
A Project Report

On
Machine Learning based recommendation system for Movie

and TV Shows.

Submitted in partial fulfillment of the requirement for the award of the

degree of

Bachelor of Technology in Computer Science and

Engineering

Under The Supervision of Mr. Arvindhan M.

Assistant Professor

Department of Computer Science and Engineering

Submitted By

19SCSE1180061 – SHIVAM SINGH

19SCSE1010240 – TANMAY SINGH

SCHOOL OF COMPUTING SCIENCE AND ENGINEERING

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

GALGOTIAS UNIVERSITY, GREATER NOIDA, INDIA

DECEMBER - 2021

SCHOOL OF COMPUTING SCIENCE AND
ENGINEERING

GALGOTIAS UNIVERSITY, GREATER NOIDA

 CANDIDATE’S DECLARATION

I/We hereby certify that the work which is being presented in the project, entitled

“Machine Learning based recommendation system for Movie and TV Shows” in

partial fulfillment of the requirements for the award of the BACHELOR OF

TECHNOLOGY IN COMPUTER SCIENCE AND ENGINEERING submitted in

the School of Computing Science and Engineering of Galgotias University, Greater

Noida, is an original work carried out during the period of JULY-2021 to

DECEMBER-2021, under the supervision of Mr. Arvindhan M., Assistant

Professor, Department of Computer Science and Engineering of School of

Computing Science and Engineering, Galgotias University, Greater Noida

The matter presented in the project has not been submitted by me/us for the award of

any other degree of this or any other places.

19SCSE1180061 - SHIVAM SINGH

19SCSE1010240 – TANMAY SINGH

This is to certify that the above statement made by the candidates is correct to the

best of my knowledge.

 Supervisor

 (Mr. Arvindhan M.)

CERTIFICATE

The Final Viva-Voce examination of 19SCSE1180061 – SHIVAM SINGH,

19SCSE1010240 – TANMAY SINGH has been held on _ and

his/her work is recommended for the award of BACHELOR OF TECHNOLOGY IN

COMPUTER SCIENCE AND ENGINEERING.

Signature of Examiner(s) Signature of Supervisor(s)

Signature of Project Coordinator Signature of Dean

Date:

Place:

ABSTRACT

The purpose of the project is to research about Content and Collaborative based movie

recommendation engines. Nowadays recommender systems are used in our day-to-day

life. We try to understand the distinct types of reference engines/systems and compare

their work on the movies datasets. We start to produce a versatile model to complete

this study and start by developing and

relating the different kinds of prototypes on a minor dataset of 100,000 evaluations.

The growth of e-commerce has given rise to recommendation engines. Several

recommendation engines exist within the market to recommend a wide variety of goods

to users. These recommendations support

various aspects such as users' interests, users' history, users' locations, and more. Away

from all the above aspects, one thing is common which is individuality. Content and

collaborative-based movie recommendation engines recommend users based on the

user's viewpoint, whereas many things are there within the marketplace that are related

to which a user is uninformed of. This stuff should also be suggested by the engine to

clients; But due to the range of "individuality", these machines do not suggest things

that are out of the crate. The Hybrid System of Movie Recommendation Engine has

crossed this variety of individuality. The Movie Recommendation Engine will suggest

movies to clients according to their interest and be evaluated by other clients who are

almost user-like. Additionally, for this, there are web services that are capable of acting

as a tool adornment.

Table of Contents

 Title Page No.

Candidates Declaration Acknowledgement

Abstract

List of Figures

Acronyms

Chapter 1 Introduction 1

Chapter 2 Literature Survey 3

 Chapter 3 System Design 4

 Chapter 4 Dataset 8

 Chapter 5 Requirements of Project 9

 Chapter 6 Implementation 10

 Chapter 7 Conclusion and Future Work 20

List of Figures

S. No. Caption

1
DATA FLOW DIAGRAM

2 ER DIAGRAM

3 FLOW DIAGRAM:

4 ARCHITECTURE DIAGRAM

Acronyms

SVM Support Vector Machine

ML Machine Learning

DL Deep Learning

CNN Convolution Neural Networks

CHAPTER-1

Introduction

A movie recommendation engine / system can be an information sorting system that

works to estimate ratings or preferences and will give the user an item and set up a

simple or similar language "recommendation engine / system to attract the user

something. Suggests important supported". Recommendatory systems can also enhance

the experience for:

 News websites

 Computer games

 Knowledge base

 Social media platform

 Stock trading support system

A content and collaborative-based recommendation engine / system can also be a

method of information sorting system that works to predict user preferences and

provide suggestions that support them. The content on some platforms extends from

movies, music, books and videos to friends. And to produce stories on social platform

and on ecommerce websites, for persons on professional and dating websites, returned

to see search results. Two critical approaches are mainly used for recommendation

engines. First, content-based filtering, where we attempt to profile client interests

utilizing gathered information and recommend items that support that profile, and

second, collaborative filtering [8] continues where we try and identify together and use

information about identities to create recommendations systems. Every user has a

different mindset to decide their likes and dislikes. Additionally, even a customer’s

taste can look at different aspects, such as mood, seasons, or different activities

performed by the user. As an example, the type of music you want to focus on during

exercise is severely different from that in which he listens to music while making

dinner. They have to find new areas to see more about the customer, while still

determining the majority of what is already known about the customer.

Introduction to Simple recommenders:

The simple recommendation system process provides generalized recommendations to

each user, supported movie popularity and / or genre. The basic approach behind this

technique is that more popular and critically acclaimed movies will be better likely to

be liked by the general audience. For example, IMDB Top 250 is an example of this

technique.

There are basically three types of recommender systems:

 Demographic Filtering- They offer generalized recommendations to every user, based

on movie popularity and/or genre. The System recommends the same movies to users

with similar demographic features. Since each user is different, this approach is

considered to be too simple. The basic idea behind this system is that movies that are

more popular and critically acclaimed will have a higher probability of being liked by

the average audience.

 Content Based Filtering- They suggest similar items based on a particular item. This

system uses item metadata, such as genre, director, description, actors, etc. for movies,

to make these recommendations. The general idea behind these recommender systems

is that if a person liked a particular item, he or she will also like an item that is similar

to it.

 Collaborative Filtering- This system matches persons with similar interests and

provides recommendations based on this matching. Collaborative filters do not require

item metadata like its content-based counterparts.

CHAPTER-2

Literature Survey

In the context of a review of the literature, a recommendation system using a content-based

collaborative and hybrid approach by a previous researcher is a different approach to the development

of recommendation-based engines. In 2007 a web-based and knowledge-based intelligence movie

recommendation system has been offered using the hybrid filtering method. In 2017, a movie

recommendation system supported style and rating coefficient of correlation purpose by the authors.

In 2013 a Bayesian network and trust model-based movie recommendation engine have been

recommended to predict ratings for users and items, primarily from datasets to recommend users their

choice and vice versa. In 2018, the authors built a recommendation engine by analyzing the ratings

dataset collected from Kaggle to recommend movies for a user selected from Python. In 2018 movie

recommendation engines provide a process to help users categorize users with similar k mean cuckoo

values and reinforcement learning based recommender systems, which are using bicycling techniques.

Initial research mainly concentrated on the content of the recommendation system that examined the

features of the object to complete the recommendation task. Experiments verified that their

approaches were more elastic and precise. Bayesian networks are employed for model-based

preferences based on their context. In 2007 Salakhuddinov and Minh proposed a collaborative

filtering method, the probabilistic matrix factor, which can handle large-scale datasets. The

collaborative filtering algorithm was distributed into portions for deeper study in the movie

recommendation by Hurlkartal. When clients adopt new behavior, it is difficult for collaborative

filtering to react instantly. Therefore, both researchers and practitioners have a desire to align

collaborative filtering method and content-based methodology to solve the issue. Ternary

implemented Unplugged Learning of Machine Learning to examine the polarity of machine

reflectivity.

CHAPTER 3

SYSTEM DESIGN

 DATA FLOW DIAGRAM:

ER DIAGRAM:

 FLOW DIAGRAM:

ARCHITECTURE DIAGRAM:

 CHAPTER 4

 Dataset

The movie dataset is hired in our research paper and collected from the Kaggle

database. The Kaggle database provides datasets in the form of several varieties of

movie content. The user rating data consists of records and has a user ID, movie

ID, rating, and timestamp. The Characterization of the movie's content

information includes over 54058 records and includes movie ID, title, genre,

director, actor, and more.

https://www.kaggle.com/rounakbanik/movie-recommender-systems
https://www.kaggle.com/rounakbanik/movie-recommender-systems

 CHAPTER 5

Requirements of Project

 Linux operating System

 Python 2.7

 Flask Framework

 Flask wtForms

 Flask Mysqldb

 Numpy

 Flask Mail

 SciPy

 Scikit-learn

 Chapter 6

 Implementation

import pandas as pd

import numpy as np

df1=pd.read_csv('../input/tmdb-movie-metadata/tmdb_5000_credits.csv')

df2=pd.read_csv('../input/tmdb-movie-metadata/tmdb_5000_movies.csv')

df1.columns = ['id','tittle','cast','crew']

df2= df2.merge(df1,on='id')

Just a peak at our data.

df2.head(5)

Demographic Filtering

C= df2['vote_average'].mean()

C

OUTPUT:6.092171559442011

m= df2['vote_count'].quantile(0.9)

m

OUTPUT: 1838.4000000000015

Now, we can filter out the movies that qualify for the chart

q_movies = df2.copy().loc[df2['vote_count'] >= m]

q_movies.shape

OUTPUT: (481, 23)

def weighted_rating(x, m=m, C=C):

 v = x['vote_count']

 R = x['vote_average']

 # Calculation based on the IMDB formula

 return (v/(v+m) * R) + (m/(m+v) * C)

Define a new feature 'score' and calculate its value with `weighted_rating()`

q_movies['score'] = q_movies.apply(weighted_rating, axis=1)

#Sort movies based on score calculated above

q_movies = q_movies.sort_values('score', ascending=False)

#Print the top 15 movies

q_movies[['title', 'vote_count', 'vote_average', 'score']].head(10)

OUTPUT:

pop= df2.sort_values('popularity', ascending=False)

import matplotlib.pyplot as plt

plt.figure(figsize=(12,4))

plt.barh(pop['title'].head(6),pop['popularity'].head(6), align='center',

 color='skyblue')

plt.gca().invert_yaxis()

plt.xlabel("Popularity")

plt.title("Popular Movies")

OUTPUT: Text (0.5,1,'Popular Movies')

Content Based Filtering

df2['overview'].head(5)

OUTPUT:

0 In the 22nd century, a paraplegic Marine is di...

1 Captain Barbossa, long believed to be dead, ha...

2 A cryptic message from Bond’s past sends him o...

3 Following the death of District Attorney Harve...

4 John Carter is a war-weary, former military ca...

Name: overview, dtype: object

#Import TfIdfVectorizer from scikit-learn

from sklearn.feature_extraction.text import TfidfVectorizer

#Define a TF-IDF Vectorizer Object. Remove all english stop words such as 'the', 'a'

tfidf = TfidfVectorizer(stop_words='english')

#Replace NaN with an empty string

df2['overview'] = df2['overview'].fillna('')

#Construct the required TF-IDF matrix by fitting and transforming the data

tfidf_matrix = tfidf.fit_transform(df2['overview'])

#Output the shape of tfidf_matrix

tfidf_matrix.shape

OUTPUT: (4803, 20978)

Import linear_kernel

from sklearn.metrics.pairwise import linear_kernel

Compute the cosine similarity matrix

cosine_sim = linear_kernel(tfidf_matrix, tfidf_matrix)

#Construct a reverse map of indices and movie titles

indices = pd.Series(df2.index, index=df2['title']).drop_duplicates()

Function that takes in movie title as input and outputs most similar movies

def get_recommendations(title, cosine_sim=cosine_sim):

 # Get the index of the movie that matches the title

 idx = indices[title]

 # Get the pairwsie similarity scores of all movies with that movie

 sim_scores = list(enumerate(cosine_sim[idx]))

 # Sort the movies based on the similarity scores

 sim_scores = sorted(sim_scores, key=lambda x: x[1], reverse=True)

 # Get the scores of the 10 most similar movies

 sim_scores = sim_scores[1:11]

 # Get the movie indices

 movie_indices = [i[0] for i in sim_scores]

 # Return the top 10 most similar movies

 return df2['title'].iloc[movie_indices]

get_recommendations('The Dark Knight Rises')

OUTPUT:

65 The Dark Knight

299 Batman Forever

428 Batman Returns

1359 Batman

3854 Batman: The Dark Knight Returns, Part 2

119 Batman Begins

2507 Slow Burn

9 Batman v Superman: Dawn of Justice

1181 JFK

210 Batman & Robin

Name: title, dtype: object

get_recommendations('The Avengers')

OUTPUT:

7 Avengers: Age of Ultron

3144 Plastic

1715 Timecop

4124 This Thing of Ours

3311 Thank You for Smoking

3033 The Corruptor

588 Wall Street: Money Never Sleeps

2136 Team America: World Police

1468 The Fountain

1286 Snowpiercer

Name: title, dtype: object

Credits, Genres and Keywords Based Recommender

Parse the stringified features into their corresponding python objects

from ast import literal_eval

features = ['cast', 'crew', 'keywords', 'genres']

for feature in features:

 df2[feature] = df2[feature].apply(literal_eval)

Get the director's name from the crew feature. If director is not listed, return NaN

def get_director(x):

 for i in x:

 if i['job'] == 'Director':

 return i['name']

 return np.nan

Returns the list top 3 elements or entire list; whichever is more.

def get_list(x):

 if isinstance(x, list):

 names = [i['name'] for i in x]

 #Check if more than 3 elements exist. If yes, return only first three. If no, return en

tire list.

 if len(names) > 3:

 names = names[:3]

 return names

 #Return empty list in case of missing/malformed data

 return []

Define new director, cast, genres and keywords features that are in a suitable form.

df2['director'] = df2['crew'].apply(get_director)

features = ['cast', 'keywords', 'genres']

for feature in features:

 df2[feature] = df2[feature].apply(get_list)

Print the new features of the first 3 films

df2[['title', 'cast', 'director', 'keywords', 'genres']].head(3)

OUTPUT:

Function to convert all strings to lower case and strip names of spaces

def clean_data(x):

 if isinstance(x, list):

 return [str.lower(i.replace(" ", "")) for i in x]

 else:

 #Check if director exists. If not, return empty string

 if isinstance(x, str):

 return str.lower(x.replace(" ", ""))

 else:

 return ''

Apply clean_data function to your features.

features = ['cast', 'keywords', 'director', 'genres']

for feature in features:

 df2[feature] = df2[feature].apply(clean_data)

def create_soup(x):

 return ' '.join(x['keywords']) + ' ' + ' '.join(x['cast']) + ' ' + x['director'] + ' ' + ' '.join(x['

genres'])

df2['soup'] = df2.apply(create_soup, axis=1)

Import CountVectorizer and create the count matrix

from sklearn.feature_extraction.text import CountVectorizer

count = CountVectorizer(stop_words='english')

count_matrix = count.fit_transform(df2['soup'])

Compute the Cosine Similarity matrix based on the count_matrix

from sklearn.metrics.pairwise import cosine_similarity

cosine_sim2 = cosine_similarity(count_matrix, count_matrix)

Reset index of our main DataFrame and construct reverse mapping as before

df2 = df2.reset_index()

indices = pd.Series(df2.index, index=df2['title'])

get_recommendations('The Dark Knight Rises', cosine_sim2)

OUTPUT:

get_recommendations('The Godfather', cosine_sim2)

OUTPUT:

 Chapter 7

 Conclusion and Future Work

We have implemented a movie recommendation engine / system using simple

recommendations, content-based filtering, collaborative filtering, and hybrid systems.

In addition, a movie recommendation engine has been developed using different

method prediction methods. This model is implemented in the python programming

language. We have observed that the RMSE value of the proposed technique is

healthier than the current technology after implementing the system with the help of

python programming language. In future, we can try and test the system using more

data and improve the accuracy of the system. In addition, we can try users better to

increase the accuracy of the recommendation system.

 Chapter 8

 References

[1] Lin, Y., Chen,T., Yu, L. Using Machine Learning to assist crime prevention. In: 2017 sixth

IIAI-AAI

[2] Kerr, J.: Vancouver police go high tech to predict and prevent crime before it happens.

Vancouver Courier, July 23, 2017.

[3] Marchant, R., Haan, S., clancey, G., Cripps, S.: Applying machine learning to criminology:

semi parametric spatial demographic Bayesian regression. Security informs. (2018).

[4] M. J. H. B. T. A. M. K. T. Baig, M.Q., “Artificial intelligence, modelling and simulation (aims),

2014 2nd international conference on,” pp. 109–114, November 2014.

[5] Anitha A, Paul G and Kumari S2016 A cyber defence using Artificial Intelligence International

Journal of Pharmacy and Technology 8 2532-57

[6] Zeroday. “a lua based firmware for wifi-soc esp8266”,Github. Retrieved APR 2015

[7] A. Bogomoloy, B. Lepri, J. Staiano, N. Oliver, F.Pianesi and A. Pentland, ‘once upon a crime:

towards Crime Prediction from Demographics and Mobile Data’, CoRR, vol. 14092983, 2014.

[8] R. Arulanandam, B. Savarimuthu and M. Purvis, 'Extracting Crime Information from Online

Newspaper Articles', in Proceedings of the Second Australasian Web Conference - Volume 155,

Auckland, New Zealand, 2014, pp. 31-38.

[9] A. Buczak and C. Gifford, 'Fuzzy association rule mining for community crime pattern

discovery', in ACM SIGKDD Workshop on Intelligence and Security Informatics, Washington,

D.C., 2010, pp. 1-10.

[10] M. Tayebi, F. Richard and G. Uwe, 'Understanding the Link Between Social and Spatial

Distance in the Crime World', in Proceedings of the 20th International Conference on Advances in

Geographic Information Systems (SIGSPATIAL '12), Redondo Beach, California, 2012, pp. 550-

553.

[11] S. Nath, 'Crime Pattern Detection Using Data Mining', in Web Intelligence and Intelligent

Agent Technology Workshops, 2006. WI-IAT 2006 Workshops. 2006 IEEE/WIC/ACM

International Conference on, 2006, pp. 41,44.

[12] Crimereports.com, 2015.

[13] S. Chainey, L. Tompson and S. Uhlig, 'The Utility of Hotspot Mapping for Predicting Spatial

Patterns of Crime', Security Journal, vol. 21, no. 1-2, pp. 4-28, 2008.

[14] Data.denvergov.org, 'Denver Open Data Catalog: Crime', 2015.

[15] Imgh.us, 2015. [Accessed: 20- May-2015].

[16] O. Knowledge, 'Crime — Datasets - US City Open Data Census', Us-city.census.okfn.org,

2015

	A Project Report
	SCHOOL OF COMPUTING SCIENCE AND ENGINEERING
	Signature of Examiner(s) Signature of Supervisor(s)

	Chapter 5 Requirements of Project 9
	Chapter 6 Implementation 10
	Chapter 7 Conclusion and Future Work 20
	Requirements of Project
	Demographic Filtering
	Credits, Genres and Keywords Based Recommender

