
A Project Report

on

Stock market prediction using Deep learning

Submitted in partial fulfillment of the

requirement for the award of the degree of

BACHELOROF TECHNOLOGY

CSE

UnderTheSupervision of :

Ravinder Ahuja

Submitted By :

PAWAN KUMAR
18SCSE1010656

SCHOOL OF COMPUTING SCIENCE AND ENGINEERING DEPARTMENT
OF COMPUTER SCIENCE AND ENGINEERING / DEPARTMENT OF

COMPUTERAPPLICATION
GALGOTIAS UNIVERSITY, GREATER NOIDA

INDIA
DECEMBER, 2021



SCHOOL OF COMPUTING SCIENCE AND
ENGINEERING

GALGOTIAS UNIVERSITY, GREATER NOIDA

CANDIDATE’S DECLARATION

I hereby certify that the work which is being presented in the project , entitled “ Stock

market prediction using Deep learning” in partial fulfillment of the requirements for the

award of the Bachelor of Technology submitted in the School of Computing Science and

Engineering of Galgotias University, Greater Noida, is an original work carried out

during the period of July, 2021 to December and 2021, under the supervision of

Ravinder Ahuja , Department of Computer Science and Engineering/Computer

Application and Information and Science, of School of Computing Science and

Engineering , Galgotias University, Greater Noida .

The matter presented in the project has not been submitted by me for the award of any

other degree of this or any other places.

Pawan Kumar

18SCSE1010656

This is to certify that the above statement made by the candidates is correct to the best of

my knowledge.

Ravinder Ahuja



CERTIFICATE

The Final Project Viva-Voce examination of Pawan Kumar 18scse1010656 has been

held on _________________ and his work is recommended for the award of Bachelor of

Technology , Computer Science and Engineering .

Signature of Examiner(s) Signature of Supervisor(s)

Signature of Dean

Date: December, 2021

Place: Greater Noida



Table of Contents

Title Page No.
Candidates Declaration I
Certificate II
Abstract III
Chapter 1 Introduction 1

1.1 Introduction 2
1.2 Formulation of Problem 3

1.2.1 Tool and Technology Used
Chapter 2 Literature Survey/Project Design 5

Chapter 3 Functionality/Working of Project 12

Chapter 4 Results and Discussion 23

Chapter 5 Conclusion and Future Scope 48
5.1 Conclusion 49
Reference 53



ABSTRACT

A stock (also known as equity) is a security that represents the ownership

of a fraction of a corporation and are the backbone of any investment

portfolio. Advances in trading technology have opened up markets so that

nowadays almost everyone hasstocks. From in the last few decades, there

has been a dramatic increase in the number of descendants of the average

person stock market. In a volatile financial market, such as the stock

market, it is important that have the most accurate prediction of future

practice. Due to the financial of the record, it is imperative that there be a

secure prediction of stock market. In this research paper we will focus on

Long-Short-Term Memory(LSTM) Recurrent Neural Network belongs to

the family of deep learning algorithms.

While predicting the actual price of a stock is an uphill climb, we can

build a model that will predict whether the price will go up or down. It’s

important to note that there are always other factors that affect the prices

of stocks, such as the political atmosphere and the market.

In Stock Market Prediction, the aim is to predict the future value of the

financial stocks of a company. The recent trend in stock market prediction

technologies is the use of machine learning which makes predictions based on

the values of current stock market indices by training on their previous values.



Machine learning itself employs different models to make prediction easier

and authentic. The paper focuses on the use of Regression and LSTM based

Machine learning to predict stock values. Factors considered are open, close,

low, high and volume.

Keywords: random forest, prediction, time series analysis



CHAPTER-1

1. Introduction

Stock market is one of the major fields that investors are dedicated to, thus

stock market price trend prediction is always a hot topic for researchers from

both financial and technical domains. In this research, our objective is to

build a state-of-art prediction model for price trend prediction, which focuses

on short-term price trend prediction.

Predicting how the stock market will perform is one of the most difficult

things to do. There are so many factors involved in the prediction – physical

factors vs. psychological, rational and irrational behavior, etc. All these

aspects combine to make share prices volatile and very difficult to predict

with a high degree of accuracy.

Using features like the latest announcements about an organization, their

quarterly revenue results, etc., machine learning techniques have the potential

to unearth patterns and insights we didn’t see before, and these can be used to

make unerringly accurate predictions.

Prediction and analysis of the stock market are some of the most complicated

tasks to do. There are several reasons for this, such as the market volatility

and so many other dependent and independent factors for deciding the value

of a particular stock in the market. These factors make it very difficult for any

stock market analyst to predict the rise and fall with high accuracy degrees.



However, with the advent of Machine Learning and its robust algorithms, the

latest market analysis and Stock Market Prediction developments have started

incorporating such techniques in understanding the stock market data.

In short, Machine Learning Algorithms are being used widely by many

organisations in analysing and predicting stock values. This article shall go

through a simple Implementation of analysing and predicting a Popular

Worldwide Online Retail Store’s stock values using several Machine

Learning Algorithms in Python.



1.2 Formulation of Problem

Before we get into the program’s implementation to predict the stock market

values, let us visualise the data on which we will be working. Here, we will

be analysing the stock value of Zomato Inc of India from the Bombay Stock

Exchange located in Mumbai , India. The stock value data will be presented

in the form of a Comma Separated File (.csv), which can be opened and

viewed using Excel or a Spreadsheet.

Zomato has its stocks registered in BSE & NSE and has its values updated

during every working day of the stock market. Note that the market doesn’t

allow trading to happen on Saturdays and Sundays , hence there is a gap

between the two dates. For each date, the Opening Value of the stock,

Highest and Lowest values of that stock on the same days are noted, along

with the Closing Value at the end of the day.

The Adjusted Close Value shows the stock’s value after dividends are posted .

Additionally, the total volume of the stocks in the market are also given, With

these data, it is up to the work of a Machine Learning/Data Scientist to study

the data and implement several algorithms that can extract patterns from the

Zomato Inc’s historical data.



1.2.1 Technology Used

1. Programming Language : Python , DBMS

2. Tools : Heroku , Git , Visual Studio Code

3. Computer with minimum 4GB ram And Good graphic power



LITERATURE REVIEW

For any project planning activity, a good reading of existing projects, ideas

and technology is needed. The following subsections provide much needed

excerpts from important research papers and literary documents related to

Stocks, Artificial Neural Network, Auto Regressive Moving Average and

Natural Language Processing.

Factors of change for Stock Markets :

1. Stock Prices: Stock Prices or share prices change every day depending on

the market, economy and company’s financial performance and outlook.

2. Sentiment: The news headlines, important statements made by key people

of a company, announcements all contribute to stock values in a positive,

negative or neutral way.

3. Market and Environmental Factors: Market and Environmental factors like

Economic boom, depression, political scenario, natural disasters etc.

contribute to the performance of stock market in general. Before deciding on

the project, lot of research papers of the domain and other articles related to

stocks, share markets and machine learning. Following inferences were made

from these papers.



4. Formula for calculation of Stock Prices: The methodology used in this

study considered the short-term historical stock prices as well as the day of

week as inputs.

The overall procedure is governed by the following

equation:

y(k) = f (y(k − 1), y(k − 2), y(k − 3), ..., y(k − n), D(k))

where y(k) is the stock price at time k, n is the number of historical days, and

D(k) is the day of week. Selection of Algorithm: -Three algorithms were

tested with input datasets of Google Inc. for the Nov to Dec 15. Tested

models were Random Forest, Logical Regression and Multi-Layer Perceptron.

1. Random forest[7]: - Random forest is a faster calculation method but is the

least accurate when compared with the other two algorithms. Random forest

explores all the possible nodes of a tree and selects the

maxima. Accuracy:50-60%. Good for short term predictions and gains .

2. Logical Regression[7]: -The logical regression method makes a graph of

the dataset present. It converts the graph to an equation form and substitutes

values. Accuracy: 60-64%. Good for midrange predictions.

3. Artificial Neural Network using Multi-Layer Perceptron Classifier[8]:-The

Neural network (Multilayer Perceptron Model) works in layers and data is

processed in each layer. The final layer produces the output. This is the best



algorithm for long term predictions ranging from 300 days and above.

Accuracy: 75% and above.

Fig-1 Different Prediction Algorithms and their accuracy



METHODOLOGY

The implementation of this paper begins with preprocessing the data

collected from stock market pickled data set. This preprocessed data is

classified using popular machine learning algorithm to calculate the polarity

score. In order to prepare the data ready to apply Random forest algorithm,

noise in the data is removed by smoothing. The working of random forest

algorithm is presented below:

i. Randomly select “k” features from total “m” features, where k << m

ii. Among the “k” features, calculate the node “d” using the best split point.

iii. Split the node into daughter nodes using the best split.

iv. Repeat 1 to 3 steps until the “l” number of nodes has been reached.

v. Build forest by repeating steps 1 to 4 for “n” number times to create “n”

number of trees.

Random forest algorithm starts by randomly selecting k features from m

available features. Over the k selected features a point d has to be selected in

order to split the features. This process would be executed iteratively to

obtain the tree structure with a root node and leaf nodes as the target features

to be processed further. This results in n number of trees in the generated



forest. The algorithm is now tested for its efficiency by measuring the

accuracy of predicting the stock price and also by calculating the variance

score generated by the algorithm, finally ending up the process by comparing

random forest with logistic regression. The experimental results obtained

prove that Random Forest algorithm is efficient in predicting the stock price

through achieving better score of the regression metrics over logistic

regression.

The results obtained are plotted in the form of a graph as presented below:

All the calculations are done based upon the four regression values variance

score, mean

absolute error, mean squared error, mean squared log error .



PROJECT DESIGN

As studied in Literature review we can say that stock market prediction is

very difficult and most existing systems only tend to use a single model to

predict stock prices, the intention is to use Auto regressive Moving Average

and Neural Network using Multi-Layer Perceptron together to obtain a more

accurate prediction. Along with that for investor to obtain a better

understanding of companies’ impression on peoples mind the system also

should have a sentiment analyser.

Fig-2: Data Flow diagram of system





We propose to use LSTM (Long Short Term Memory) algorithm to

provide efficientstock price prediction .



LSTM networks are an extension of recurrent neural networks (RNNs)

mainly introduced to handle situations where RNNs fail. Talking about RNN,

it is a network that works on the present input by taking into consideration the

previous output (feedback) and storing in its memory for a short period of

time (short-term memory). Out of its various applications, the most popular

ones are in the fields of speech processing, non-Markovian control, and music

composition. Nevertheless, there are drawbacks to RNNs. First, it fails to

store information for a longer period of time. At times, a reference to certain

information stored quite a long time ago is required to predict the current

output. But RNNs are absolutely incapable of handling such “long-term

dependencies”. Second, there is no finer control over which part of the

context needs to be carried forward and how much of the past needs to be

‘forgotten’. Other issues with RNNs are exploding and vanishing gradients

(explained later) which occur during the training process of a network

through backtracking. Thus, Long Short-Term Memory (LSTM) was brought

into the picture. It has been so designed that the vanishing gradient problem is

almost completely removed, while the training model is left unaltered. Long

time lags in certain problems are bridged using LSTMs where they also

handle noise, distributed representations, and continuous values. With

LSTMs, there is no need to keep a finite number of states from beforehand as

required in the hidden Markov model (HMM). LSTMs provide us with a

large range of parameters such as learning rates, and input and output biases.

Hence, no need for fine adjustments. The complexity to update each weight is

reduced to O(1) with LSTMs, similar to that of Back Propagation Through

Time (BPTT), which is an advantage.



Architecture:

The basic difference between the architectures of RNNs and LSTMs is that

the hidden layer of LSTM is a gated unit or gated cell. It consists of four

layers that interact with one another in a way to produce the output of that

cell along with the cell state. These two things are then passed onto the next

hidden layer. Unlike RNNs which have got the only single neural net layer of

tanh, LSTMs comprises of three logistic sigmoid gates and one tanh layer.

Gates have been introduced in order to limit the information that is passed

through the cell. They determine which part of the information will be needed

by the next cell and which part is to be discarded. The output is usually in the

range of 0-1 where ‘0’ means ‘reject all’ and ‘1’ means ‘include all’.



Let’s take an example to understand how LSTM works. Here we have two

sentences separated by a full stop. The first sentence is “Bob is a nice person”

and the second sentence is “Dan, on the Other hand, is evil”. It is very clear,

in the first sentence we are talking about Bob and as soon as we encounter the

full stop(.) we started talking about Dan.

As we move from the first sentence to the second sentence, our network

should realize that we are no more talking about Bob. Now our subject is Dan.

Here, the Forget gate of the network allows it to forget about it. Let’s

understand the roles played by these gates in LSTM architecture.



WORKING OF PROJECT

We shall move on to the part where we put the LSTM into use in predicting

the stock value using Machine Learning in Python.

Importing the Libraries

As we all know, the first step is to import libraries that are necessary to

reprocesses the stock data of Microsoft Corporation and the other required

libraries for building and visualising the outputs of the LSTM model. For this,

we will use the Keras library under the TensorFlow framework. The required

modules are imported from the Keras library individually.

#Importing the Libraries

import pandas as PD

import NumPy as np

%matplotlib inline

import matplotlib. pyplot as plt

import matplotlib

from sklearn. Preprocessing import MinMaxScaler

from Keras. layers import LSTM, Dense, Dropout



from sklearn.model_selection import TimeSeriesSplit

from sklearn.metrics import mean_squared_error, r2_score

import matplotlib. dates as mandates

from sklearn. Preprocessing import MinMaxScaler

from sklearn import linear_model

from Keras. Models import Sequential

from Keras. Layers import Dense

import Keras. Backend as K

from Keras. Callbacks import EarlyStopping

from Keras. Optimisers import Adam

from Keras. Models import load_model

from Keras. Layers import LSTM

from Keras. utils.vis_utils import plot_model



The dataset

This section details the data that was extracted from the public data sources,

and the final dataset that was prepared. Stock market-related data are diverse,

so we first compared the related works from the survey of financial research

works in stock market data analysis to specify the data collection directions.

After collecting the data, we defined a data structure of the dataset. Given

below, we describe the dataset in detail, including the data structure, and data

tables in each category of data with the segment definitions.

Description of our dataset

In this section, we will describe the dataset in detail. This dataset consists of

3558 stocks from the Chinese stock market. Besides the daily price data,

daily fundamental data of each stock ID, we also collected the suspending

and resuming history, top 10 shareholders, etc. We list two reasons that we

choose 2 years as the time span of this dataset: (1) most of the investors

perform stock market price trend analysis using the data within the latest

2 years, (2) using more recent data would benefit the analysis result. We

collected data through the open-sourced API, namely Tushare [43], mean-

while we also leveraged a web-scraping technique to collect data from Sina

Finance web pages, SWS Research website.



Data structure

Figure 1 illustrates all the data tables in the dataset. We collected four

categories of data in this dataset: (1) basic data, (2) trading data, (3) finance

data, and (4) other reference data. All the data tables can be linked to each

other by a common field called “Stock ID” It is a unique stock identifier

registered in the Chinese Stock market. Table 1 shows an overview of the

dataset.



Loading the Dataset

The next step is to load in our training dataset and select the Open and

Highcolumnsthat we’ll use in our modeling.

dataset_train = pd.read_csv('NSE-

TATAGLOBAL.csv') training_set =

dataset_train.iloc[:, 1:2].values

Getting Visualising the Data

Using the Pandas Data reader library, we shall upload the local system’s

stock data as a Comma Separated Value (.csv) file and store it to a pandas

DataFrame. Finally, we shall also view the data.

#Get the Dataset

df =

pd.read_csv(“MicrosoftStockData.csv”,na_values=[‘null’],index_col=’Date’,

parse_dates=True,infer_datetime_format=True)

df.head()



Feature Scaling

from sklearn.preprocessing import

MinMaxScaler sc =

MinMaxScaler(feature_range = (0, 1))

training_set_scaled =

sc.fit_transform(training_set)

Creating Data with Timesteps

LSTMs expect our data to be in a specific format, usually a 3D array. We

start by creating data in 60 timesteps and converting it into an array using

NumPy. Next, we convert the data into a 3D dimension array with X_train

samples, 60 timestamps, andone feature at each step.

X_train =

[] y_train

= []

for i in range(60, 2035):

X_train.append(training_set_scaled[i-

60:i, 0])

y_train.append(training_set_scaled[i, 0])

X_train, y_train = np.array(X_train), np.array(y_train)

X_train = np.reshape(X_train, (X_train.shape[0], X_train.shape[1], 1))



Building the LSTM

from keras.models import

Sequential from keras.layers

import Dense

from keras.layers import

LSTM from keras.layers

import Dropout

regressor = Sequential()

regressor.add(LSTM(units = 50, return_sequences = True,

input_shape =(X_train.shape[1], 1)))

regressor.add(Dropout(0.2))

regressor.add(LSTM(units = 50, return_sequences

= True))regressor.add(Dropout(0.2))

regressor.add(LSTM(units = 50, return_sequences

= True))regressor.add(Dropout(0.2))

regressor.add(LSTM(units =

50))

regressor.add(Dropout(0.2))



regressor.add(Dense(units = 1))

regressor.compile(optimizer = 'adam', loss =

'mean_squared_error') regressor.fit(X_train, y_train,

epochs = 100, batch_size = 32)



Predicting Future Stock using the Test Set

dataset_test = pd.read_csv('tatatest.csv')

real_stock_price = dataset_test.iloc[:,

1:2].values

dataset_total = pd.concat((dataset_train['Open'], dataset_test['Open']),

axis = 0)inputs = dataset_total[len(dataset_total) - len(dataset_test) -

60:].values

inputs = inputs.reshape(-

1,1) inputs =

sc.transform(inputs)

X_test = []

for i in range(60, 76):

X_test.append(inputs[i-60:i,

0])

X_test = np.array(X_test)

X_test = np.reshape(X_test, (X_test.shape[0],

X_test.shape[1], 1))

predicted_stock_price = regressor.predict(X_test)

predicted_stock_price=sc.inverse_transform(predicted_stoc

k_price)



Plotting the Results

plt.plot(real_stock_price, color = 'black', label = 'TATA Stock Price')

plt.plot(predicted_stock_price, color = 'green', label = 'Predicted TATA

Stock Price')

plt.title('TATA Stock Price

Prediction')plt.xlabel('Time')

plt.ylabel('TATA Stock

Price')plt.legend()

plt.show()



We will first sort the dataset in ascending order and then create a separate

dataset so that any new feature created does not affect the original data.

#setting index as date values

df['Date'] = pd.to_datetime(df.Date,format='%Y-%m-%d')

df.index = df['Date']

#sorting

data = df.sort_index(ascending=True, axis=0)

#creating a separate dataset

new_data = pd.DataFrame(index=range(0,len(df)),columns=['Date', 'Close'])

for i in range(0,len(data)):

new_data['Date'][i] = data['Date'][i]

new_data['Close'][i] = data['Close'][i]

#create features

from fastai.structured import add_datepart

add_datepart(new_data, 'Date')

new_data.drop('Elapsed', axis=1, inplace=True) #elapsed will be the time

stamp



new_data['mon_fri'] = 0

for i in range(0,len(new_data)):

if (new_data['Dayofweek'][i] == 0 or new_data['Dayofweek'][i] == 4):

new_data['mon_fri'][i] = 1

else:

new_data['mon_fri'][i] = 0

If the day of week is equal to 0 or 4, the column value will be 1,

otherwise 0. Similarly, you can create multiple features. If you have

some ideas for features that can be helpful in predicting stock price,

please share in the comment section.



We will now split the data into train and validation sets to check the

performance of the model.

#split into train and validation

train = new_data[:987]

valid = new_data[987:]

x_train = train.drop('Close', axis=1)

y_train = train['Close']

x_valid = valid.drop('Close', axis=1)

y_valid = valid['Close']

#implement linear regression

from sklearn.linear_model import LinearRegression

model = LinearRegression()

model.fit(x_train,y_train)



#make predictions and find the rmse

preds = model.predict(x_valid)

rms=np.sqrt(np.mean(np.power((np.array(y_valid)-np.array(preds)),2)))

rms

121.16291596523156



Algorithm elaboration

This section provides comprehensive details on the algorithms we built

while utilizing and customizing different existing techniques. Details

about the terminologies, parameters, as well as optimizers. From the

legend on the right side of Fig. 3, we note the algorithm steps as

octagons, all of them can be found in this “Algorithm elaboration”

section.

Before dive deep into the algorithm steps, here is the brief introduction

of data pre-processing: since we will go through the supervised learning

algorithms, we also need to program the ground truth. The ground truth

of this research is programmed by comparing the closing price of the

current trading date with the closing price of the previous trading date

the users want to compare with. Label the price increase as 1, else the

ground truth will be labeled as 0. Because this research work is not only

focused on predicting the price trend of a specific period of time but

short-term in general, the ground truth processing is according to a range

of trading days. While the algorithms will not change with the prediction

term length, we can regard the term length as a parameter.

The algorithmic detail is elaborated, respectively, the first algorithm is

the hybrid feature engineering part for preparing high-quality training

and testing data. It corresponds to the Feature extension, RFE, and PCA



blocks in Fig. 3. The second algorithm is the LSTM procedure block,

including time-series data pre-processing, NN constructing, training, and

testing.

Algorithm 1: Short-term stock market price trend prediction—

applying feature engineering using FE + RFE + PCA

The function FE is corresponding to the feature extension block. For the

feature extension procedure, we apply three different processing

methods to translate the findings from the financial domain to a

technical module in our system design. While not all the indices are

applicable for expanding, we only choose the proper method(s) for

certain features to perform the feature extension (FE), according to

Table 2.

Normalize method preserves the relative frequencies of the terms, and

transform the technical indices into the range of [0, 1]. Polarize is a well-

known method often used by real-world investors, sometimes they

prefer to consider if the technical index value is above or below zero, we

program some of the features using polarize method and prepare for

RFE. Max-min (or min-max) [35] scaling is a transformation method

often used as an alternative to zero mean and unit variance scaling.

Another well-known method used is fluctuation percentage, and we

transform the technical indices fluctuation percentage into the range of

[− 1, 1].



The function RFE () in the first algorithm refers to recursive feature

elimination. Before we perform the training data scale reduction, we will

have to make sure that the features we selected are effective. Ineffective

features will not only drag down the classification precision but also add

more computational complexity. For the feature selection part, we

choose recursive feature elimination (RFE). As [45] explained, the

process of recursive feature elimination can be split into the ranking

algorithm, resampling, and external validation.

For the ranking algorithm, it fits the model to the features and ranks by

the importance to the model. We set the parameter to retain i numbers of

features, and at each iteration of feature selection retains Si top-ranked

features, then refit the model and assess the performance again to begin

another iteration. The ranking algorithm will eventually determine the

top Si features.

The RFE algorithm is known to have suffered from the over-fitting

problem. To eliminate the over-fitting issue, we will run the RFE

algorithm multiple times on randomly selected stocks as the training set

and ensure all the features we select are high-weighted. This procedure

is called data resampling. Resampling can be built as an optimization

step as an outer layer of the RFE algorithm.

The last part of our hybrid feature engineering algorithm is for

optimization purposes. For the training data matrix scale reduction, we



apply Randomized principal component analysis (PCA) [31], before we

decide the features of the classification model.

Financial ratios of a listed company are used to present the growth

ability, earning ability, solvency ability, etc. Each financial ratio consists

of a set of technical indices, each time we add a technical index (or

feature) will add another column of data into the data matrix and will

result in low training efficiency and redundancy. If non-relevant or less

relevant features are included in training data, it will also decrease the

precision of classification.



RESULT

Some procedures impact the efficiency but do not affect the accuracy or

precision and vice versa, while other procedures may affect both

efficiency and prediction result. To fully evaluate our algorithm design,

we structure the evaluation part by main procedures and evaluate how

each procedure affects the algorithm performance. First, we evaluated

our solution on a machine with 2.2 GHz i7 processor, with 16 GB of

RAM. Furthermore, we also evaluated our solution on Amazon EC2

instance, 3.1 GHz Processor with 16 vCPUs, and 64 GB RAM.

In the implementation part, we expanded 20 features into 54 features,

while we retain 30 features that are the most effective. In this section, we

discuss the evaluation of feature selection. The dataset was divided into

two different subsets, i.e., training and testing datasets. Test procedure

included two parts, one testing dataset is for feature selection, and

another one is for model testing. We note the feature selection dataset

and model testing dataset as DS_test_f and DS_test_m, respectively.

We randomly selected two-thirds of the stock data by stock ID for RFE

training and note the dataset as DS_train_f; all the data consist of full

technical indices and expanded features throughout 2018. The estimator

of the RFE algorithm is SVR with linear kernels. We rank the 54



features by voting and get 30 effective features then process them using

the PCA algorithm to perform dimension reduction and reduce the

features into 20 principal components. The rest of the stock data forms

the testing dataset DS_test_f to validate the effectiveness of principal

components we extracted from selected features. We reformed all the

data from 2018 as the training dataset of the data model and noted as

DS_train_m. The model testing dataset DS_test_m consists of the first

3 months of data in 2019, which has no overlap with the dataset we

utilized in the previous steps. This approach is to prevent the hidden

problem caused by overfitting.



In this section, we discuss and compare the results of our proposed

model, other approaches, and the real world data .



Conclusion

This work consists of three parts: data extraction and pre-processing of

the Indian stock market(NSE & BSE) dataset, carrying out feature

engineering, and stock price trend prediction model based on the long

short-term memory (LSTM). We collected, cleaned-up, and structured

2 years of Chinese stock market data. We reviewed different techniques

often used by real-world investors, developed a new algorithm

component, and named it as feature extension, which is proved to be

effective. We applied the feature expansion (FE) approaches with

recursive feature elimination (RFE), followed by principal component

analysis (PCA), to build a feature engineering procedure that is both

effective and efficient. The system is customized by assembling the

feature engineering procedure with an LSTM prediction model, achieved

high prediction accuracy that outperforms the leading models in most

related works. We also carried out a comprehensive evaluation of this

work. By comparing the most frequently used machine learning models

with our proposed LSTM model under the feature engineering part of

our proposed system, we conclude many heuristic findings that could be

future research questions in both technical and financial research

domains.

Our proposed solution is a unique customization as compared to the

previous works because rather than just proposing yet another state-of-



the-art LSTM model, we proposed a fine-tuned and customized deep

learning prediction system along with utilization of comprehensive

feature engineering and combined it with LSTM to perform prediction.

By researching into the observations from previous works, we fill in the

gaps between investors and researchers by proposing a feature extension

algorithm before recursive feature elimination and get a noticeable

improvement in the model performance.

Though we have achieved a decent outcome from our proposed solution,

this research has more potential towards research in future. During the

evaluation procedure, we also found that the RFE algorithm is not

sensitive to the term lengths other than 2-day, weekly, biweekly. Getting

more in-depth research into what technical indices would influence the

irregular term lengths would be a possible future research direction.

Moreover, by combining latest sentiment analysis techniques with

feature engineering and deep learning model, there is also a high

potential to develop a more comprehensive prediction system which is

trained by diverse types of information such as tweets, news, and other

text-based data.



References

1. Atsalakis GS, Valavanis KP. Forecasting stock market short-

term trends using a neuro-fuzzy based methodology. Expert Syst

Appl. 2009;36(7):10696–707.

2. Ayo CK. Stock price prediction using the ARIMA model. In:

2014 UKSim-AMSS 16th international conference on computer

modelling and simulation. 2014.

https://doi.org/10.1109/UKSim.2014.67.

3. Brownlee J. Deep learning for time series forecasting: predict

the future with MLPs, CNNs and LSTMs in Python. Machine

Learning Mastery. 2018.

https://machinelearningmastery.com/time-series-prediction-lstm-

recurrent-neural-networks-python-keras/

4. Eapen J, Bein D, Verma A. Novel deep learning model with

CNN and bi-directional LSTM for improved stock market index

prediction. In: 2019 IEEE 9th annual computing and

communication workshop and conference (CCWC). 2019. pp.

264–70. https://doi.org/10.1109/CCWC.2019.8666592.



5. Fischer T, Krauss C. Deep learning with long short-term

memory networks for financial market predictions. Eur J Oper Res.

2018;270(2):654–69. https://doi.org/10.1016/j.ejor.2017.11.054.

6. Guyon I, Weston J, Barnhill S, Vapnik V. Gene selection for

cancer classification using support vector machines. Mach Learn

2002;46:389–422.

7. Hafezi R, Shahrabi J, Hadavandi E. A bat-neural network multi-

agent system (BNNMAS) for stock price prediction: case study of

DAX stock price. Appl Soft Comput J. 2015;29:196–210.

https://doi.org/10.1016/j.asoc.2014.12.028.

8. Halko N, Martinsson PG, Tropp JA. Finding structure with

randomness: probabilistic algorithms for constructing approximate

matrix decompositions. SIAM Rev. 2001;53(2):217–88.

9. Hassan MR, Nath B. Stock market forecasting using Hidden

Markov Model: a new approach. In: Proceedings—5th

international conference on intelligent systems design and



applications 2005, ISDA’05. 2005. pp. 192–6.

https://doi.org/10.1109/ISDA.2005.85.

10. Hochreiter S, Schmidhuber J. Long short-term memory. J

Neural Comput. 1997;9(8):1735–80.

https://doi.org/10.1162/neco.1997.9.8.1735.

11. Hsu CM. A hybrid procedure with feature selection for

resolving stock/futures price forecasting problems. Neural Comput

Appl. 2013;22(3–4):651–71. https://doi.org/10.1007/s00521-011-

0721-4.

12. Huang CF, Chang BR, Cheng DW, Chang CH. Feature

selection and parameter optimization of a fuzzy-based stock

selection model using genetic algorithms. Int J Fuzzy Syst.

2012;14(1):65–75.

https://doi.org/10.1016/J.POLYMER.2016.08.021.



13. Huang CL, Tsai CY. A hybrid SOFM-SVR with a filter-based

feature selection for stock market forecasting. Expert Syst Appl.

2009;36(2 PART 1):1529–39.

https://doi.org/10.1016/j.eswa.2007.11.062.

14.Idrees SM, Alam MA, Agarwal P. A prediction approach for

stock market volatility based on time series data. IEEE Access.

2019;7:17287–98. https://doi.org/10.1109/ACCESS.2019.2895252.

15. Ince H, Trafalis TB. Short term forecasting with support vector

machines and application to stock price prediction. Int J Gen Syst.

2008;37:677–87. https://doi.org/10.1080/03081070601068595.


