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ABSTRACT 

 
The purpose of the project is to research about Content and Collaborative based movie 

recommendation engines. Nowadays recommender systems are used in our day-to-day 

life. We try to understand the distinct types of reference engines/systems and compare 

their work on the movies datasets. We start to produce a versatile model to complete 

this study and start by developing and 

relating the different kinds of prototypes on a minor dataset of 100,000 evaluations. 

The growth of e-commerce has given rise to recommendation engines. Several 

recommendation engines exist within the market to recommend a wide variety of goods 

to users. These recommendations support 

various aspects such as users' interests, users' history, users' locations, and more. Away 

from all the above aspects, one thing is common which is individuality. Content and 

collaborative-based movie recommendation engines recommend users based on the 

user's viewpoint, whereas many things are there within the marketplace that are related 

to which a user is uninformed of. This stuff should also be suggested by the engine to 

clients; But due to the range of "individuality", these machines do not suggest things 

that are out of the crate. The Hybrid System of Movie Recommendation Engine has 

crossed this variety of individuality. The Movie Recommendation Engine will suggest 

movies to clients according to their interest and be evaluated by other clients who are 

almost user-like. Additionally, for this, there are web services that are capable of acting 

as a tool adornment.
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CHAPTER-1 

 

Introduction 

 
A movie recommendation engine / system can be an information sorting system that 

works to estimate ratings or preferences and will give the user an item and set up a 

simple or similar language "recommendation engine / system to attract the user 

something. Suggests important supported". Recommendatory systems can also enhance 

the experience for:  

 

 News websites 

 Computer games 

 Knowledge base 

 Social media platform 

 Stock trading support system  

 

A content and collaborative-based recommendation engine / system can also be a 

method of information sorting system that works to predict user preferences and 

provide suggestions that support them. The content on some platforms extends from 

movies, music, books and videos to friends. And to produce stories on social platform 

and on ecommerce websites, for persons on professional and dating websites, returned 

to see search results. Two critical approaches are mainly used for recommendation 

engines. First, content-based filtering, where we attempt to profile client interests 

utilizing gathered information and recommend items that support that profile, and 

second, collaborative filtering [8] continues where we try and identify together and use 

information about identities to create recommendations systems. Every user has a 

different mindset to decide their likes and dislikes. Additionally, even a customer’s 

taste can look at different aspects, such as mood, seasons, or different activities 

performed by the user. As an example, the type of music you want to focus on during 

exercise is severely different from that in which he listens to music while making 

dinner. They have to find new areas to see more about the customer, while still 

determining the majority of what is already known about the customer.  

 

 



 

 

 

 

Introduction to Simple recommenders: 

The simple recommendation system process provides generalized recommendations to 

each user, supported movie popularity and / or genre. The basic approach behind this 

technique is that more popular and critically acclaimed movies will be better likely to 

be liked by the general audience. For example, IMDB Top 250 is an example of this 

technique. 

 

There are basically three types of recommender systems: 

 Demographic Filtering- They offer generalized recommendations to every user, based 

on movie popularity and/or genre. The System recommends the same movies to users 

with similar demographic features. Since each user is different, this approach is 

considered to be too simple. The basic idea behind this system is that movies that are 

more popular and critically acclaimed will have a higher probability of being liked by 

the average audience. 

 Content Based Filtering- They suggest similar items based on a particular item. This 

system uses item metadata, such as genre, director, description, actors, etc. for movies, 

to make these recommendations. The general idea behind these recommender systems 

is that if a person liked a particular item, he or she will also like an item that is similar 

to it. 

 Collaborative Filtering- This system matches persons with similar interests and 

provides recommendations based on this matching. Collaborative filters do not require 

item metadata like its content-based counterparts. 



CHAPTER-2  

Literature Survey 

 
In the context of a review of the literature, a recommendation system using a content-based 

collaborative and hybrid approach by a previous researcher is a different approach to the development 

of recommendation-based engines. In 2007 a web-based and knowledge-based intelligence movie 

recommendation system has been offered using the hybrid filtering method. In 2017, a movie 

recommendation system supported style and rating coefficient of correlation purpose by the authors. 

In 2013 a Bayesian network and trust model-based movie recommendation engine have been 

recommended to predict ratings for users and items, primarily from datasets to recommend users their 

choice and vice versa. In 2018, the authors built a recommendation engine by analyzing the ratings 

dataset collected from Kaggle to recommend movies for a user selected from Python. In 2018 movie 

recommendation engines provide a process to help users categorize users with similar k mean cuckoo 

values and reinforcement learning based recommender systems, which are using bicycling techniques. 

Initial research mainly concentrated on the content of the recommendation system that examined the 

features of the object to complete the recommendation task. Experiments verified that their 

approaches were more elastic and precise. Bayesian networks are employed for model-based 

preferences based on their context. In 2007 Salakhuddinov and Minh proposed a collaborative 

filtering method, the probabilistic matrix factor, which can handle large-scale datasets. The 

collaborative filtering algorithm was distributed into portions for deeper study in the movie 

recommendation by Hurlkartal. When clients adopt new behavior, it is difficult for collaborative 

filtering to react instantly. Therefore, both researchers and practitioners have a desire to align 

collaborative filtering method and content-based methodology to solve the issue. Ternary 

implemented Unplugged Learning of Machine Learning to examine the polarity of machine 

reflectivity. 

 
 

 

 

 
 

 

 
 

 

 



CHAPTER 3 

SYSTEM DESIGN 

 

 

    DATA FLOW DIAGRAM: 

 

 

 

 

 

 



ER DIAGRAM: 
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ARCHITECTURE DIAGRAM: 

 



                                                            CHAPTER 4 

                                                                Dataset 

 

The movie dataset is hired in our research paper and collected from the Kaggle 

database. The Kaggle database provides datasets in the form of several varieties of 

movie content. The user rating data consists of records and has a user ID, movie 

ID, rating, and timestamp. The Characterization of the movie's content 

information includes over 54058 records and includes movie ID, title, genre, 

director, actor, and more. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://www.kaggle.com/rounakbanik/movie-recommender-systems
https://www.kaggle.com/rounakbanik/movie-recommender-systems


                                                   CHAPTER 5 

 

Requirements of Project 

 

 

 Linux operating System 

 Python 2.7 

 Flask Framework 

 Flask wtForms 

 Flask Mysqldb 

 Numpy 

 Flask Mail 

 SciPy 

 Scikit-learn 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                                        Chapter 6 

                                                      Implementation 

 

import pandas as pd  

import numpy as np  

df1=pd.read_csv('../input/tmdb-movie-metadata/tmdb_5000_credits.csv') 

df2=pd.read_csv('../input/tmdb-movie-metadata/tmdb_5000_movies.csv') 

 

 

 

df1.columns = ['id','tittle','cast','crew'] 

df2= df2.merge(df1,on='id') 

 

Just a peak at our data. 

 



 

 

 

 

df2.head(5) 

 

 

 

Demographic Filtering 

 

 

C= df2['vote_average'].mean() 

C 

 

OUTPUT:6.092171559442011 

 

m= df2['vote_count'].quantile(0.9) 

m 



 

OUTPUT: 1838.4000000000015 

 

Now, we can filter out the movies that qualify for the chart 

 

q_movies = df2.copy().loc[df2['vote_count'] >= m] 

q_movies.shape 

 

OUTPUT: (481, 23) 

 

def weighted_rating(x, m=m, C=C): 

    v = x['vote_count'] 

    R = x['vote_average'] 

    # Calculation based on the IMDB formula 

    return (v/(v+m) * R) + (m/(m+v) * C) 

 

# Define a new feature 'score' and calculate its value with `weighted_rating()` 

q_movies['score'] = q_movies.apply(weighted_rating, axis=1) 

 

 

#Sort movies based on score calculated above 

q_movies = q_movies.sort_values('score', ascending=False) 

 

#Print the top 15 movies 

q_movies[['title', 'vote_count', 'vote_average', 'score']].head(10) 

 

OUTPUT: 



 

 

pop= df2.sort_values('popularity', ascending=False) 

import matplotlib.pyplot as plt 

plt.figure(figsize=(12,4)) 

 

plt.barh(pop['title'].head(6),pop['popularity'].head(6), align='center', 

        color='skyblue') 

plt.gca().invert_yaxis() 

plt.xlabel("Popularity") 

plt.title("Popular Movies") 

 

 

OUTPUT: Text (0.5,1,'Popular Movies') 

 

 

 



Content Based Filtering 

df2['overview'].head(5) 

 

OUTPUT: 

0    In the 22nd century, a paraplegic Marine is di... 

1    Captain Barbossa, long believed to be dead, ha... 

2    A cryptic message from Bond’s past sends him o... 

3    Following the death of District Attorney Harve... 

4    John Carter is a war-weary, former military ca... 

Name: overview, dtype: object 

 

#Import TfIdfVectorizer from scikit-learn 

from sklearn.feature_extraction.text import TfidfVectorizer 

 

#Define a TF-IDF Vectorizer Object. Remove all english stop words such as 'the', 'a' 

tfidf = TfidfVectorizer(stop_words='english') 

 

#Replace NaN with an empty string 

df2['overview'] = df2['overview'].fillna('') 

 

#Construct the required TF-IDF matrix by fitting and transforming the data 

tfidf_matrix = tfidf.fit_transform(df2['overview']) 

 

#Output the shape of tfidf_matrix 

tfidf_matrix.shape 

 

OUTPUT: (4803, 20978) 

 

# Import linear_kernel 

from sklearn.metrics.pairwise import linear_kernel 

 

# Compute the cosine similarity matrix 

cosine_sim = linear_kernel(tfidf_matrix, tfidf_matrix) 

 



#Construct a reverse map of indices and movie titles 

indices = pd.Series(df2.index, index=df2['title']).drop_duplicates() 

 

# Function that takes in movie title as input and outputs most similar movies 

def get_recommendations(title, cosine_sim=cosine_sim): 

    # Get the index of the movie that matches the title 

    idx = indices[title] 

 

    # Get the pairwsie similarity scores of all movies with that movie 

    sim_scores = list(enumerate(cosine_sim[idx])) 

 

    # Sort the movies based on the similarity scores 

    sim_scores = sorted(sim_scores, key=lambda x: x[1], reverse=True) 

 

    # Get the scores of the 10 most similar movies 

    sim_scores = sim_scores[1:11] 

 

    # Get the movie indices 

    movie_indices = [i[0] for i in sim_scores] 

 

    # Return the top 10 most similar movies 

    return df2['title'].iloc[movie_indices] 

 

get_recommendations('The Dark Knight Rises') 

 

OUTPUT: 

 

65                              The Dark Knight 

299                              Batman Forever 

428                              Batman Returns 

1359                                     Batman 

3854    Batman: The Dark Knight Returns, Part 2 

119                               Batman Begins 

2507                                  Slow Burn 



9            Batman v Superman: Dawn of Justice 

1181                                        JFK 

210                              Batman & Robin 

Name: title, dtype: object 

 

get_recommendations('The Avengers') 

OUTPUT: 

7               Avengers: Age of Ultron 

3144                            Plastic 

1715                            Timecop 

4124                 This Thing of Ours 

3311              Thank You for Smoking 

3033                      The Corruptor 

588     Wall Street: Money Never Sleeps 

2136         Team America: World Police 

1468                       The Fountain 

1286                        Snowpiercer 

Name: title, dtype: object 

 

Credits, Genres and Keywords Based Recommender 

# Parse the stringified features into their corresponding python objects 

from ast import literal_eval 

 

features = ['cast', 'crew', 'keywords', 'genres'] 

for feature in features: 

    df2[feature] = df2[feature].apply(literal_eval) 

# Get the director's name from the crew feature. If director is not listed, return NaN 

def get_director(x): 

    for i in x: 

        if i['job'] == 'Director': 

            return i['name'] 

    return np.nan 

# Returns the list top 3 elements or entire list; whichever is more. 

def get_list(x): 



    if isinstance(x, list): 

        names = [i['name'] for i in x] 

        #Check if more than 3 elements exist. If yes, return only first three. If no, return en

tire list. 

        if len(names) > 3: 

            names = names[:3] 

        return names 

 

    #Return empty list in case of missing/malformed data 

    return [] 

# Define new director, cast, genres and keywords features that are in a suitable form. 

df2['director'] = df2['crew'].apply(get_director) 

 

features = ['cast', 'keywords', 'genres'] 

for feature in features: 

    df2[feature] = df2[feature].apply(get_list) 

 

# Print the new features of the first 3 films 

df2[['title', 'cast', 'director', 'keywords', 'genres']].head(3) 

 

OUTPUT: 

 

# Function to convert all strings to lower case and strip names of spaces 

def clean_data(x): 

    if isinstance(x, list): 

        return [str.lower(i.replace(" ", "")) for i in x] 

    else: 

        #Check if director exists. If not, return empty string 

        if isinstance(x, str): 

            return str.lower(x.replace(" ", "")) 



        else: 

            return '' 

 

# Apply clean_data function to your features. 

features = ['cast', 'keywords', 'director', 'genres'] 

 

for feature in features: 

    df2[feature] = df2[feature].apply(clean_data) 

def create_soup(x): 

    return ' '.join(x['keywords']) + ' ' + ' '.join(x['cast']) + ' ' + x['director'] + ' ' + ' '.join(x['

genres']) 

df2['soup'] = df2.apply(create_soup, axis=1) 

 

# Import CountVectorizer and create the count matrix 

from sklearn.feature_extraction.text import CountVectorizer 

 

count = CountVectorizer(stop_words='english') 

count_matrix = count.fit_transform(df2['soup']) 

 

# Compute the Cosine Similarity matrix based on the count_matrix 

from sklearn.metrics.pairwise import cosine_similarity 

 

cosine_sim2 = cosine_similarity(count_matrix, count_matrix) 

 

# Reset index of our main DataFrame and construct reverse mapping as before 

df2 = df2.reset_index() 

indices = pd.Series(df2.index, index=df2['title']) 

 

 

get_recommendations('The Dark Knight Rises', cosine_sim2) 

 

 

OUTPUT: 

 



 

 

get_recommendations('The Godfather', cosine_sim2) 

 

OUTPUT: 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



                                                           Chapter 7 

                                            Conclusion and Future Work 

We have implemented a movie recommendation engine / system using simple 

recommendations, content-based filtering, collaborative filtering, and hybrid systems. 

In addition, a movie recommendation engine has been developed using different 

method prediction methods. This model is implemented in the python programming 

language. We have observed that the RMSE value of the proposed technique is 

healthier than the current technology after implementing the system with the help of 

python programming language. In future, we can try and test the system using more 

data and improve the accuracy of the system. In addition, we can try users better to 

increase the accuracy of the recommendation system. 
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