
Increasing user engagement in Fedora QA

Submitted in partial fulfillment of the requirements for the award of the degree of

BACHELOR OF TECHNOLOGY

IN

COMPUTER SCIENCE & ENGINEERING

Submitted to:

Mr. Tarun Kumar

Assistant Professor

Submitted by:

Manisha Kanyal - 19SCSE1010011

SCHOOL OF COMPUTING SCIENCE & ENGINEERING

Galgotias University, Greater Noida

May 2021

1

SCHOOL OF COMPUTING SCIENCE AND
ENGINEERING

GALGOTIAS UNIVERSITY, GREATER NOIDA

CANDIDATE’S DECLARATION

I hereby certify that the work which is being presented in the project, entitled “Increasing user

engagement in Fedora QA” in partial fulfillment of the requirements for the award of the degree

of B.Tech submitted in the School of Computing Science and Engineering of Galgotias

University, Greater Noida, is an original work carried out during the 5 months, August 2021 to

December 2021, under the supervision of Mr. Tarun Kumar, Assistant Professor, Department of

Computer Science and Engineering, Galgotias University, Greater Noida.

The matter presented in the project has not been submitted by me for the award of any other

degree of this or any other places.

Manisha Kanyal
19SCSE1010011

This is to certify that the above statement made by the candidates is correct to the best of my

knowledge.

Tarun Kumar
Assistant Professor

2

CERTIFICATE

The Final Project Viva-Voce examination of Manisha Kanyal, 19SCSE1010011 has been held on
_________________ and her work is recommended for the award of Degree of B.Tech.

Signature of Examiner(s) Signature of Supervisor(s)

Signature of Project Coordinator Signature of Dean

Date: November, 2013
Place: Greater Noida

3

TABLE OF CONTENT

1. Abstract ... 2

2. Table of Content .. 3

3. List of Tables ... 4

4. List of Figures .. 5

4

ABSTRACT

The Fedora community has tons of helpful documents, tools, and processes, but are in scattered

form. Sometimes it is hard to reach/understand without some preliminary knowledge. It is

identified as the major obstacle in bootstrapping new members of the community. And the goal

of this project is to make the learning curve less steep. The goal is not hoarding/integrating all

the information in one place - something in terms of a curated bookmark list, or wiki page would

do a better job there. It is believed that some of the reasons for the difficulty in getting engaged

are the "wall of text" symptoms. From experience with interns, college and high-school students,

as it is known that there is a necessity for quick and easy engagement. In other words, the project

wants to be able to answer the "What can I do? How can I participate? What is the best thing to

work on right now?" questions. To achieve this goal, the project came up with the concept of

"activities" - common tasks that can be done while taking part in Fedora QA processes. The

activities will be integrating the "expert knowledge", and presenting the information and steps to

take in an interactive, wizard-like fashion.

5

LIST OF TABLES

1. Introduction... 9

2. Literature Review... 12

3. Formulation of the problem…………………………………………………………….... 17

4. Tools and Technology used……………………………………………………………… 18

5. Required Tools ... 10

5.1 React Library ... 10

5.2 Express ... 10

5.3 Git Version Control .. 10

5.4 CI/CD Tools .. 10

6. System Design ……………………………………………………………………………. 24

7. Module……………………………………………………………………………………. 32

8. Source Code……………………………………………………………………………….. 34

9. Results and conclusion…………………………………………………………………….. 42

10. References………………………………………………………………………………….. 43

6

LIST OF FIGURES

1. Activity Diagram ... 10

2. Use Case Diagram .. 11

3. Application Diagram .. 12

4. Deployment Diagram ... 13

7

Acronyms
B.Tech. Bachelor of Technology
M.Tech. Master of Technology
BCA Bachelor of Computer Applications
MCA Master of Computer Applications
B.Sc. (CS) Bachelor of Science in Computer Science
M.Sc. (CS) Master of Science in Computer Science
SCSE School of Computing Science and Engineering

8

INTRODUCTION

Fedora is a Linux distribution developed by the community-supported Fedora Project which is

sponsored primarily by Red Hat, a subsidiary of IBM, with additional support from other

companies. Fedora Linux is a favorite among Linux users who want their operating system to

respect open source

The current state, as it can be seen, is that it has tons of helpful documents, tools, and processes,

but these are scattered, or sometimes hard to reach/understand without some preliminary

knowledge.

The purpose of this is to reduce the complexity of open-source enthusiasts, who contribute to

fedora projects. Looking from a newcomer's perspective, the landing page of Fedora should be

the most impactful but it’s not [2].

It’s how they are presented with the contribution process and it should be simplified as much as

possible, so contributors can focus more on fixing issues. The landing page should mainly focus

on guiding the newcomers through the contribution process. The page should include clear

information on what they can do, by giving them options to explore in a step-by-step format.

The aim of this project is to reduce complexities as much as possible and to filter out all the

issues based on their programming languages so as to make them easily accessible and

understandable. User engagement is important because it can predict profitability, measure the

effectiveness of specific marketing campaigns and provide data on how users choose to interact

with a site or product. High user engagement can help companies sell ad space, refine marketing

strategies and increase sales because it shows that users find value in their product or service.

9

ABOUT THE COMMUNITY:

Fedora is a Linux distribution developed by the community-supported Fedora Project which is

sponsored primarily by Red Hat, a subsidiary of IBM, with additional support from other

companies. Fedora Linux is a favorite among Linux users who want their operating system to

respect open source

WHAT KIND OF PEOPLE WORK AT FEDORA?

Fedora has different kinds of people in the fedora community. Fedora has software

developers/engineers, quality testers, community managers, designers, content/documentation

writers, etc. The Fedora community has lovely people. People who love the community and are

willing to contribute and volunteer their time, mentorship, resources, and code to make sure

things

go well.

WHAT PROBLEM IS THE PROJECT TRYING TO SOLVE?

The project’s motive is to give information on the development schedule, meeting times and

releases, quality testing, etc, and make it impactful so that newcomers can contribute. So I’m

working on making the dashboard easier to use and simplified.

The current state, as it can be seen, is that it has tons of helpful documents, tools, and processes,

but these are scattered, or sometimes hard to reach/understand without some preliminary

knowledge. It has been identified as the major obstacle in bootstrapping new members of the

community. And the goal for this project is making the learning curve less steep. The purpose of

This is to reduce the complexity of open-source enthusiasts, who contribute to fedora projects.

Looking from a newcomer's perspective, the landing page of Fedora should be the most

impactful but it’s not.

The activities(issues, timeline, schedules) will also be offered contextually, base on the user's

skills and interests (e.g. showing easyfix-tagged bugs from projects written in Python to those

skilled/interested in using it), the current phase of the development cycle (e.g. prioritizing

10

blockerbug testing, when the meeting is coming) or other meaningful metrics (e.g. presenting the

users with manual test cases, that were not performed in a while).

We also want to offer a timeframe with the activities, so the user is able to filter/select them

based on the timespan they are willing to spare (couple hours, a day, couple of days, one day a

week regularly...).

The activities will act as a comprehensive guide, mimicking the way it can actually perform

them. For example "Check testcase X on the nightly rawhide build" activity could consist of

several steps:

- checking whether rawhide works

- finding the nightly iso

- installing in a virtual machine

- performing the testcase's steps

- reporting the result

- possibly filing bug report

Each of these steps can be (seen) as simple on its own, but might require external knowledge

(looking into openqa, Adam's nightlies finder, finding the current wiki matrix, ...). The goal is to

distill the knowledge into a wizard-like tool that takes you through the process, providing links to

resources, and detailed information, while presenting concentrated, easy to understand

information.

Reporting bugs, for example, is also deceptively non-trivial. While it might be easy for us (and

the bugzilla templates are helping) a few hints - where do you find logs, that running a graphical

app from command line can give you interesting data, or that it might be good to try another

tool/app for the same workflow to identify a possibility of a bug in an underlying library -

coming from a long-term experience are invaluable.

11

LITERATURE SURVEY

Open-source[3] is a user-driven software, collaborative innovation produced by self-organizing

teams of contributors dynamically formed through online interactions. There are various benefits

that can be found with the emergence of Open source software. The three key benefits are

predominantly important. First, OSS software can dramatically reduce the cost of development

for IT companies. Such cost does not only include any development cost but the innovation cost

is what matters.

The software received effort and contribution from talented developments around the globe.

Secondly, the OSS can facilitate the organizations to implement the IT systems into their

business process, especially for small-medium enterprises or public institutes. There is no doubt

that IT can make the business a better world. However, due to the cost of IT implementations,

public institutes may not implement the IT system due to their limited budget. Introducing the

OSS systems can diminish such dilemmas. Several metrics have been employed to assess the

OSS success, and such assessments were developed in consideration of the research proposal and

the audiences, such as number of subscribers, number of active developers, number of

downloads, frequency of CVS commits, and the extent of code reuse, etc

Last but not least, the information and knowledge can be diffused in terms of participating in

OSS projects like GSOC, Outreachy, Hacktoberfest, GirlsScript, and various OSS projects,

which is beneficial for those people who want to have a good command of programming

language since they can learn via projects.

Prior OSS Studies

In this section, a comprehensive extent of literature reviews is conducted. Based on the reviews,

three subsections are listed by the research topics of prior OSS studies. In particular, the first

stream includes the literature studying the individual motivations to contribute or participate in

the OSS projects. The second stream summarized the literature discussing how the network

12

characteristics influenced the OSS performances. In the third stream, it is reviewed how the

legalization, especially the OSS licenses, influences the OSS performances.

Individual Motivations: Thousands of individuals participate in OSS projects for diverse

purposes. Their contributed product will be released to the public for free usage. Why are they

willing to contribute to such OSS projects since their no economic returns from their contributed

projects? What are their motivations? After surveying prior literature, it has been found two key

motivations, which can be concluded as intrinsic motivations and extrinsic motivations.

Intrinsic Motivation: The intrinsic motivations have been studied since the 1970s. It is driven by

an interest or enjoyment in the task itself and exists within the individual instead of depending on

external pressure or desire for incentive reward [8]. The intrinsic motivation was widely regarded

as a key motive for individuals to participate in the OSS projects. Previous literature found more

than half developers indicated that the enjoyment in programming and the sense of satisfaction

originated from the participation in OSS software constantly motivating them to sustainably

contribute to OSS projects. Besides the sense of enjoyment and satisfaction, Lakhani and Wolf

[1] found that several individuals could show their creativity and new ideas in terms of

implementing them into the OSS projects, which conferred a great sense of accomplishment for

them. Such a sense was believed as another key motivation for constant contribution. Although

the intrinsic motivations were found as the original motives for breeding the OSS campaign,

Roberts et al. [5] thought the intrinsic motivations had several defects, such as short effectiveness

and strong self-direction, which might challenge the sustainability of OSS projects in future.

Thus, it is imperative to unveil the extrinsic motivations for OSS participants.

Extrinsic Motivation: Extrinsic motivation denoting performing an activity is built upon the

desired outcome like momentary incentives, reputations, and profits etc., which is the opposite of

intrinsic motivation. In other words, with the disappearance of external incentives, then the

extrinsic motivations will decrease or even disappear. Von Krogh and his collaborators

investigated a large OSS project and interviewed several participants and summarized that the

13

https://link.springer.com/chapter/10.1007/978-3-319-20895-4_65#CR5

participation was built upon the pursuit of communal resources, which includes reputations,

control of technology, and learning opportunities. The first dimension of extrinsic motivation is

the acquisition of reputation.

The reputation can be obtained in terms of (1) actively participating in the OSS projects, (2)

providing solutions to the existing bugs or problems, (3) providing innovative revision or

modification to the current OSS. With the increase of reputation, the participants will be

conferred with higher authority, which will eventually enable him or her to dominate the entire

project, such as the recruitment of developers or the decision power in the project management.

To this end, the reputation in the OSS community is widely regarded as an extremely important

extrinsic motivation for encouraging OSS developers to constantly contribute to OSS projects.

The second acquired communal resource is the “control over technology”. Such extrinsic

motivation is formalized from the demand of self-usage. It is found that the key reason to

participate in an OSS project is to customize such a project for its own usage [3]. Although novel

and creative ideas can be realized through OSS projects, the overall quality of OSS projects

cannot reach the industrial standard due to the relaxed management system and software testing

procedures.

Thus, those experienced users may compile their revised OSS and incidentally update it. In terms

of long-term investment, those users may have a good command of this technology, which would

benefit them in the future. The third communal resource is the learning opportunities. The

participants of OSS projects do not only include those experienced developers but those users or

fresh programmers. By joining the OSS project, these people were provided a very good

opportunity to learn (1) programming by collaborating with talented programmers in the world,

and (2) knowledge about project management in software engineering as well. Besides these

three key extrinsic motivations, prior literature also identified several other extrinsic factors

motivating individuals to contribute to the OSS project such as a sense of reciprocity and job

opportunities.

14

https://link.springer.com/chapter/10.1007/978-3-319-20895-4_65#CR3

Sense of reciprocity is prevailing in the OSS user support community, in which those end-users

proactively respond or answer other’s questions in order to obtain the help from others when they

need it in the future. In addition, prior literature found some IT companies might recruit some

talented programmers from the OSS community, which encourage some participants to diligently

work on their contributed OSS projects.

Besides the explanation from motivation theory, several studies found institutional management

or leadership also affected individual motivations. For instance, by interviewing the developers

from the Debian project, O’Mahony and Ferraro [1] found the democratic management style

outperformed the bureaucratic one though the latter was found to be efficient. In addition, Li and

her collaborators found individuals preferred to join those OSS projects which employed the

transformational leadership style. In other words, such leadership style signals that everyone

could be conferred as a project leader in the future.

In the second stream, prior studies investigated how network structures affected the OSS

performances. The development of OSS projects cannot be done without collective actions. In

this regard, prior literatures employed the social network analysis to articulate such collective

actions, i.e. collaborative behaviors, which include inter-project individual-individual

collaborative networks [7], project-affiliated networks [8], and intra-project communication or

collaborative networks [10] etc. Thus, the social capital theory was mostly adopted as a

theoretical underpinning to explicate such social relationships.

Due to the open nature of the OSS projects, the participants can freely contribute to multiple

projects. In terms of such shared participants or concurrently contributed projects, two types of

affiliated networks can be initialized. The first one is called a project-affiliated network, in which

the projects with shared participants are interconnected. The second one is called

participant-affiliated network, in which the developers/project administrators who contributed to

the same projects are interconnected. Prior studies found the characteristics of

participant-affiliated networks, such as network distances or network density, had a significant

15

impact on the OSS performance. After five-year observation on more than 2000 OSS projects

hosted in Sourceforge.net, Singh and his collaborators found internal collaborative cohesion had

significantly positive impact on the OSS performances, manifested by the extent of CVS

commits, but the external cohesion presented an inverted-U impact on the OSS performances.

Hahn et al. [8] found the OSS developers preferred to join in those projects initialized by those

who had collaborated before in terms of investigating the collaborative ties. Grewal et al. [7]

argued the OSS performance was significantly influenced by the extent of network

embeddedness in terms of studying the developer-affiliated network.

Besides the inter-project network, prior studies also found that the intra-project network also

played a role in OSS performances. Differing from the works studying OSS performances, the

intra-project studies mainly discussed the individual collective behaviors. For instance,

Conaldietal. established an analytical model for collaborative networks and empirically verified

it by using the debugging network from a large OSS project categorized the participants from

Debian (a leading Linux OS distributor) into three key roles, which included knowledge seekers,

knowledge contributors, and knowledge brokers in terms of analyzing the emailing

communication network, and argued that the knowledge brokers could facilitate the information

flow and distribution. By studying the internal communication networks of two leading OSS

projects, Singh and Tan found the stability and efficiency cannot be concurrently reached, and

advocated the OSS project administrators had to adjust the balance based on their key goals.

In sum, it can be found in the literature on inter-project networks mainly discussing how OSS

projects could be outperformed in terms of network ties or vertex positions. The intra-project

network studies mainly concentrated on particular behaviors or actions in OSS project

development, such as debugging, communications, or collaborations. A brief summarization is

given in Table [1].

16

https://link.springer.com/chapter/10.1007/978-3-319-20895-4_65#CR8

PROBLEM FORMULATION

Newcomers who are open-source enthusiasts face difficulty while contributing to Fedora’s

issues.

The best way to present a contribution guide is explained, using infographics and clear

instructions.

Iconography improvements are also very important in this case. For example, the link icon is not

visible enough, the user doesn’t realize that the headers like “Current development schedule” are

clickable. The gray question mark icons on the timeline are not clickable although they give the

impression that they are. The button, at the end of the page, would be more readable with a

shorter description.

The meetings and development schedules are “secondary” information in this case so they don’t

need to be as visible.

Fedora page should be careful not to use technical jargon and acronyms when possible. They can

easily scare away newcomers. For example “Fedora 31 blockers and FEs” might not be a

familiar term to everyone. Assume users do not know technical concepts so have them briefly

explained whenever possible.

Admin should be deciding what is presented to the user, in the best way possible, without them

needing to enable/disable the content they see.

While the idea of users controlling the content is good, in this case, it might add another layer of

confusion.

17

REQUIRED TOOLS

Increasing user engagement in Fedora QA is a web tool. Hence, the application is divided

broadly into 2 parts.

Front End where user/admin will interact.

1. React Library - It’s a JavaScript library for DOM manipulation that handles navigation

through the HTML5 push state. To put it simply, it’s a view library that uses components

to change content on the page without refreshing, the core principle behind single-page

applications. It was developed by Facebook in 2013 and can be used for mobile, web, and

VR applications.

There are a few reasons behind choosing reactjs of which below are mentioned:

a. Virtual DOM in React makes the user experience better and developer’s work

faster.

DOM (document object model) is a logical structure of documents in HTML,

XHTML, or XML formats. Describing it in layman’s terms, it is a viewing

agreement on data inputs and outputs, which has a tree form. Web browsers are

using layout engines to transform or parse the representation HTML-syntax into a

document object model, which we can see in browsers.

The main concern about traditional DOM construct is the way it processes

changes, i.e., user inputs, queries, and so on. A server constantly checks the

difference caused by these changes to give the necessary response. To respond

properly, it also needs to update the DOM trees of the whole document, which is

not ergonomically valid because DOM trees are fairly large today, containing

thousands of elements.

The team behind React managed to increase the speed of updates by using virtual

DOM. Unlike other frameworks that work with the Real DOM, ReactJS uses its

18

abstract copy – the Virtual DOM. It updates even minimalistic changes applied by

the user but doesn’t affect other parts of the interface. That is also possible thanks

to React components isolation, which it’ll get to in a minute, and a special data

structure in the library.

b. Permission to reuse React components significantly saves time. Another

advantage that Facebook introduced with React is the ability to reuse code

components of a different level anytime, another meaningful time-saving effect.

Think of designers. They constantly reuse the same assets. If they didn’t, they’d

have to draw corporate logos, for instance, over and over again. It’s pretty

obvious: Reusing is a design efficiency.

In programming, this process is a bit more difficult. System upgrades often turn

into a headache as every change can affect the work of other components in the

system. Managing updates is easy for developers because all React components

are isolated and change in one doesn’t affect others. This allows for reusing

components that do not produce changes in and of themselves to make

programming more precise, ergonomic, and comfortable for developers.

c. One-direction data flow in ReactJS provides a stable code React allows for direct

work with components and uses downward data binding to ensure that changes in

child structures don’t affect their parents. That makes code stable. Most complex

view-model systems of JS-representation have a significant but understandable

disadvantage – the structure of data flow.

In the view-model system, child elements may affect the parent if changed.

Facebook removed these issues in React, making it just the view system. Instead

of using explicit data binding, ReactJS uses one direction – downward – data

flow. In such a structure, child elements cannot affect parent data. To change an

object, all a developer needs to do is modify its state and apply updates.

19

Correspondingly, only allowed components will be upgraded.

d. Redux: convenient state container Before writing an angry comment that Redux is

framework-agnostic and you can happily use it with Angular or Vue and that it

isn’t exclusive to React. However, it’s worth mentioning Redux here simply

because the tool is considered to be every-React-engineer’s must-learn instrument

applied in 50 to 60 percent of React apps.

Yes, you can use Redux with Angular, but the probability of a React developer

knowing Redux is much higher than knowing Angular. And you’ll find more

community support for tackling the React-Redux learning curve. So, why is it

good? Redux simplifies storing and managing component states in large

applications with many dynamic elements where it becomes increasingly difficult.

Redux stores application state in a single object and allows every component to

access application state without dealing with child components or using callbacks.

For instance, when you have two components that share the same state (like

detailed and general views on the image below) and stand apart in the tree,

without Redux, data has to be passed through multiple intermediary components

with all the problems that go with it.

2. Express - It’s a web application framework for Node.js, designed for building web

applications and APIs.

There are a few reasons why it is always preferred expressjs:

a. Scale the application quickly The first benefit of using Express.JS for backend

development is that you would be able to scale your application quickly.

As you know that there is a support of Node.JS, so with the help of addition in

nodes and adding extra resources to it, you can quickly scale your application in

any manner.

20

b. JavaScript is simple to learn. As mentioned above, JavaScript is very famous plus

easy to learn. You would be able to use it for the development purpose on

Express.JS.

c. Same language can be used to code Frontend Another benefit of using Express.JS

is that you would be able to do the code of both frontend and backend with the

help of using JavaScript.

Although there are several such platforms, they offer different language support

for frontend and backend, which makes it quite challenging to work with. But you

will never face any such problem with Express.JS.

d. Less developer cost to maintain the app Not everybody knows that Express.JS is a

full-stack JavaScript because of which you would not have to hire different

developers for managing the frontend and backend of a web application.

e. Supported by Google v8 engine Express.JS is supported with the Google V8

engine with the help of which you would be able to get higher performance

without any lag or error in the processing.

f. Caching Express.js supports the caching feature, and the advantage of the catch is

that you would not have to re-execute the codes again and again. Moreover, it will

help web pages to load faster than ever.

3. Git and Github - Git helps in maintaining version control for the application while Github

is a cloud-based hosting service that lets you manage Git repositories.

The following were the reasons behind choosing git and github for version control and

collaboration:

a. It makes it easy to contribute to your open source projects. To be honest, nearly

every open-source project uses GitHub to manage their project. Using GitHub is

free if your project is open source and includes a wiki and issue tracker that

makes it easy to include more in-depth documentation and get feedback about

21

your project. If you want to contribute, you just fork a project, make your changes

and then send them a pull request using GitHub web interface

b. Documentation By using GitHub, you make it easier to get excellent

documentation. Their help section and guides have articles for nearly any topic

related to git that you can think of.

c. Showcase your work Are you a developer and wish to attract recruiters? GitHub

is the best tool you can rely on for this. Today, when searching for new recruits

for their project, most companies look into the GitHub profiles. If your profile is

available, you will have a higher chance of being recruited even if you are not

from a great university or college.

d. GitHub is a repository This was already mentioned before, but it’s important to

note, GitHub is a repository. What this means is that it allows your work to get out

there in front of the public. Moreover, GitHub is one of the largest coding

communities around right now, so it’s wide exposure for your project.

e. Track changes in your code across versions When multiple people collaborate on

a project, it’s hard to keep track revisions—who changed what, when, and where

those files are stored. GitHub takes care of this problem by keeping track of all

the changes that have been pushed to the repository. Much like using Microsoft

Word or Google Drive, you can have a version history of your code so that

previous versions are not lost with every iteration.

f. Integration options GitHub can integrate with common platforms such as Amazon

and Google Cloud, services such as Code Climate to track your feedback, and can

highlight syntax in over 200 different programming languages.

4. Travis CI/CD - Travis CI enables us to build and deploy the application in an automated

fashion. Travis CI allows independent testing of pull requests & branches. For easy

monitoring, the test results are displayed on the GitHub UI.

The preferred way of testing that was opted was Travis for it’s CI and CD features.

CI and CD stand for continuous integration and continuous delivery/continuous

22

deployment. In very simple terms, CI is a modern software development practice in

which incremental code changes are made frequently and reliably. Automated

build-and-test steps triggered by CI ensure that code changes being merged into the

repository are reliable. The code is then delivered quickly and seamlessly as a part of the

CD process.

In the software world, the CI/CD pipeline refers to the automation that enables

incremental code changes from developers’ desktops to be delivered quickly and reliably

to production.

CI/CD allows organizations to ship software quickly and efficiently. CI/CD facilitates an

effective process for getting products to market faster than ever before, continuously

delivering code into production, and ensuring an ongoing flow of new features and bug

fixes via the most efficient delivery method.

Continuous integration (CI) is practice that involves developers making small changes

and checks to their code. Due to the scale of requirements and the number of steps

involved, this process is automated to ensure that teams can build, test, and package their

applications in a reliable and repeatable way. CI helps streamline code changes, thereby

increasing time for developers to make changes and contribute to improved software.

Continuous delivery (CD) is the automated delivery of completed code to environments

like testing and development. CD provides an automated and consistent way for code to

be delivered to these environments. Continuous deployment is the next step of continuous

delivery. Every change that passes the automated tests is automatically placed in

production, resulting in many production deployments. Continuous deployment should be

the goal of most companies that are not constrained by regulatory or other requirements.

In short, CI is a set of practices performed as developers are writing code, and CD is a set

of practices performed after the code is completed.

23

SYSTEM DESIGN

The page intended to be made as simple as possible in order the newcomers can easily
understand the issues and work on them.

The UI(user interface) of the page used to looked like that:

The page that is intended to made:

24

The filtration of issues based on its language, the UI(user interface) of filtration of issues on the
basis of its language:

The page that is intended to made:

25

When python is clicked the issues will filter out this way:

26

ARCHITECTURE DIAGRAMS

An architectural diagram is a diagram of a system that is used to abstract the overall outline

of the software system and the relationships, constraints, and boundaries between

components. This section of the report includes various diagrams to understand the

architecture of the Fedora application.

Activity Diagram

Activity diagrams are graphical representations of workflows of stepwise activities and actions.

In figure a, there is a single entry point for users when they visit the application. Based on user

choices, the diagram clearly mentions all the possible paths a user can choose.

Activity diagrams should be used in alignment with other modeling techniques like

interaction diagrams and State diagrams. The main reason behind using these diagrams is

to model the work flow behind the system being designed. These Diagrams are also useful

for analyzing a use case by describing what actions need to take place and when they

should occur, describing a complicated sequential algorithm and modeling applications

with parallel processes. Some advantages of using activity diagrams are listed below.

1. UML modeling language included that these diagrams are normally easily

comprehensible for both analysts and stakeholders.

2. In UML for the IT Business Analyst, “The activity diagram is the one most useful

to the IT BA for depicting work flow [because] it is simple to understand-both for

BAs and end-users.”

3. Since they are among the most user-friendly diagrams available, they are generally

regarded as an essential tool in an analyst’s repertoire.

4. Additionally, as stated above, activity diagrams allow an analyst to display multiple

conditions and actors within a workflow through the use of swimlanes. Swimlanes,

27

however, are optional as a single condition or actor is normally displayed without

them.

Figure A - Activity Architecture

28

USE CASE DIAGRAM

Use case diagrams are used to demonstrate the different ways that a user might interact

with a system. For OneLink, there are 3 actors (users) - Registered User, Unregister User,

and Admin User. These three actors interact with various components of the application as

represented in the figure.

Figure B-Use Case Diagram

29

APPLICATION ARCHITECTURE DIAGRAM

An application architecture describes the patterns and techniques used to design and build

an application. The MERN[4] application can be divided into a 3-tier system having Client

Tier, Business Logic Tier, and Database Tier. Client Tier is the front end of the application.

Business Logic is the backend of the application

Figure C- Application Architecture

30

DEPLOYMENT ARCHITECTURE DIAGRAM

A Deployment[5] diagram shows how and where the system is to be deployed; that is, its

execution architecture. Whenever the source code of the application will be updated on

GitHub, a trigger will run on TravisCI to compile the application code. Upon compilation,

the code will be tested and if passed then promoted to deployment on the hosting server.

Figure D- Application Architecture

31

MODULE
An Application Module is a logical container for coordinated objects related to a

particular task, with optional programming logic. For Event Base, application is divided

into following modules:

Analytics Module: It is the main feature module of the application. This module deals

with services like recording profile visits, maintaining counters, and recording user

behavior on the application. Data from Analytics modules is persistent. It will also show

analytics in the form of charts.

Dashboard Module: It includes features of user profile management. It helps to maintain

user data. It acts as an interface for users and admin to manage subscriptions and view

account related information from a single control panel. For users with admin privileges,

user management is also an added feature handled by Dashboard Module.

User Module: It implements features of authentication and authorization. This module is

responsible for user login management, user registration and lost password retrieval.

Server Module: It includes an interface for storing information in the database with help

of restful APIs. Every information displayed on the frontend is fetched from the Server

Module of application and every update is done by the server module only

Application Modules - An Application Module is a rational vessel for correlated objects related

to a particular task, with voluntary programming logic. Application is divided into following

modules:

32

SOURCE CODE
reduxActions.js component

import ActionTypes from '../constants';

export const loadDataResp = payload => ({

type: ActionTypes.LOAD_DATA_RESP,

payload: payload

})

export const loadData = payload => dispatch => {

dispatch({

type: ActionTypes.LOAD_DATA,

payload: payload

});

fetch(window.env.ORACULUM_API_URL_v1 + "landing_page").then(blob =>

blob.json()).then(data => {

dispatch(loadDataResp(data))

})

.catch((error) => {

console.error('Error:', error);

});

}

export const loadWizardDataResp = payload => ({

type: ActionTypes.LOAD_WIZARD_DATA_RESP,

payload: payload

})

export const loadWizardData = payload => dispatch => {

dispatch({

type: ActionTypes.LOAD_WIZARD_DATA,

payload: payload

});

fetch(window.env.ORACULUM_API_URL_v1 + "actions/all")

.then(blob => blob.json())

.then(data => {

dispatch(loadWizardDataResp(data))

})

.catch((error) => {

console.error('Error:', error);

33

});

}

export const changeLanguage = payload => dispatch => {

dispatch({

type: ActionTypes.CHANGE_LANGUAGE,

payload: payload

})

}

Index.js components

import ActionTypes from "../constants"

import i18n from 'i18n-js'

import en from '../translation/en'

import fr from '../translation/fr'

const defaultState = {

landing_page: {

blockerbugs: {},

devel: 0,

meetings: [],

schedule: [],

last_qa_meeting: {},

stable: 0,

config_mode: false,

enabled_components: ["events", "blockers", "minutes"],

},

wizard: {

actions: [],

providers: [],

all_actions: [],

},

locale: {

i18n: i18n

}

}

34

export default (state = defaultState, action) => {

switch (action.type) {

case ActionTypes.LOAD_DATA_RESP:

return {

...state,

landing_page: action.payload,

}

case ActionTypes.LOAD_WIZARD_DATA_RESP:

return {

...state,

wizard: {

...state.wizard,

providers: action.payload.providers,

all_actions: action.payload.actions,

},

}

case ActionTypes.CHANGE_LANGUAGE:

let locale = action.payload

localStorage.setItem('locale', locale)

i18n.locale = locale

i18n.fallbacks = true

i18n.translations = { en, fr }

let newI18n = { ...i18n }

return {

...state,

locale: {

...state.locale,

i18n: newI18n

}

}

default:

return {

...state,

}

}

}

35

LandingPage.js

import React, { Component, useState } from "react"

import { Container, Row

,DropdownToggle,DropdownItem,DropdownMenu,UncontrolledDropdown} from

"reactstrap"

import { Link } from "react-router-dom"

import Layout from "../layout/Layout"

import Timeline from "./Timeline"

import Events from "./Events"

import Blockers from "./Blockers"

import Minutes from "./Minutes"

import Hideable from "./Hideable"

import _ from "lodash"

import { connect } from "react-redux"

import { loadData, changeLanguage } from "../actions/reduxActions"

import '../index.css'

import Cookies from "universal-cookie"

class LandingPage extends Component {

constructor(props) {

super(props)

this.cookies = new Cookies()

this.available_components = ["events", "blockers", "minutes"]

let enabled_components =

this.cookies.get("landingpage_enabled_components")

if (enabled_components === undefined) {

enabled_components = this.available_components.slice()

this.cookies.set("landingpage_enabled_components",

enabled_components, { path: "/" })

}

this.state = {

blockerbugs: {},

devel: 0,

meetings: [],

schedule: [],

last_qa_meeting: {},

stable: 0,

36

config_mode: false,

enabled_components: enabled_components,

}

}

componentDidMount() {

this.props.dispatch(loadData())

this.props.dispatch(changeLanguage('en'))

}

toggle_config_mode(e) {

let config_mode = !this.state.config_mode

this.setState({ config_mode: config_mode })

e.preventDefault()

}

toggle_component_visibility(e, name) {

if (name === undefined) {

e.preventDefault()

return

}

let enabled_components = this.state.enabled_components

if (enabled_components.includes(name)) {

enabled_components.splice(enabled_components.indexOf(name), 1)

} else {

enabled_components.push(name)

enabled_components = this.available_components.filter((c) =>

enabled_components.includes(c))

}

this.cookies.set("landingpage_enabled_components", enabled_components,

{ path: "/" })

this.setState({ enabled_components: enabled_components })

e.preventDefault()

}

render() {

const available_components = {

events: <Events data={this.props.meetings} />,

blockers: <Blockers data={this.props.blockerbugs}

release={this.props.devel} />,

minutes: <Minutes data={this.props.last_qa_meeting} />,

37

}

let components = _.chunk(

this.state.config_mode ? this.available_components :

this.state.enabled_components,

2

)

components = components.map((row) => (

<Row>

{row.map((item) => (

<div className="col-md-6">

<Hideable

config_mode={this.state.config_mode}

toggle_handler={this.toggle_component_visibility.bind(this)}

component_name={item}

is_enabled={this.state.enabled_components.includes(item)}>

{available_components[item]}

</Hideable>

</div>

))}

</Row>

))

const { i18n } = this.props

return (

<Layout loading={this.props.stable === 0}>

<div className="drop-down-container">

<UncontrolledDropdown setActiveFromChild>

<DropdownToggle tag="a" className="nav-link" caret>

{i18n.t('phrases.change_language')}

</DropdownToggle>

<DropdownMenu>

<DropdownItem tag="a" onClick={() =>

this.props.dispatch(changeLanguage('en')) } >English</DropdownItem>

<DropdownItem tag="a" onClick={() =>

this.props.dispatch(changeLanguage('fr'))} >French</DropdownItem>

</DropdownMenu>

</UncontrolledDropdown>

</div>

38

<div className="bluebox">

<Container>

<Row>

<div className="col-md-12">

<Timeline data={this.props.schedule} />

</div>

</Row>

</Container>

</div>

<Container>

{components}

<Row className="padded">

<div className="col-md-12 text-right">

<a

href="#"

onClick={(e) => this.toggle_config_mode(e)}

className="badge badge-secondary events"

role="button">

{this.state.config_mode

? `${i18n.t('phrases.save_changes')}`

: `${i18n.t('phrases.configure_visibility')}`}

</div>

</Row>

<Row className="padded">

<div className="col-md-12 padded">

<Link

className="btn btn-primary btn-block btn-wrap-text btn-lg

active"

to="/wizard"

role="button">

{i18n.t('phrases.do_you_have_some_spare_time')}

</Link>

</div>

</Row>

</Container>

</Layout>

39

)

}

}

const mapStateToProps = (state) => {

return {

...state.landing_page,

...state.locale

}

}

export default connect(mapStateToProps)(LandingPage)

40

RESULTS AND DISCUSSIONS

In the end, the page should be a very streamlined, interactive, and even semi-automated tool, the

initial implementation will (probably) mostly just be an interactive guide, instructing the user

about the necessary steps to take, commands to run, etc. Taking the manual testing as an

example, it could for sure report the results for you (e.g. using wikitcms), later on, but first the

project wants to work on defining, describing and delivering the activities.

The main aim is not necessarily only on new-comers, though. The landing page could show

useful information even to veterans. Be it accumulation all your action items from all the

different meetings, so you can mark these as done (and meetbot could, for example, sum-up the

finished/missing action items from the last meeting in the beginning), or streamlining more

complicated processes like determining "What were the changes in rawhide, that made it

broken". It is well aware of the fact, that the project is very ambitious, and that many of the

scenarios/activities will require additional work to provide metadata - like marking the test cases

as "short" or "long", "easy" or "advanced", or tagging the projects in easyfix with the

programming language. But it is believed that these changes are beneficial even on their own.

The landing page project also scales nicely in opinion - it can start small, with some hard-coded

assumptions/hack, and grow at a steady pace, adding more interesting/helpful features in the

future, replacing some of the hacks with proper solutions, and so on. The motto here is "delivery

before perfection" (aka "release early, release often") - will accept some (well defined and

documented) shortcuts, when it means spending less time on "backend work" and enables us to

give actual value fast.

41

REFERENCES

[1] J. Yli-Huumo, A. Maglyas, and K. Smolander, “How do software development teams manage

technical debt? – An empirical study,”Journal of Systems and Software, vol. 120, pp. 195–218,

2016.

[2] Z. Li, P. Avgeriou, and P. Liang, “A systematic mapping study on technical debt and its

management,” Journal of Systems and Software,vol. 101, pp. 193–220, mar 2015.

[3] Appelbe B. The future of Open Source Software. J Res Pract Inf Tech 2003; 35: 227–236.

[4] Sandra P. Flexible and extensible object and repository architecture (Fedora).

Lect Notes Comput Sc 1998; 1513: 41–59.

[5] Janamanchi B, Katsamakas E, Raghupathi W and Gao W. The state and profile of Open

Source Software projects in health and medical informatics. Int J Med Inform 2009; 78:

457–472.

[6] Zhang Z, Katz DS, Merzky A, Turilli M, Jha S, Nand Y. 2016. Application skeleton:

generating synthetic applications for infrastructure research. The Journal of Open Source

Software 1(1):Article 17 DOI 10.21105/joss.00017.

42

https://joss.theoj.org/papers/10.21105/joss.00017

