
I

A Project Report

On

Plant Disease Finder using Machine learning
Submitted in partial fulfillment of the

requirement for the award of the degree of

Bachelor of Technology in Computer Science and

Engineering

Under The Supervision of

Mr. Anandhan K.

Assistant Professor

Department of Computer Science and Engineering

Submitted By

AMAN TYAGI - 19SCSE1010418

UTKARSH JAISWAL - 19SCSE1010399

SCHOOL OF COMPUTING SCIENCE AND ENGINEERING

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

GALGOTIAS UNIVERSITY, GREATER NOIDA, INDIA

DECEMBER - 2021

1

I/We hereby certify that the work which is being presented in the project, entitled

“ Plant Disease Finder Using Machine Learning ” in partial fulfillment of the

requirements for the award of the BACHELOR OF TECHNOLOGY IN

COMPUTER SCIENCE AND ENGINEERING submitted in the School of

Computing Science and Engineering of Galgotias University, Greater Noida, is an

original work carried out during the period of JULY-2021 to DECEMBER-2021,

under the supervision of Mr.Anandhan K., Assistant Professor, Department of

Computer Science and Engineering of School of Computing Science and

Engineering , Galgotias University, Greater Noida The matter presented in the project

has not been submitted by me/us for the award of any other degree of this or any other

places.

The matter presented in the project has not been submitted by me/us for the award

of any other degree of this or any other places.

AMAN TYAGI - 19SCSE1010418

UTKARSH JAISWAL - 19SCSE1010399

This is to certify that the above statement made by the candidates is correct to the best

of my knowledge.

Supervisor

(Mr.Anandhan K., Assistant Professor)

2

3

ABSTRACT
The existing system the farmers are using for the detection of diseases in the plants is

that- they could be identified through the naked eye and there knowledge about plant

disease. For doing so, on large number of plants is time consuming, difficult and

accuracy is not good. Consulting experts is of great cost. In such kind of conditions to

improve the accuracy rate and make it more beneficial suggested techniques are

implemented where devices are used for the automatic detection of the diseases that

makes the process cheaper and easier. High degree of the complexity is incorporated

by observing the symptoms on the plant leave optically where the plant disease could

be easily diagnosed. Now days most of the agro help centers and many farmers use

different types of technology to improve production in agriculture. The most

important source of energy is plants. Plants are often prone to diseases which may

cause social and economic losses. Many diseases are initially spotted on the leaves of

the plants. It could lead to more harm if the disease is not identified in the first stage.

By identifying the color features of the leaves image processing helps in the detection

of the diseases and also provides prevention to the particular diseases.

After the completion of our project we have an android app which is able to

identify the disease in the plant leaves with the help of image classification techniques.

The app is very helpful for the farmers. Farmers can easily use the app and able to

identify that whether their crop is infected or not. The project will be very helpful to

protect the crop and plants from the different kind of bacterial and fungal disease and

very helpful to save the quality and quantity of food.

4

Table of Contents

Title Page No.

Candidates Declaration 1
Acknowledgement 2
Abstract 3
Table of Contents 4
List of Table 5
List of Figures 6

Chapter 1 Introduction 7
1.1 Existing System 8
1.2 Proposed Approach 9
1.3 Tools, Technology & Diagram 10

Chapter 2 Literature Survey 14
2.1 System Design 16

Chapter 3 Module 1 17
3.1.1 CNN Model 17

Module 2 21
3.2.1 Dataset 21

Chapter 4 Module 3 24
4.3.1 Source Code 24

Module 4 28
4.4.1 Training,Test & Result 1 28
4.4.2 Training,Test & Result 2 31
4.4.3 Training,Test & Result 3 34

Chapter 5 Conclusion 37

Chapter 6 References 38

5

List of Tables

Serial No. Page No.

1. Training and Validation dataset table 22

6

List of Figures

Serial No. Title Page No.

1. System Architecture 9

2. Working of CNN Model 11

3. Conversion of RGB to Gray 12

4. Complete System Design 16

5. Dataset Images 23

6. Training & Validation Loss 29

7. Training & Validation Accuracy 30

8. Training & Validation Accuracy 32

9. Training & Validation Loss 33

10. Training & Validation Accuracy 35

11. Training & Validation Loss 36

7

Chapter 1

Introduction
Agriculture has become the key to rise in human civilization it is the art and science

of cultivating live stocks and plants. Many of the farmers are not able to identify the

diseases in the plants which may lead to loss in agriculture products. Agro scientist

can provide a better solution by using the images and videos of crops that provides a

better view. There are many diseases that affects the plants, where the symptoms are

not recognizable at the very first stage which may lead to social and economic loses.

To make things easier image processing is used, that helps to overcome these kind of

situations, by extracting the features of the leaves where the diseases can be easily

detected. Image processing involves steps like image acquisition, pre-processing,

segmentation, feature extraction and classification. Based on the convolutional neural

network a new recognition system of image is proposed. Image segmentation and

recognition system consists of the number of innovations. Convolutional neural

network and feature extraction are used while creating the recognition system.

Evaluation of results has proved that the system has high precision, reliability and

image-recognition ability. The results indicate that the approach is beneficial which

supports in the detection of the diseases with very less efforts.

8

Existing System
Even though there are many systems that have been developed till now using different

machine learning algorithms like Random Forest, Naive bayes, Artificial Neural

network the accuracy of those models are low and the works using those classification

techniques is done with the mind set of detecting disease for only one species of

plants. These works have been used in Karnataka by few farmers. Farmers still use

naked eyes to detect diseases which is serious problem as a farmer is not aware of

what type of disease the plant is infected. Farmers are still facing the issues and the

techniques they are using to detect the disease are time consuming.

9

PROPOSED APPROACH
The suggested work focus more on recognition of disease on the tomato and potato

leaf using python. The images are contemplated for additional feature extraction,

which will be done by using one of the exceeding algorithms. There are numerous

characteristics of images which are yet to be drawn out, this initiated method is going

to examine a little bit of them. The following Fig.1 shows the system architecture and

the authentic progress of the concept. The principal focus of this scheme is to provide

assistance to the farmers, facing the loss due to insufficient understanding of

numerous diseases. The notion will be more user- friendly.

Fig 1.System Architecture

10

Chapter 2

Tools, Technology & Diagram
The tool we are going to used are divided into hardware and software the following
tools are given below:

Hardware Components:

Android Smartphone:

Smartphones are handy and provide long-lasting battery.Warp-speed processing,
Crystal-clear display, great camera,etc. In this project, we have used an android app
that uses the camera of the phone and clicks the picture then give usthe information
about the plant like its name.

Graphic Process Unit:

A graphics processing unit is a specialized electronic circuit designed to rapidly
manipulate alter memory to accelerate the creation of images in a frame buffer
intended for output to a display device.

Software Components:

Android Studio:

There are multiple methods to create android applications which have taken a huge
rise in popularity in recent times. Of these methods Android Studio is a native android
application builder which is used. It is used for creating android applications which
require a simple output. The coding in Android Studio is done in java.

Android App:

An Android app is a software application running on the Android platform. Because
the Android platform is built for mobile devices, a typical Android app is designed for
a smartphone or a tablet PC running on the Android OS.

And methods, algorithms and python libraries of our model includes:

 CNN

 Classification

 Matplotlib

 Keras

 Tensorflow

 Sci-Kit Learn

 Image Acquisition

11

 Image Pre processing

 Segmentation

 Feature Extraction

CNN:

Convolutional Neural Networks are a complex neural network chain which work to

get the features of an image from a dataset which is trained and classify them to get

the required output. It trains the neural networks by using the dataset images and

changing them to numerical values.

Fig 2. Working of CNN model

Classification:

Feature classification is used for plant disease detection. The diseased features are

removed from the plant and classified with the more accurate information.

Matplotlib:

Matplotlib is a plotting library for the Python programming language and its

numerical mathematics extension NumPy. It provides an object-oriented API for

embedding plots into applications using general-purpose GUI toolkits like Tkinter,

wxPython, Qt, or GTK.

Keras:

12

Keras is an open-source software library that provides a Python interface for artificial

neural networks. Keras acts as an interface for the TensorFlow library. Up until

version 2.3, Keras supported multiple backends, including TensorFlow, Microsoft

Cognitive Toolkit, Theano, and PlaidML.

Tensorflow:

TensorFlow is an end-to-end open source platform for machine learning. It has a

comprehensive, flexible ecosystem of tools, libraries and community resources that

lets researchers push the state-of-the-art in ML and developers easily build and deploy

ML powered applications.

SciKit Learn:

Scikit-learn (formerly scikits.learn and also known as sklearn) is a free

software machine learning library for the Python programming language. It features

various classification, regression and clustering algorithms including support vector

machines, random forests, gradient boosting, k-means and DBSCAN, and is designed

to interoperate with the Python numerical and scientific libraries NumPy and SciPy.

Scikit-learn is a NumFOCUS fiscally sponsored project.

Image Acquisition:

In this step Images of plant leaf to be tested for disease is fed to our software. In this

step the images as shown in Fig.3, are converted to grayscale images as it becomes

easier to perform classification process on black and white image which is 2D-image.

In this step the system will access the snapshot of the plant and load the image into

the system. Steps that follow the image acquisition are. Input: image (JPG format)

Finer standard resolutions will be utilized for imageanalysis and JPEG is the format in

which these images are usually saved.

RGB Grey

Fig.3 Conversion of RGB to Grey

https://en.wikipedia.org/wiki/Free_software
https://en.wikipedia.org/wiki/Free_software
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Library_(computing)
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Statistical_classification
https://en.wikipedia.org/wiki/Regression_analysis
https://en.wikipedia.org/wiki/Cluster_analysis
https://en.wikipedia.org/wiki/Support_vector_machine
https://en.wikipedia.org/wiki/Support_vector_machine
https://en.wikipedia.org/wiki/Random_forests
https://en.wikipedia.org/wiki/Gradient_boosting
https://en.wikipedia.org/wiki/K-means_clustering
https://en.wikipedia.org/wiki/DBSCAN
https://en.wikipedia.org/wiki/NumPy
https://en.wikipedia.org/wiki/SciPy
https://en.wikipedia.org/w/index.php?title=NumFOCUS&action=edit&redlink=1

13

Image Preprocessing:

A simple sharpening operator is the unsharp filter which has obtained its name from

the reality that it actually strengthens edges (and additional peak frequency parts in an

image) through a procedure in which the original image will be let free of unsharp, or

smoothed, version of an image by eliminating them.

Segmentation:

The procedure of dividing a digital image into various fragments (set of pixels, are

additionally called as super pixels) is known as Image Segmentation. The outcome of

image segmentation is a set of fragments that jointly shield the entire image or a set of

outline obtained from the image. Every pixel in a zone is close regarding to some

distinctive or determined attributes like color, shape and texture.

Feature Extraction:

 Shape feature extraction: Solidity, extent, minor axis length and eccentricity are
the shape features used in this paper. These features are taken in order to extract
the diseased region in the leaf considered.

 Texture feature extraction: Contrast, correlation and energy are the texture
features used in the paper. These features are taken in order to extract the
diseased region in the leaf considered. Finally the variation of pixels and its
adjacent pixels will be calculated.

 Color feature extraction: In concern with translation, scaling and rotation the
color feature extraction has a unique way of showing image representation. The
features used for color are mean, skewness, and kurtosis. Here, we transform
RGB to LAB.

14

Literature Survey
The authors of the paper proposed Plant Leaves Disease detection using Image

Processing Techniques by Kiran R. Gavhale, and U. Gawande, Gavhale and Gawande

(2014) presented reviews and summarizes image processing techniques for several

plant species that have been used for recognizing plant diseases. The major techniques

for detection of plant diseases are: back propagation neural network (BPNN), Support

Vector Machine (SVM), K-nearest neighbor (KNN), aand Spatial Gray-level

Dependence Matrices (SGDM). These techniques are used to analyses the healthy and

diseased plants leaves.

The authors of the paper proposed Intelligent Diagnose System of Wheat Diseases

Based on Android Phone by Y. Q. Xia, Y. Li, and C. Li , In 2015, Xia and Li have

proposed the android design of intelligent wheat diseases diagnose system. In this

process, users collect images of wheat diseases using Android phones and send the

images across the network to the server for disease diagnosis. After receiving disease

images, the server performs image segmentation by converting the images from RGB

color space to HSI color space. The color and texture features of the diseases are to be

determined by using colour moment matrix and the gray level co-occurrence matrix.

The preferred features are input to the support vector machine for recognition and the

identification results are fed back to the client.

The authors of the paper proposed Implementation of RGB and Gray scale images in

plant leaves disease detection –comparative study by Padmavathi and Thangadurai

(2016) have given the comparative results of RGB and Gray scale images in leaf

disease finding process. In detecting the infected leaves, color becomes an important

feature to find the disease intensity. They have considered Grayscale and RGB images

and used median filter for image enhancement and segmentation for extraction of the

diseased portion which are used to identify the disease level. The plant disease

recognition model, based on leaf image classification, by the use of deep convolution

networks have developed. 13 kinds of diseases are identified from the healthy leaves

with the capability to differentiate leaves from their surroundings.

15

The authors of the paper proposed KNN as an effective method indentifying leaf

diseases for agronomical crop images. They used luminance and linear characteristics

image to detect skeleton of leaves to determine whether the leaf is of grape or not.

Then, GLCM (Gray-Level Co-Occurrence Matrix) features are extracted and diseases

are classified by using the obtained grape leaf images. However the detection and

recognition was only for grape specific and could not perform well for other species

of plant.

The authors of the paper performed Convolutional Neural Network operation for

plant disease detection using python API They resized image to 96x96 resolution for

image processing. Data augmentation technique was used to rotate, flip, shit images

horizontally and vertically. Adam optimizer was incorporated using categorical cross-

entropy. They trained the image with 75 epochs using 32 batch sizes for 35000

images.Similarly, the authors of paper [6], proposed framework ResNet50,ResNet101,

DenseNet161, and DenseNet169 as their Deep Neural Network (DNN) framework to

detect disease in rice plant. Images were resized as 224 × 224 pixels, the batch size

was set to 64 , epoch to 15 and the learning rate was set a constantly of 0.0001. The

DenseNet161 produced the best results with an accuracy of 95.74%. The authors of

the paper [6] investigated on using k-means clustering for the image segmentation of

grape leaf disease. Shape, color and texture were extracted as main features. Linear

Support Vector Machine (LSVM) was used for classification purpose. The images

were classified into two classes Downy and Powderly using the extracted nine texture

features and nine color features for all three segmented parts of single leaf image.

16

System Design
As illustrated in Figure 4, the distributed run-time system for the plant disease

detector is organized with parts executing on mobile devices at the user side, as well

as on centralized servers at the cloud side. Layer 1 describes the deep learning model

used in the system (i.e., CNN) and the Intermediate Representation (IR) model that

runs on the mobile device. Layer 2 illustrates the user interface, which is developed as

an Android app to enable systems users (shown in layer 3) to interact with the system

conveniently.

Fig 4. System design

17

Chapter 3

Module 1
CNNModel:

We trained a CNN model with 2 convolutional layers, one input layer and one output

layer. I = [i1, i2, . . . , ir] and O = [o1, o2, . . . , oh] represent the input and output

vectors, respectively, where r represents the number of elements in the input feature

set and h is the number of classes. The main objective of the network is to learn a

compressed representation of the dataset. In other words, it tries to approximately

learns the identity function F, which is defined as:

where W and B are the whole network weights and biases vectors.

A log sigmoid function is selected as the activation function f in the hidden and

output neurons. The log sigmoid function s is a special case of the logistic function in

the t space, which is defined by the formula:

s(t) = 1 /(1 + e−t)

The weights of the CNN network create the decision boundaries in the feature space,

and the resulting discriminating surfaces can classify complex boundaries. During the

training process, these weights are adapted for each new training image. In general,

feeding the CNN model with more images can recognize the plant diseases more

accurately. We used the back-propagation algorithm, which has a linear time

computational complexity, for training the CNN model.The input value Θ going into a

node i in the network is calculated by the weighted sum of outputs from all nodes

connected to it, as follows:

Θi = ∑(ωi,j ∗ Υj) + µi

where ωi,j is the weight on the connections between neuron j to i; Υj is the output

value of neuron j; and µi is a threshold value for neuron i, which represents a baseline

input to neuron i in the absence of any other inputs. If the value of ωi,j is negative, it

18

is tagged as inhibitory value and excluded because it decreases net input. The training

algorithm involves two phases: forward and backward phases. During the forward

phase, the network’s weights are kept fixed, and the input data is propagated through

the network layer by layer. The forward phase is concluded when the error signal ei

computations converge as follows:

ei = (di − oi)

where di and oi are the desired (target) and actual outputs of ith training image,

respectively. In the backward phase, the error signal ei is propagated through the

network in the backward direction. During this phase, error adjustments are applied to

the CNN network’s weights for minimizing ei. We used the gradient descent first-

order iterative optimization algorithm to calculate the change of each neuron weight

∆ωi,j , which is defined as follows: where yi(n) is the intermediate output of the

previous neuron n, η is the learning rate, and ε(n) is the error signal in the entire

output. ε(n) is calculated as follows: The CNN network has two types of layers:

convolution and pooling. Each layer has a group of specialized neurons that perform

one of these operations. The convolution operation means detecting the visual features

of objects in the input image such as edges, lines, color drops, etc. The pooling

process helps the CNN network to avoid learning irrelevant features of objects by

focusing only on learning the essential ones. The pooling operation is applied to the

output of the convolutional layers to down sampling the generated feature maps by

summarizing the features into patches. Two common pooling methods are used:

average-pooling and max-pooling. In this paper, we used the max-pooling method,

which calculates the maximum value for each patch of the feature map as the

dominant feature.As shown in Figure 3, the output of every Conv2D and

MaxPooling2D layer is a 3D form tensor (height, width, channels). The width and

height dimensions tend to shrink as we go deeper into the network. The third

argument (e.g., 16, 32 or 64) controls the number of output channels for each Conv2D

layer. During the training phase, the CNN model generated around 4 million trainable

parameters.

Before moving the trained CNN model to the mobile device, we converted it into an

optimized IR model based on the trained network topology, weights, and biases

19

values. We used the Intel OpenVINO toolkit to generate the IR model, which is the

only format that the inference engine on the Android platform accepts and

understands. The conversion process involved removing the convolution and pooling

layers that are not relevant to the mobile device’s inference engine. In particular,

OpenVINO splits the trained model into two types of files: XML and Bin extension.

The XML files contain the network topology, while the BIN files contain the weights

and biases binary data.

Model: "sequential_1"

Layer (type) Output Shape Param #

===

conv2d_1 (Conv2D) (None, 256, 256, 32) 896

activation_1 (Activation) (None, 256, 256, 32) 0

batch_normalization_1 (Batch (None, 256, 256, 32) 128

max_pooling2d_1 (MaxPooling2 (None, 85, 85, 32) 0

dropout_1 (Dropout) (None, 85, 85, 32) 0

conv2d_2 (Conv2D) (None, 85, 85, 64) 18496

activation_2 (Activation) (None, 85, 85, 64) 0

batch_normalization_2 (Batch (None, 85, 85, 64) 256

conv2d_3 (Conv2D) (None, 85, 85, 64) 36928

activation_3 (Activation) (None, 85, 85, 64) 0

batch_normalization_3 (Batch (None, 85, 85, 64) 256

max_pooling2d_2 (MaxPooling2 (None, 42, 42, 64) 0

dropout_2 (Dropout) (None, 42, 42, 64) 0

conv2d_4 (Conv2D) (None, 42, 42, 128) 73856

activation_4 (Activation) (None, 42, 42, 128) 0

batch_normalization_4 (Batch (None, 42, 42, 128) 512

conv2d_5 (Conv2D) (None, 42, 42, 128) 147584

activation_5 (Activation) (None, 42, 42, 128) 0

batch_normalization_5 (Batch (None, 42, 42, 128) 512

20

max_pooling2d_3 (MaxPooling2 (None, 21, 21, 128) 0

dropout_3 (Dropout) (None, 21, 21, 128) 0

flatten_1 (Flatten) (None, 56448) 0

dense_1 (Dense) (None, 1024) 57803776

activation_6 (Activation) (None, 1024) 0

batch_normalization_6 (Batch (None, 1024) 4096

dropout_4 (Dropout) (None, 1024) 0

dense_2 (Dense) (None, 7) 7175

activation_7 (Activation) (None, 7) 0

===

Total params: 58,094,471

Trainable params: 58,091,591

Non-trainable params: 2,880

21

Module 2
Dataset

Although standard object detection datasets (e.g., Microsoft COCO) exhibit

volume and variety of examples, they are not suitable for plant disease detection as

they annotate a set of object categories not include plant diseases. Therefore, we

collected more than labeled 5k images of healthy and infected plant leaves for

training the CNN model from different sources such as Kaggle, Plant Village

and Google Web Scraper. Many images in our dataset are in their natural

environments because object detection is highly dependent on contextual information.

Our dataset is divided into three parts: training, validation and testing. Table 1 shows

the number of images used in the 2 phases across the 5 disease classes in 2

cropspecies. The number of images in each phase is determined based on the fine-

tuned hyper parameters and structure of the CNN model. We conducted a set of

controlled experiments to estimate the hyper parameter to improve the prediction

accuracy and performance. In particular, we progressively tested random

combinations of hyper parameter values until we achieved satisfactory results. Cross-

validation optimizer were also used to find the best set of hyper parameters.

To increase the training accuracy and minimize training loss of the CNN model, we

applied a series of image preprocessing transformations to the training data set.

Particularly, we altered the contrast of image colors, added Gaussian noise, and used

image desaturation, which makes pixel colors more muted by adding more black and

white colors. The primary purpose of these transformations is to weaken the influence

of the background factor during the training process. This had a better effect on

learning the 5 disease classes more effectively and increased our CNN model’s

stability.

We had to normalize the range of pixel intensity values of leaf images in the dataset

before training the CNN model. This step was necessary because all dimensions of

feature vectors extracted from input images should be in the same intensity range.

This made the convergence of our CNN model faster during the training phase. Image

normalization was implemented by subtracting the input image’s mean value µ from

22

each pixel’s value I(i, j), and then dividing the result by the standard deviation σ of the

input image. The distribution of the output pixel intensity values would resemble a

Gaussian curve centered at zero. We used the following formula to normalize each

image in our training set:

O(i, j) = I(i, j) − µ /σ

where I and O are the input and output images, respectively; and i and j are the current

pixel indices to be normalized.

Table 1: The Number of Images used in the Training, Validation.

Serial No. Plant Disease Classes Training Validation & test Total
1. Potato Early Blight 700 300 1000
2. Potato Late Blight 700 300 1000
3. Tomato mosaic virus 273 100 373
4. Tomato Bacterial Spot 1627 500 2127
5. Tomato Early Blight 700 300 1000
6. Tomato Healthy 1291 300 1591
7. Potato Healthy 120 32 152
Total: 5411 1832 7243

23

Dataset Images:

Fig 5. Dataset Images

24

Chapter 4

Module 3
Implementation:
import numpy as np

import pickle

import cv2

from os import listdir

from sklearn.preprocessing import LabelBinarizer

from keras.models import Sequential

from keras.layers.normalization import BatchNormalization

from keras.layers.convolutional import Conv2D

from keras.layers.convolutional import MaxPooling2D

from keras.layers.core import Activation, Flatten, Dropout, Dense

from keras import backend as K

from keras.preprocessing.image import ImageDataGenerator

from keras.optimizers import Adam

from keras.preprocessing import image

from keras.preprocessing.image import img_to_array

from sklearn.preprocessing import MultiLabelBinarizer

from sklearn.model_selection import train_test_split

import matplotlib.pyplot as plt

EPOCHS = 25

INIT_LR = 1e-3

BS = 32

default_image_size = tuple((256, 256))

image_size = 0

directory_root = 'D:\input\plantvillage'

width=256

height=256

depth=3

def convert_image_to_array(image_dir):

try:

image = cv2.imread(image_dir)

if image is not None :

image = cv2.resize(image, default_image_size)

return img_to_array(image)

else :

return np.array([])

except Exception as e:

print(f"Error : {e}")

return None

image_list, label_list = [], []

try:

print("[INFO] Loading images ...")

root_dir = listdir(directory_root)

for directory in root_dir :

25

remove .DS_Store from list

if directory == ".DS_Store" :

root_dir.remove(directory)

for plant_folder in root_dir :

plant_disease_folder_list = listdir(f"D:\input\plantvillage\{plant_folder}")

for disease_folder in plant_disease_folder_list :

remove .DS_Store from list

if disease_folder == ".DS_Store" :

plant_disease_folder_list.remove(disease_folder)

for plant_disease_folder in plant_disease_folder_list:

print(f"[INFO] Processing {plant_disease_folder} ...")

plant_disease_image_list =

listdir(f"D:\input\plantvillage\{plant_folder}\{plant_disease_folder}")

for single_plant_disease_image in plant_disease_image_list :

if single_plant_disease_image == ".DS_Store" :

plant_disease_image_list.remove(single_plant_disease_image)

for image in plant_disease_image_list[:200]:

image_directory =

f"D:\input\plantvillage\{plant_folder}\{plant_disease_folder}\{image}"

if image_directory.endswith(".jpg") == True or

image_directory.endswith(".JPG") == True:

image_list.append(convert_image_to_array(image_directory))

label_list.append(plant_disease_folder)

print("[INFO] Image loading completed")

except Exception as e:

print(f"Error : {e}")

image_size = len(image_list)

label_binarizer = LabelBinarizer()

image_labels = label_binarizer.fit_transform(label_list)

pickle.dump(label_binarizer,open('label_transform.pkl', 'wb'))

n_classes = len(label_binarizer.classes_)

print(label_binarizer.classes_)

np_image_list = np.array(image_list, dtype=np.float16) / 225.0

print("[INFO] Spliting data to train, test")

x_train, x_test, y_train, y_test = train_test_split(np_image_list, image_labels,

test_size=0.2, random_state = 42)

aug = ImageDataGenerator(

rotation_range=25, width_shift_range=0.1,

height_shift_range=0.1, shear_range=0.2,

zoom_range=0.2,horizontal_flip=True,

fill_mode="nearest")

26

model = Sequential()

inputShape = (height, width, depth)

chanDim = -1

if K.image_data_format() == "channels_first":

inputShape = (depth, height, width)

chanDim = 1

model.add(Conv2D(32, (3, 3), padding="same",input_shape=inputShape))

model.add(Activation("relu"))

model.add(BatchNormalization(axis=chanDim))

model.add(MaxPooling2D(pool_size=(3, 3)))

model.add(Dropout(0.25))

model.add(Conv2D(64, (3, 3), padding="same"))

model.add(Activation("relu"))

model.add(BatchNormalization(axis=chanDim))

model.add(Conv2D(64, (3, 3), padding="same"))

model.add(Activation("relu"))

model.add(BatchNormalization(axis=chanDim))

model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Dropout(0.25))

model.add(Conv2D(128, (3, 3), padding="same"))

model.add(Activation("relu"))

model.add(BatchNormalization(axis=chanDim))

model.add(Conv2D(128, (3, 3), padding="same"))

model.add(Activation("relu"))

model.add(BatchNormalization(axis=chanDim))

model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Dropout(0.25))

model.add(Flatten())

model.add(Dense(1024))

model.add(Activation("relu"))

model.add(BatchNormalization())

model.add(Dropout(0.5))

model.add(Dense(n_classes))

model.add(Activation("softmax"))

model.summary()

opt = Adam(lr=INIT_LR, decay=INIT_LR / EPOCHS)

distribution

model.compile(loss="binary_crossentropy", optimizer=opt,metrics=["accuracy"])

train the network

print("[INFO] training network...")

history = model.fit_generator(

aug.flow(x_train, y_train, batch_size=BS),

validation_data=(x_test, y_test),

steps_per_epoch=len(x_train) // BS,

epochs=EPOCHS, verbose=1

)

acc = history.history['accuracy']

val_acc = history.history['val_accuracy']

loss = history.history['loss']

27

val_loss = history.history['val_loss']

epochs = range(1, len(acc) + 1)

#Train and validation accuracy

plt.plot(epochs, acc, 'b', label='Training accuracy')

plt.plot(epochs, val_acc, 'r', label='Validation accuracy')

plt.title('Training and Validation accuracy')

plt.legend()

plt.figure()

#Train and validation loss

plt.plot(epochs, loss, 'b', label='Training loss')

plt.plot(epochs, val_loss, 'r', label='Validation loss')

plt.title('Training and Validation loss')

plt.legend()

plt.show()

print("[INFO] Calculating model accuracy")

scores = model.evaluate(x_test, y_test)

print(f"Test Accuracy: {scores[1]*100}")

save the model to disk

print("[INFO] Saving model...")

pickle.dump(model,open('cnn_model.pkl', 'wb'))

28

Module 4
Training, Test & Result 1

Epoch 1/25

33/33 [==============================] - 203s 6s/step - loss: 0.0390 - accuracy:

0.9858 - val_loss: 0.7180 - val_accuracy: 0.8988

Epoch 2/25

33/33 [==============================] - 185s 6s/step - loss: 0.0653 - accuracy:

0.9775 - val_loss: 0.7339 - val_accuracy: 0.8703

Epoch 3/25

33/33 [==============================] - 187s 6s/step - loss: 0.0353 - accuracy:

0.9880 - val_loss: 0.1847 - val_accuracy: 0.9452

Epoch 4/25

33/33 [==============================] - 185s 6s/step - loss: 0.0371 - accuracy:

0.9863 - val_loss: 0.1333 - val_accuracy: 0.9573

Epoch 5/25

33/33 [==============================] - 183s 6s/step - loss: 0.0393 - accuracy:

0.9869 - val_loss: 0.4494 - val_accuracy: 0.9225

Epoch 6/25

33/33 [==============================] - 183s 6s/step - loss: 0.0306 - accuracy:

0.9883 - val_loss: 0.0745 - val_accuracy: 0.9768

Epoch 7/25

33/33 [==============================] - 185s 6s/step - loss: 0.0391 - accuracy:

0.9861 - val_loss: 0.0985 - val_accuracy: 0.9626

Epoch 8/25

33/33 [==============================] - 185s 6s/step - loss: 0.0262 - accuracy:

0.9897 - val_loss: 0.1180 - val_accuracy: 0.9668

Epoch 9/25

33/33 [==============================] - 182s 6s/step - loss: 0.0260 - accuracy:

0.9905 - val_loss: 1.3478 - val_accuracy: 0.8424

Epoch 10/25

33/33 [==============================] - 183s 6s/step - loss: 0.0345 - accuracy:

0.9894 - val_loss: 0.5530 - val_accuracy: 0.8983

Epoch 11/25

33/33 [==============================] - 187s 6s/step - loss: 0.0296 - accuracy:

0.9890 - val_loss: 0.1575 - val_accuracy: 0.9636

Epoch 12/25

33/33 [==============================] - 185s 6s/step - loss: 0.0204 - accuracy:

0.9924 - val_loss: 0.4069 - val_accuracy: 0.9288

Epoch 13/25

33/33 [==============================] - 186s 6s/step - loss: 0.0256 - accuracy:

0.9913 - val_loss: 0.1820 - val_accuracy: 0.9626

Epoch 14/25

33/33 [==============================] - 188s 6s/step - loss: 0.0388 - accuracy:

0.9854 - val_loss: 0.6270 - val_accuracy: 0.9067

Epoch 15/25

33/33 [==============================] - 181s 5s/step - loss: 0.0314 - accuracy:

0.9884 - val_loss: 0.4288 - val_accuracy: 0.9077

Epoch 16/25

29

33/33 [==============================] - 182s 6s/step - loss: 0.0308 - accuracy:

0.9874 - val_loss: 2.1517 - val_accuracy: 0.8028

Epoch 17/25

33/33 [==============================] - 186s 6s/step - loss: 0.0291 - accuracy:

0.9885 - val_loss: 0.5316 - val_accuracy: 0.8988

Epoch 18/25

33/33 [==============================] - 182s 6s/step - loss: 0.0246 - accuracy:

0.9914 - val_loss: 0.1799 - val_accuracy: 0.9557

Epoch 19/25

33/33 [==============================] - 183s 6s/step - loss: 0.0265 - accuracy:

0.9892 - val_loss: 1.5017 - val_accuracy: 0.8250

Epoch 20/25

33/33 [==============================] - 184s 6s/step - loss: 0.0326 - accuracy:

0.9882 - val_loss: 1.3497 - val_accuracy: 0.8329

Epoch 21/25

33/33 [==============================] - 186s 6s/step - loss: 0.0265 - accuracy:

0.9889 - val_loss: 2.3715 - val_accuracy: 0.7818

Epoch 22/25

33/33 [==============================] - 186s 6s/step - loss: 0.0223 - accuracy:

0.9932 - val_loss: 0.2392 - val_accuracy: 0.9394

Epoch 23/25

33/33 [==============================] - 218s 7s/step - loss: 0.0194 - accuracy:

0.9931 - val_loss: 0.1449 - val_accuracy: 0.9620

Epoch 24/25

33/33 [==============================] - 273s 8s/step - loss: 0.0137 - accuracy:

0.9951 - val_loss: 0.6074 - val_accuracy: 0.9188

Epoch 25/25

33/33 [==============================] - 248s 8s/step - loss: 0.0256 - accuracy:

0.9903 - val_loss: 0.3392 - val_accuracy: 0.9425

Fig 6

30

Fig 7

[INFO] Calculating model accuracy

271/271 [==============================] - 13s 48ms/step

Test Accuracy: 94.25409436225891

31

Training, Test & Result 2:
Epoch 1/25

33/33 [==============================] - 210s 6s/step - loss: 0.0163 - accuracy:

0.9952 - val_loss: 0.1195 - val_accuracy: 0.9657

Epoch 2/25

33/33 [==============================] - 212s 6s/step - loss: 0.0247 - accuracy:

0.9924 - val_loss: 0.2017 - val_accuracy: 0.9478

Epoch 3/25

33/33 [==============================] - 231s 7s/step - loss: 0.0155 - accuracy:

0.9954 - val_loss: 0.1412 - val_accuracy: 0.9715

Epoch 4/25

33/33 [==============================] - 220s 7s/step - loss: 0.0194 - accuracy:

0.9921 - val_loss: 0.1559 - val_accuracy: 0.9573

Epoch 5/25

33/33 [==============================] - 219s 7s/step - loss: 0.0182 - accuracy:

0.9946 - val_loss: 0.7830 - val_accuracy: 0.8809

Epoch 6/25

33/33 [==============================] - 217s 7s/step - loss: 0.0260 - accuracy:

0.9903 - val_loss: 0.2328 - val_accuracy: 0.9462

Epoch 7/25

33/33 [==============================] - 221s 7s/step - loss: 0.0232 - accuracy:

0.9920 - val_loss: 0.2586 - val_accuracy: 0.9457

Epoch 8/25

33/33 [==============================] - 222s 7s/step - loss: 0.0236 - accuracy:

0.9911 - val_loss: 0.0981 - val_accuracy: 0.9726

Epoch 9/25

33/33 [==============================] - 217s 7s/step - loss: 0.0310 - accuracy:

0.9883 - val_loss: 0.3296 - val_accuracy: 0.9209

Epoch 10/25

33/33 [==============================] - 223s 7s/step - loss: 0.0290 - accuracy:

0.9899 - val_loss: 0.1769 - val_accuracy: 0.9663

Epoch 11/25

33/33 [==============================] - 220s 7s/step - loss: 0.0279 - accuracy:

0.9890 - val_loss: 0.3329 - val_accuracy: 0.9373

Epoch 12/25

33/33 [==============================] - 221s 7s/step - loss: 0.0191 - accuracy:

0.9933 - val_loss: 0.0924 - val_accuracy: 0.9768

Epoch 13/25

33/33 [==============================] - 233s 7s/step - loss: 0.0135 - accuracy:

0.9961 - val_loss: 0.1911 - val_accuracy: 0.9605

Epoch 14/25

33/33 [==============================] - 221s 7s/step - loss: 0.0201 - accuracy:

0.9931 - val_loss: 0.1947 - val_accuracy: 0.9526

Epoch 15/25

33/33 [==============================] - 218s 7s/step - loss: 0.0225 - accuracy:

0.9919 - val_loss: 0.3665 - val_accuracy: 0.9367

Epoch 16/25

33/33 [==============================] - 225s 7s/step - loss: 0.0134 - accuracy:

0.9956 - val_loss: 0.1019 - val_accuracy: 0.9731

Epoch 17/25

33/33 [==============================] - 222s 7s/step - loss: 0.0147 - accuracy:

0.9948 - val_loss: 1.2360 - val_accuracy: 0.8619

Epoch 18/25

32

33/33 [==============================] - 223s 7s/step - loss: 0.0149 - accuracy:

0.9959 - val_loss: 0.3725 - val_accuracy: 0.9389

Epoch 19/25

33/33 [==============================] - 224s 7s/step - loss: 0.0177 - accuracy:

0.9934 - val_loss: 0.1016 - val_accuracy: 0.9710

Epoch 20/25

33/33 [==============================] - 220s 7s/step - loss: 0.0185 - accuracy:

0.9929 - val_loss: 0.0869 - val_accuracy: 0.9726

Epoch 21/25

33/33 [==============================] - 225s 7s/step - loss: 0.0213 - accuracy:

0.9930 - val_loss: 0.4322 - val_accuracy: 0.9304

Epoch 22/25

33/33 [==============================] - 225s 7s/step - loss: 0.0194 - accuracy:

0.9924 - val_loss: 0.7080 - val_accuracy: 0.8814

Epoch 23/25

33/33 [==============================] - 225s 7s/step - loss: 0.0349 - accuracy:

0.9894 - val_loss: 0.8854 - val_accuracy: 0.8830

Epoch 24/25

33/33 [==============================] - 234s 7s/step - loss: 0.0194 - accuracy:

0.9928 - val_loss: 0.2223 - val_accuracy: 0.9446

Epoch 25/25

33/33 [==============================] - 221s 7s/step - loss: 0.0158 - accuracy:

0.9944 - val_loss: 0.3585 - val_accuracy: 0.9183

Fig.8

33

Fig.9

[INFO] Calculating model accuracy

271/271 [==============================] - 13s 47ms/step

Test Accuracy: 91.82921051979065

34

Training, Test & Result 3:
Epoch 1/25

33/33 [==============================] - 221s 7s/step - loss: 0.0174 - accuracy:

0.9940 - val_loss: 1.3082 - val_accuracy: 0.8571

Epoch 2/25

33/33 [==============================] - 223s 7s/step - loss: 0.0247 - accuracy:

0.9920 - val_loss: 0.1350 - val_accuracy: 0.9689

Epoch 3/25

33/33 [==============================] - 221s 7s/step - loss: 0.0221 - accuracy:

0.9908 - val_loss: 0.2478 - val_accuracy: 0.9452

Epoch 4/25

33/33 [==============================] - 222s 7s/step - loss: 0.0175 - accuracy:

0.9922 - val_loss: 0.1492 - val_accuracy: 0.9678

Epoch 5/25

33/33 [==============================] - 228s 7s/step - loss: 0.0238 - accuracy:

0.9902 - val_loss: 1.0676 - val_accuracy: 0.8498

Epoch 6/25

33/33 [==============================] - 233s 7s/step - loss: 0.0245 - accuracy:

0.9922 - val_loss: 0.5042 - val_accuracy: 0.9215

Epoch 7/25

33/33 [==============================] - 229s 7s/step - loss: 0.0289 - accuracy:

0.9892 - val_loss: 0.7516 - val_accuracy: 0.8940

Epoch 8/25

33/33 [==============================] - 236s 7s/step - loss: 0.0227 - accuracy:

0.9917 - val_loss: 0.5541 - val_accuracy: 0.8935

Epoch 9/25

33/33 [==============================] - 232s 7s/step - loss: 0.0164 - accuracy:

0.9933 - val_loss: 0.2366 - val_accuracy: 0.9462

Epoch 10/25

33/33 [==============================] - 230s 7s/step - loss: 0.0221 - accuracy:

0.9919 - val_loss: 0.1456 - val_accuracy: 0.9678

Epoch 11/25

33/33 [==============================] - 232s 7s/step - loss: 0.0166 - accuracy:

0.9940 - val_loss: 1.1580 - val_accuracy: 0.8645

Epoch 12/25

33/33 [==============================] - 229s 7s/step - loss: 0.0221 - accuracy:

0.9920 - val_loss: 0.1165 - val_accuracy: 0.9736

Epoch 13/25

33/33 [==============================] - 232s 7s/step - loss: 0.0246 - accuracy:

0.9937 - val_loss: 0.2281 - val_accuracy: 0.9499

Epoch 14/25

33/33 [==============================] - 230s 7s/step - loss: 0.0176 - accuracy:

0.9924 - val_loss: 0.3173 - val_accuracy: 0.9357

Epoch 15/25

33/33 [==============================] - 228s 7s/step - loss: 0.0103 - accuracy:

0.9962 - val_loss: 0.3467 - val_accuracy: 0.9357

Epoch 16/25

33/33 [==============================] - 227s 7s/step - loss: 0.0168 - accuracy:

0.9951 - val_loss: 0.5922 - val_accuracy: 0.9236

Epoch 17/25

33/33 [==============================] - 226s 7s/step - loss: 0.0146 - accuracy:

0.9946 - val_loss: 0.6837 - val_accuracy: 0.9130

Epoch 18/25

35

33/33 [==============================] - 229s 7s/step - loss: 0.0153 - accuracy:

0.9962 - val_loss: 0.6478 - val_accuracy: 0.8909

Epoch 19/25

33/33 [==============================] - 231s 7s/step - loss: 0.0150 - accuracy:

0.9952 - val_loss: 0.0952 - val_accuracy: 0.9742

Epoch 20/25

33/33 [==============================] - 230s 7s/step - loss: 0.0131 - accuracy:

0.9947 - val_loss: 1.2131 - val_accuracy: 0.8382

Epoch 21/25

33/33 [==============================] - 199s 6s/step - loss: 0.0162 - accuracy:

0.9947 - val_loss: 0.2707 - val_accuracy: 0.9489

Epoch 22/25

33/33 [==============================] - 190s 6s/step - loss: 0.0202 - accuracy:

0.9931 - val_loss: 0.7840 - val_accuracy: 0.8777

Epoch 23/25

33/33 [==============================] - 192s 6s/step - loss: 0.0235 - accuracy:

0.9930 - val_loss: 0.2872 - val_accuracy: 0.9367

Epoch 24/25

33/33 [==============================] - 192s 6s/step - loss: 0.0202 - accuracy:

0.9944 - val_loss: 0.1259 - val_accuracy: 0.9668

Epoch 25/25

33/33 [==============================] - 192s 6s/step - loss: 0.0128 - accuracy:

0.9946 - val_loss: 0.3621 - val_accuracy: 0.9373

Fig 10

36

Fig 11.

[INFO] Calculating model accuracy

271/271 [==============================] - 12s 45ms/step

Test Accuracy: 93.7269389629364

37

Chapter 5

Conclusion
To prevent losses, small holder farmers are dependent on a timely and accurate crop

disease diagnosis. In this study, a pre-trained Convolutional Neural Network was fine-

tuned. The final result was a plant disease detection app. This service is free, easy to

use and requires just a smart phone and internet connection.

A through investigation exposes the capabilities and limitations of the model. Overall,

when validated in a controlled environment, an accuracy of 94.2% is presented. This

achieved accuracy depends on a number of factors including the stage of disease,

disease type, background data and object composition. Due to this, a set of user

guidelines would be required for commercial use, to ensure the stated accuracy is

delivered. As the model was trained using a plain background and singular leaf,

imitation of these features is best.

Overall, this study is conclusive in demonstrating how CNNs may be applied to

empower small-holder farmers in their fight against plant disease. In the future, work

should be focused on diversifying training datasets and also in testing similar web

applications in real life situations. Without such developments, the struggle against

plant disease will continue.

38

Chapter 6

REFERENCES

1. Plant Leaves Disease detection using Image Processing Techniques by Kiran R.

Gavhale, and U. Gawande, Gavhale and Gawande (2014)

2. Intelligent Diagnose System of Wheat Diseases Based on Android Phone by Y. Q.

Xia, Y. Li, and C. Li(2015)

3. Implementation of RGB and Gray scale images in plant leaves disease detection –

comparative study by Padmavathi and Thangadurai (2016)

4. S. V. Militante, B. D. Gerardo, and N. V. Dionisio, “Plant leaf detection and

disease recognition using deep learning,” (2019)

5. S. Mathulaprangsan, K. Lanthong, D. Jetpipattanapong, S. Sateanpattanakul, and S.

Patarapuwadol, “Rice diseases recognition using effective deep learning models,” in

2020

6. P. B. Padol and A. A. Yadav, “SVM classifier based grape leaf disease detection,”

in 2016

7. Konstantinos P. Ferentinos: Deep Learning models for plant disease detection and

Diagnosis. Computers and electronics in ariculture(2018)

8. Taohidul Islam, Manish Sah, Sudipto Baral, Rudra Roy Choudhury “A faster

technique on rice disease detection using image processing of affected area in agro-

field”,2018 Proceedings of the 2nd International Conference on Inventive

Communication and Computational Technologies.

9. Varsha P. Gaikwad, Dr. Vijaya Musande “Wheat Disease Detection Using Image

Processing” IEEE Conference 2017.K. Elissa, “Title of Paper if known,”unpublished.

39

10. Hiteshwari Sabrol , Satish Kumar “Recognition of Tomato Late Blight by using

DWT and ComponentAnalysis” IEEE Conference2017.

11. Trimi Neha Tete, Sushma Kamlu, “Detection of Plant Disease Using Threshold,

K-Mean Cluster and ANN Algorithm”, 2014 World Congress on Computing and

Communication Technologies.

12. Sachin D.Khirade,A.B.Patil “Plant Disease Detection using image processing.

International Conference on Computing Communication Control and Automation

“2017 2nd International Conference for Convergence in Technology.

13. Konstantinos P. Ferentinos “Deep learning models for plant disease detection and

diagnosis”.15. Ginardi, R.V Hari, RiyanartoSarno and Tri AdhiWijaya “Sugarcane

Leaf Color Classification in Sa*b* Color Element Composition”. 2013 International

Conference on Computer,Control, Informatics and its application.

14. Konstantinos P. Ferentinos “Deep learning models for plant disease detection and

diagnosis”.

15. Ginardi, R.V Hari, RiyanartoSarno and Tri AdhiWijaya “Sugarcane Leaf Color

Classification in Color Element Composition”. 2013 International Conference on

Computer,Control, Informatics and its application.

40

