original (PDF) on 2017-03-01. Retrieved 2017-
02-28.

2. 4.1.03. Driver Drowsiness Detection System for Cars". Retrieved 2015-11-05.
3. Sgambati, Frank, Driver Drowsiness Detection
4. Hupp, Stephen L. (October 1998). "Landmark Documents in American History.

Version 2.0". Electronic Resources Review. 2 (10): 120–
121. doi:10.1108/err.1998.2.10.120.111. ISSN 1364-5137.

5. Walger, D.J.; Breckon, T.P.; Gaszczak, A.; Popham, T. (November 2014). "A
Comparison of Features for Regression-based Driver Head Pose Estimation under
Varying Illumination Conditions" (PDF). Proc. International Workshop on
Computational Intelligence for Multimedia Understanding. IEEE: 1–
5. doi:10.1109/IWCIM.2014.7008805. ISBN 978-1-4799-7971-4. S2CID 14928709.
walger14headpose.

6. Wijnands, J.S.; Thompson, J.; Nice, K.A.; Aschwanden, G.D.P.A.; Stevenson, M.
(2019). "Real-time monitoring of driver drowsiness on mobile platforms using 3D
neural networks". Neural Computing and Applications. 32 (13): 9731–
9743. arXiv:1910.06540. Bibcode:2019arXiv191006540W. doi:10.1007/s00521-019-
04506-0. S2CID 204459652.

7. Hossain, M. Y.; George, F. P. (2018). "IOT Based Real-Time Drowsy Driving
Detection System for the Prevention of Road Accidents". 2018 International
Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS). 3: 190–
195. doi:10.1109/ICIIBMS.2018.8550026. ISBN 978-1-5386-7516-8. S2CID
54442702.

8. https://www.audi-
mediaservices.com/publish/ms/content/en/public/hintergrundberichte/2012/03/05/a_
state ment_about/driver_assistance.html Driver assistance systems

9. "BMW model upgrade measures taking effect from the summer of 2013". BMW.
2013- 06-05. Retrieved 2015-11-05.

10. "Driver drowsiness detection". Robert Bosch GmbH. Retrieved 2015-11-05.

http://www.ibrarian.net/navon/paper/DRIVER_FATIGUE_AND_ROAD_ACCIDENTS_A_LITERATURE_RE.pdf?paperid=1229744
http://81.47.175.201/compass/index.php?option=com_content&view=article&id=506%3A413-driver-drowsiness-detection-system-for-cars&catid=22%3Asmart-cars
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1108%2Ferr.1998.2.10.120.111
https://en.wikipedia.org/wiki/ISSN_(identifier)
https://www.worldcat.org/issn/1364-5137
http://community.dur.ac.uk/toby.breckon/publications/papers/walger14headpose.pdf
http://community.dur.ac.uk/toby.breckon/publications/papers/walger14headpose.pdf
http://community.dur.ac.uk/toby.breckon/publications/papers/walger14headpose.pdf
http://community.dur.ac.uk/toby.breckon/publications/papers/walger14headpose.pdf
http://community.dur.ac.uk/toby.breckon/publications/papers/walger14headpose.pdf
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1109%2FIWCIM.2014.7008805
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/S2CID_(identifier)
https://en.wikipedia.org/wiki/ArXiv_(identifier)
https://arxiv.org/abs/1910.06540
https://en.wikipedia.org/wiki/Bibcode_(identifier)
https://ui.adsabs.harvard.edu/abs/2019arXiv191006540W
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1007%2Fs00521-019-04506-0
https://doi.org/10.1007%2Fs00521-019-04506-0
https://en.wikipedia.org/wiki/S2CID_(identifier)
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1109%2FICIIBMS.2018.8550026
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/S2CID_(identifier)
https://en.wikipedia.org/wiki/S2CID_(identifier)
https://www.audi-mediaservices.com/publish/ms/content/en/public/hintergrundberichte/2012/03/05/a_statement_about/driver_assistance.html
https://www.audi-mediaservices.com/publish/ms/content/en/public/hintergrundberichte/2012/03/05/a_statement_about/driver_assistance.html
https://www.audi-mediaservices.com/publish/ms/content/en/public/hintergrundberichte/2012/03/05/a_statement_about/driver_assistance.html
https://www.audi-mediaservices.com/publish/ms/content/en/public/hintergrundberichte/2012/03/05/a_statement_about/driver_assistance.html
https://www.audi-mediaservices.com/publish/ms/content/en/public/hintergrundberichte/2012/03/05/a_statement_about/driver_assistance.html
https://www.press.bmwgroup.com/global/pressDetail.html?title=bmw-model-upgrade-measures-taking-effect-from-the-summer-of-2013&outputChannelId=6&id=T0141144EN&left_menu_item=node__4101
http://products.bosch-mobility-solutions.com/en/de/driving_safety/driving_safety_systems_for_passenger_cars_1/driver_assistance_systems/driver_assistance_systems_2.html
https://en.wikipedia.org/wiki/Robert_Bosch_GmbH

	A Project/Dissertation Review-2 Report
	Under The Supervision of Dr. JOHN A
	SCHOOL OF COMPUTING SCIENCE AND ENGINEERING DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING GALGOTIAS UNIVERSITY, GREATER NOIDA
	CANDIDATE’S DECLARATION
	TABLE OF CONTENT
	INTRODUCTION
	LITERATURE SURVEY
	Driver Drowsiness Detection System and Techniques
	Implementation of the Driver Drowsiness Detection System
	Detecting Driver Drowsiness Based on Sensors

	Why OpenCV
	Specific
	Speedy

	Convolutional Neural Networks (CNN) Model
	Understanding dlib’s facial landmark detector
	Complete work plan layout
	Step 1 – Take Image as Input from a Camera
	Step 2 – Detect Face in the Image and Create a Region of Interest (ROI)
	Step 3 – Detect the eyes from ROI and feed it to the classifier
	Step 4 – Classifier will Categorize whether Eyes are Open or Clos
	Step 5 – Calculate Score to Check whether Person is Drowsy

	SOURCE CODE
	#Importing OpenCV Library for basic image processing functions
	import cv2
	# Numpy for array related functions
	import numpy as np
	# Dlib for deep learning based Modules and face landmark detection
	import dlib
	#face_utils for basic operations of conversion
	from imutils import face_utils
	#Initializing the camera and taking the instance
	cap = cv2.VideoCapture(0)
	#Initializing the face detector and landmark detector
	detector = dlib.get_frontal_face_detector()
	predictor = dlib.shape_predictor("C:\\Users\\utkarsh\\Desktop\\NEW Project\\Driver-
	Drowsiness-Detection-master\\shape_predictor_68_face_landmarks.dat")
	#status marking for current state2
	sleep = 0
	drowsy = 0
	active = 0
	status=""
	color=(0,0,0)
	def compute(ptA,ptB):
	dist = np.linalg.norm(ptA - ptB)
	return dist
	def blinked(a,b,c,d,e,f):
	up = compute(b,d) + compute(c,e)
	down = compute(a,f)
	ratio = up/(2.0*down)
	#Checking if it is blinked
	if(ratio>0.25):
	return 2
	elif(ratio>0.21 and ratio<=0.25):
	return 1
	else:
	return 0
	while True:
	_, frame = cap.read()
	gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
	faces = detector(gray)
	#detected face in faces array
	for face in faces:
	x1 = face.left()
	y1 = face.top()
	x2 = face.right()
	y2 = face.bottom()
	face_frame = frame.copy()
	cv2.rectangle(face_frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
	landmarks = predictor(gray, face)
	landmarks = face_utils.shape_to_np(landmarks)
	#The numbers are actually the landmarks which will show eye
	left_blink = blinked(landmarks[36],landmarks[37],
	landmarks[38], landmarks[41], landmarks[40], landmarks[39])
	right_blink = blinked(landmarks[42],landmarks[43],
	landmarks[44], landmarks[47], landmarks[46], landmarks[45])
	#Now judge what to do for the eye blinks
	if(left_blink==0 or right_blink==0):
	sleep+=1
	drowsy=0
	active=0
	if(sleep>6):
	status="SLEEPING !!!"
	color = (255,0,0)
	elif(left_blink==1 or right_blink==1):
	sleep=0
	active=0
	drowsy+=1
	if(drowsy>6):
	status="Drowsy !"
	color = (0,0,255)
	else:
	drowsy=0
	sleep=0
	active+=1
	if(active>6):
	status="Active :)"
	color = (0,255,0)
	cv2.putText(frame, status, (100,100), cv2.FONT_HERSHEY_SIMPLEX, 1.2, color,3)
	for n in range(0, 68):
	(x,y) = landmarks[n]
	cv2.circle(face_frame, (x, y), 1, (255, 255, 255), -1)
	cv2.imshow("Frame", frame)
	cv2.imshow("Result of detector", face_frame)
	key = cv2.waitKey(1)
	if key == ord('q'):
	break;
	cap.release()
	cv2.destroyAllWindows()
	OUTPUT
	Face landmark detection mechanism
	Implement the face landmark detection

	Face Landmark Detection with Mediapipe
	The mechanism
	Major Features
	Computer Vision
	Computer Vision Vs Image Processing

	Applications of Computer Vision
	Robotics Application
	Medicine Application
	Industrial Automation Application
	Security Application
	Transportation Application

	Features of OpenCV Library
	OpenCV Library Modules
	Core Functionality
	Image Processing
	Video
	Video I/O
	calib3d
	features2d
	Objdetect
	Highgui

	Principles of CNN
	Convolution
	Max Pooling
	Activation Function (ReLU and Sigmoid)

	The CNN Big Picture + Fully Connected Layer
	Cleaning and Preventing Overfitting in CNN
	Using test set as the validation set to test the model
	Dataset is relatively small
	Over Memorization
	Dealing with color images

	How could we do better? — Transfer Learning
	Conclusion: CNN to perceive our visual world
	REFERENCE

