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Abstract 

 

The human brain is the major controller of the humanoid system. The abnormal 

growth and division of cells in the brain lead to a brain tumor, and the further 

growth of brain tumors leads to brain cancer. In the area of human health, 

Computer Vision plays a significant role, which reduces the human judgment that 

gives accurate results. CT scans, X-Ray, and MRI scans are the common imaging 

methods among magnetic resonance imaging (MRI) that are the most reliable and 

secure. MRI detects every minute objects. Our paper aims to focus on the use of 

different techniques for the discovery of brain cancer using brain MRI. In this 

study, we performed pre-processing using the bilateral filter (BF) for removal of 

the noises that are present in an MR image. This was followed by the binary 

thresholding and Convolution Neural Network (CNN) segmentation techniques for 

reliable detection of the tumor region. Training, testing, and validation datasets are 

used. Based on our machine, we will predict whether the subject has a brain tumor 

or not. The resultant outcomes will be examined through various performance 

examined metrics that include accuracy, sensitivity, and specificity. It is desired 

that the proposed work would exhibit a more exceptional performance over its 

counterparts. 

 

 

KEYWORDS: Brain tumor, Magnetic resonance imaging, Adaptive Bilateral Filter, 

Convolution Neural Network. 
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CHAPTER-1 Introduction 

 

Medical imaging is the technique and process of creating visual representations of 

the interior of a body for clinical analysis and medical intervention, as well as 

visual representation of the function of some organs or tissues. Medical imaging 

seeks to reveal internal structures hidden by the skin and bones, as well as to 

diagnose and treat disease. Medical imaging also establishes a database of normal 

anatomy and physiology to make it possible to identify abnormalities. 

 

The medical imaging processing refers to handling images by using the computer. 

This processing includes many types of techniques and operations such as image 

gaining, storage, presentation, and communication. This process pursues the 

disorder identification and management. This process creates a data bank of the 

regular structure and function of the organs to make it easy to recognize the 

anomalies. This process includes both organic and radiological imaging which 

used electromagnetic energies (X-rays and gamma), sonography, magnetic, scopes, 

and thermal and isotope imaging. There are many other technologies used to record 

information about the location and function of the body. Those techniques have 

many limitations compared to those modulates which produce images. 

 

An image processing technique is the usage of a computer to manipulate the digital 

image. This technique has many benefits such as elasticity, adaptability, data 

storing, and communication. With the growth of different image resizing 

techniques, the images can be kept efficiently. This technique has many sets of 

rules to perform in the images synchronously. The 2D and 3D images can be 

processed in multiple dimensions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



PROBLEM STATEMENT: 

 

Our study deals with automated brain tumor detection and classification. Normally 

the anatomy of the brain is analyzed by MRI scans or CT scans. The aim of the 

paper is tumor identification in brain MR images. The main reason for detection of 

brain tumors is to provide aid to clinical diagnosis. The aim is to provide an 

algorithm that guarantees the presence of a tumor by combining several procedures 

to provide a foolproof method of tumor detection in MR brain images. The 

methods utilized are filtering, erosion, dilation, threshold, and outlining of the 

tumor such as edge detection. 

 

The focus of this project is MR brain images tumor extraction and its 

representation in simpler form such that it is understandable by everyone. The 

objective of this work is to bring some useful information in simpler form in front 

of the users, especially for the medical staff treating the patient. The aim of this 

work is to define an algorithm that will result in extracted image of the tumor from 

the MR brain image. The resultant image will be able to provide information like 

size, dimension and position of the tumor, and its boundary provides us with 

information related to the tumor that can prove useful for various cases, which will 

provide a better base for the staff to decide the curing procedure. Finally, we detect 

whether the given MR brain image has tumor or not using Convolution Neural 

Network. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Tool and Technology Used 

 

Python: 

Python is an interpreted, high-level, general purpose programming language 

created by Guido Van Rossum and first released in 1991, Python's design 

philosophy emphasizes code Readability with its notable use of significant 

Whitespace. Its language constructs and object-oriented approach aim to help 

programmers write clear, logical code for small and large-scale projects. Python is 

dynamically typed and garbage collected. It supports multiple programming 

paradigms, including procedural, object-oriented, and functional programming. 

 

PIP: 

It is the package management system used to install and manage software packages 

written in Python. 

 

NumPy: 

NumPy is a general-purpose array-processing package. It provides a high-

performance multidimensional array object, and tools for working with these 

arrays. It is the fundamental package for scientific computing with Python. It 

contains various features including these important ones: 

 A powerful N-dimensional array object 

 Sophisticated (broadcasting) functions 

 Tools for integrating C/C++ and Fortran code 

 Useful linear algebra, Fourier transform, and random number capabilities 

 

Pandas: 

Pandas is the most popular python library that is used for data analysis. It provides 

highly optimized performance with back-end source code is purely written in C or 

Python. We can analyze data in pandas with 

 

1. Series 

2. Data frames 

 

Tensor Flow: 

Tensor flow is a free and open-source software library for dataflow and 

differentiable programming across a range of tasks. It is a symbolic math library, 

and is also used for machine learning applications such as neural networks. It is 

used for both research and production at Google. 

 

 



Keras: 

Keras is an open-source neural-network library written in Python. It is capable of 

running on top of TensorFlow, Microsoft Cognitive Toolkit, R, Theano, or Plaid 

ML. Designed to enable fast experimentation with deep neural networks, it focuses 

on being user-friendly, modular, and extensible. Keras contains numerous 

implementations of commonly used neural-network building blocks such as layers, 

objectives, activation functions, optimizers, and a host of tools to make working 

with image and text data easier to simplify the coding necessary for writing deep 

neural network code. 

 

OpenCV: 

OpenCV (Open source computer vision) is a library of programming functions 

mainly aimed at real-time computer vision. Originally developed by Intel, it was 

later supported by willow garage then Itseez (which was later acquired by Intel). 

The library is cross platform and free for use under the open source BSD license. 

OpenCV supports some models from deep learning frameworks like TensorFlow, 

Torch, PyTorch (after converting to an ONNX model) and Caffe according to a 

defined list of supported layers. It promotes Open Vision Capsules. which is a 

portable format, compatible with all other formats. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER-2  

Reference Publication 

 

In Medical diagnosis, robustness and accuracy of the prediction algorithms are 

very important, because the result is crucial for treatment of patients. There are 

many popular classification and clustering algorithms used for prediction. The goal 

of clustering a medical image is to simplify the representation of an image into a 

meaningful image and make it easier to analyze. Several Clustering and 

Classification algorithms are aimed at enhancing the prediction accuracy of 

diagnosis process in detecting abnormalities. 

 

In the literature survey we provide a brief summary of the different methods that 

have been proposed for clustering over the period of 2002 to 2018.We have been 

though 10 papers each of which has a unique approach towards segmentation in 

some parameter or the other. The summaries of each of the papers are provided 

below. 

 

 A. Sivaramakrishnan And Dr. M. Karnan “A Novel Based Approach for 

Extraction Of Brain Tumor In MRI Images Using Soft Computing 

Techniques,”  International Journal Of Advanced Research In Computer 

And Communication Engineering, Vol. 2, Issue 4, April 2013. 

 

A. Sivaramakrishnan et al. (2013) [1] projected an efficient and innovative 

discovery of the brain tumor vicinity from an image that turned into finished using 

the Fuzzy Capproach grouping algorithm and histogram equalization. The 

disintegration of images is achieved by the usage of principal factor evaluation is 

done to reduce the extent of the wavelet coefficient. The outcomes of the 

anticipated FCM clustering algorithm accurately withdrawn tumor area from the 

MR images. 

 

 Asra Aslam, Ekram Khan, M.M. Sufyan Beg, Improved Edge Detection 

Algorithm for Brain Tumor Segmentation, Procedia Computer Science, 

Volume 58,2015, Pp 430-437, ISSN 1877-0509. 

 

M. M. Sufyan et al. [2] has presented a detection using enhanced edge technique 

for brain-tumor segmentation that mainly relied on Sobel feature detection. Their 

presented work associates the binary thresholding operation with the Sobel 

approach and excavates diverse extents using a secure contour process. After the 



completion of that process, cancer cells are extracted from the obtained picture 

using intensity values. 

 

 B.Sathya and R.Manavalan, Image Segmentation by Clustering Methods: 

Performance Analysis, International Journal of Computer Applications (0975 

– 8887) Volume 29– No.11, September 2011. 

 

Sathya et al. (2011) [3], provided a different clustering algorithm such as K-means, 

Improvised K-means, C-means, and improvised C-means algorithms. Their paper 

presented an experimental analysis for massive dat=asets consisting of unique 

photographs. They analyzed the discovered consequences using numerous 

parametric tests. 

 

Devkota, B. & Alsadoon, Abeer & Prasad, P.W.C. & Singh, A.K. & 

Elchouemi, A. (2018). Image Segmentation for Early Stage Brain Tumor 

Detection using Mathematical Morphological Reconstruction. Procedia 

Computer Science. 125. 115-123. 10.1016/j.procs.2017.12.017. 

B. 

 

Devkota et al. [4] have proposed that a computer-aided detection (CAD) approach 

is used to spot abnormal tissues via Morphological operations. Amongst all 

different segmentation approaches existing, the morphological opening and closing 

operations are preferred since it takes less processing time with the utmost 

efficiency in withdrawing tumor areas with the least faults. 

 

 K. Sudharani, T. C. Sarma and K. Satya Rasad, "Intelligent Brain Tumor 

lesion classification and identification from MRI images using a K-NN 

technique," 2015 International Conference on Control, Instrumentation, 

Communication and Computational Technologies (ICCICCT), Kumaracoil, 

2015, pp. 777-780. DOI: 10.1109/ICCICCT.2015.7475384 

 

K. Sudharani et al. [5] presented a K- nearest neighbor algorithm to the MR images 

to identify and confine the hysterically full-fledged part within the abnormal 

tissues. The proposed work is a sluggish methodology but produces exquisite 

effects. The accuracy relies upon the sample training phase. 

 

 Kaur, Jaskirat & Agrawal, Sunil & Renu, Vig. (2012). A Comparative 

Analysis of Thresholding and Edge Detection Segmentation Techniques. 

International Journal of Computer Applications.vol. 39.pp. 29-34. 

10.5120/4898-7432. 



Jaskirat Kaur et al. (2012) [6] defined a few clustering procedures for the 

segmentation process and executed an assessment on distinctive styles for those 

techniques. Kaur represented a scheme to measure selected clustering techniques 

based on their steadiness in exceptional tenders. They also defined the diverse 

performance metric tests, such as sensitivity, specificity, and accuracy. 

 

 Li, Shutao, JT-Y. Kwok, IW-H. Tsang and Yaonan Wang. "Fusing images 

with different focuses using support vector machines." IEEE Transactions on 

neural networks 15, no. 6 (2004): 1555-1561. 

 

J.T. Kwok et al. [7] delivered wavelet-based photograph fusion to easily 

cognizance at the object with all focal lengths as several vision-related processing 

tasks can be carried out more effortlessly when wholly substances within the 

images are bright. In their work Kwok et al. investigated with different datasets, 

and results show that presented work is extra correct as it does not get suffering 

from evenness at different activity stages computations. 

 

 M. Kumar and K. K. Mehta, "A Texture based Tumor detection and 

automatic Segmentation using Seeded Region Growing Method," 

International Journal of Computer Technology and Applications, ISSN: 2229-

6093, Vol. 2, Issue 4, PP. 855-859 August 2011. 

 

Kumar and Mehta [8] proposed the texture-based technique in this paper. They 

highlighted the effects of segmentation if the tumor tissue edges aren't shrill. The 

performance of the proposed technology may get unwilling results due to those 

edges. The texture evaluation and seeded region approach turned into executed 

inside the MATLAB environment. 

 

 Mahmoud, Dalia & Mohamed, Eltaher. (2012). Brain Tumor Detection 

Using Artificial Neural Networks. Journal of Science and Technology. 13. 31-

39. 

 

Dalia Mahmoud et al. [9] presented a model using Artificial Neural Networks for 

tumor detection in brain images. They implemented a computerized recognition 

system for MR imaging the use of Artificial Neural Networks. That was observed 

that after the Elman community was used during the recognition system, the period 

time and the accuracy level were high, in comparison with other ANNs systems. 

This neural community has a sigmoid characteristic which elevated the extent of 

accuracy of the tumor segmentation. 

 



 Marroquin J.L., Vemuri B.C., Botello S., Calderon F. (2002) An Accurate 

and Efficient Bayesian Method for Automatic Segmentation of Brain MRI. 

In: Heyden A., Sparr G., Nielsen M., Johansen P. (eds) Computer Vision — 

ECCV 2002. ECCV 2002. Lecture Notes in Computer Science, vol 2353. 

Springer, Berlin, Heidelberg. 

 

L. Marroquin et al. [10] presented the automated 3d segmentation for brain MRI 

scans. Using a separate parametric model in preference to a single multiplicative 

magnificence will lessen the impact on the intensities of a grandeur. Brain atlas is 

hired to find nonrigid conversion to map the usual brain. This transformation is 

further used to segment the brain from nonbrain tissues, computing prior 

probabilities and finding automatic initialization and finally applying the MPM-

MAP algorithm to find out optimal segmentation. Major findings from the study 

show that the MPM-MAP algorithm is comparatively robust than EM in terms of 

errors while estimating the posterior marginal. For optimal segmentation, the 

MPM-MAP algorithm involves only the solution of linear systems and is therefore 

computationally efficient. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER-3  

Functionality/Working of Project 

 

CHALLENGES IN TUMOR CLASSIFICATION 

The identification of tumor is a very challenging task. The location, shape and the 

structure of tumor varies significantly from patient to patient which makes the 

segmentation a very challenging task. In the figure shown below, we have shown 

some images of the same brain slice from different patients, which clearly reflect 

the variation of the tumor. We can clearly see that the location of the tumor is 

different in all the 8 images/patients shown below. To make it worse, the shape and 

the intra-tumoral structure is also different for all the eight patients/images. In fact, 

there can be more than one region of the tumor as can be seen from the images 

below. This indeed reflects the complexity of automatic segmentation. 

 

 
 

Fig.3.1 Location of tumors in eight different images. 

 

 

 

 

 

 

 

 

 

 



MODULE DIVISON 

This provides the architecture of the system that would be developed by our hands. 

It consists of six steps where the execution starts from taking an input image from 

the data set followed by the image pre-processing, image enhancement, Image 

segmentation using binary thresholding and the brain tumor classification using 

Convolutional Neural Network. Finally, the output is observed after all the above-

mentioned steps are completed.  

 

Each module is unique in its own way. Every step has its importance. This 

architecture also includes a testing and training data set. The data set used is has 

been downloaded from Kaggle which consists of nearly 2000 images that are used 

to test and train the system. The input image is pre-processed by using the noise 

filter like Median Filter and Bilateral Filter and the image is enhanced using the 

Sobel Filter. Then the obtained image using segmented using binary thresholding 

and morphological operations are performed on it. Finally, the image classification 

is done using Convolutional Neural Network to predict whether the tumor is 

present or not. 

 

 
Module Division 



MODULE 1: IMAGE PREPROCESSING AND IMAGE ENHANCEMENT 

 

IMAGE PREPROCESSING: 

The Brain MRI image dataset has been downloaded from the Kaggle. The MRI 

dataset consists of around 1900 MRI images, including normal, benign, and 

malignant. These MRI images are taken as input to the primary step. The pre-

processing is an essential and initial step in improving the quality of the brain MRI 

Image. The critical steps in pre-processing are the reduction of impulsive noises 

and image resizing. In the initial phase, we convert the brain MRI image into its 

corresponding gray-scale image. The removal of unwanted noise is done using the 

adaptive bilateral filtering technique to remove the distorted noises that are present 

in the brain picture. This improves the diagnosis and also increase the classification 

accuracy rate. 

 

IMAGE ACQUISITION FROM DATASET: 

In image processing, image acquisition is done by retrieving an image from dataset 

for processing. It is the first step in the workflow sequence because, without an 

image no processing is possible. The image that is acquired is completely 

unprocessed. 

Here we process the image using the file path from the local device. 

 

CONVERT THE IMAGE FROM ONE COLOR SPACE TO ANOTHER: 

There are more than 150 color-space conversion methods available in OpenCV. 

For color conversion, we use the function cv2.cvtColor(input_image, flag) where 

flag determines the type of conversion. In our work, we convert the input image 

into the gray-scale image. 

 

FILTERS: 

In image processing, filters are mainly used to suppress the high frequencies in 

the image. 

 

Median filter: It is a non-linear filtering technique used to remove noise from 

the images. It is performed by sorting all the pixel values from the window into 

numerical order and then replacing the pixel being considered with the median 

pixel value. This filter removes the speckle noise and salt and pepper noise through 

‘ON’ and ‘OFF’ of pixels by white and dark spots. 

 

Bilateral filter: It is also a non-linear, noise-reducing smoothing filter for images. 

It replaces the intensity of each pixel with a weighted average of intensity values 

from nearby pixels. This weight is based on the Gaussian distribution. Bilateral 



filtering smooth images while conserving edges utilizing a nonlinear grouping of 

neighbouring image pixels. This filtering technique is simple, local, and concise. It 

syndicates a grey level grounded on their likeness and the symmetrical nearness 

and chooses near vales to farther values in both range and domain. 

 

IMAGE ENHANCEMENT: 

Image enhancement is a technique used to improve the image quality and 

perceptibility by using computer-aided software. This technique includes both 

objective and subjective enhancements. This technique includes points and local 

operations. The local operations depend on the district input pixel values. Image 

enhancement has two types: spatial and transform domain techniques. The spatial 

techniques work directly on the pixel level, while the transform technique works 

on Fourier and later on the spatial technique. 

 

Edge detection is a segmentation technique that uses border recognition of strictly 

linked objects or regions. This technique identifies the discontinuity of the objects. 

This technique is used mainly in image study and to recognize the parts of the 

image where a huge variation in intensity arises. 

 

SOBEL FILTER: 

The Sobel filter is used for edge detection. It works by calculating the gradient of 

image intensity at each pixel within the image. It is widely used in image analysis 

to help locate edges in images. Sobel operator is used for segmentation purpose. 

This technique can be dependent on the central difference which tends toward the 

central pixels on average. This technique can be expressed as 3 × 3 matric to the 

first derivative of the Gaussian kernel. It combines smoothing and differentiation. 

For Sobel edge detection the gradient of the image is calculated for each pixel 

position in the image. 

 

1. We calculate two derivatives: 

a. Horizontal changes: This is computed by convolving I with a 

kernel Gx with odd size. For example, for a kernel size of 3, Gx would be 

computed as: 

Gx = [[-1 0 +1] 

           [-2 0 +2] 

            [-1 0 +1]] 

 

b. Vertical changes: This is computed by convolving I with a kernel Gy with odd 

size. For example, for a kernel size of 3, Gy would be computed as: 

 



Gy = [[-1 -2 -1] 

        [ 0 0 0] 

               [+1 +2 +1]] 

 

2. At each point of the image we calculate an approximation of the gradient in that 

point by combining both results above: 

 

G=(G2 x+G2 y)1/2 

 

3. Although sometimes the following simpler equation is used: 

 

G=|Gx|+|Gy| 

  

After the completion of the pre-processing, the image will be free from the noises, 

but we still need to enhance the image since the obtained image is smoothened, 

edges may not be preserved, and the image will be dull. To overcome all these, we 

used edge detection called Sobel filtering technique. The whole thing is done by 

calculating the gradient of image intensities at each pixel within the image. It is 

widely used in image analysis to help locate edges in images. It will also enhance 

the darker areas of the image, slightly increase contrast and as sharp as possible. 

 

MODULE 2: IMAGE SEGMENTATION USING BINARY 

THRESHOLD 

 

Image segmentation is a technique of segregating the image into many parts. The 

basic aim of this segregation is to make the images easy to analyze and interpret 

with preserving the quality. This technique is also used to trace the objects’ borders 

within the images. This technique labels the pixels according to their intensity and 

characteristics. Those parts represent the entire original image and acquire its 

characteristics such as intensity and similarity. The image segmentation technique 

is used to create contours of the body for clinical purposes. Segmentation is used in 

machine perception, malignant disease analysis, tissue volumes, anatomical and 

functional analyses, virtual reality visualization, and anomaly analysis, and object 

definition and detection. 

 

Segmentation methods has ability to detect or identify the abnormal portion from 

the image which is useful for analyzing the size, volume, location, texture and 

shape of the extracted image. MR image segmentation with the aid of preserving 

the threshold information, which is convenient to identify the broken regions extra 



precisely. It was a trendy surmise that the objects that are placed in close 

propinquity might be sharing similar houses and characteristics. 

 

THRESHOLDING: 

Thresholding is the simplest method of image segmentation. It is a non-linear 

operation that converts a grey-scale image into a binary image where the two levels 

are assigned to pixels that are below or above the specified threshold value. In 

Open CV, we use cv2.threshold() function: 

 

cv2.threshold(src, thresh, maxval, type[dst]) 

 

This function applies fixed-level thresholding to a single-channel array. The 

function is typically used to get a bi-level (binary) image out of a grayscale image 

for removing a noise, that is, filtering out pixels with too small or too large values. 

“maxval” is the set threshold value which compares with input values, when the 

input is greater than the set threshold value it gives output is set maxval value and 

it is shown with white color in gray images. when the input pixel intensity values 

are less than the set threshold, its output is black color. There are several types of 

thresholding supported by the function. 

 

The function returns the computed threshold value and thresholder image. 

 

1. src - input array (single-channel, 8-bit or 32-bit floating point). This is the 

source image, which should be a grayscale image. 

 

2. thresh - threshold value, and it is used to classify the pixel values. 

 

3. maxval - maximum value to use with the THRESH_BINARY and 

THRESH_BINARY_INV thresholding types. It represents the value to be given if 

pixel value is more than (sometimes less than) the threshold value. 

 

4. type - thresholding type 

 

 cv2.THRESH_BINARY 

 cv2.THRESH_BINARY_INVY 

 

 

 

 

 



MORPHOLOGICAL OPERATIONS: 

Morphological operations apply a structuring element to an input image, creating 

an output image of the same size. In a morphological operation, the value of each 

pixel in the output image is based on a comparison of the corresponding pixel in 

the input image with its neighbors. 

 

The Morphological techniques are also used with segmentation techniques. The 

morphological action is normally performed on binary images. It processes the 

operations based on shape and it has a wide set of the image processing operation. 

Erosion and Dilation are two methods of morphological operations which used in 

this proposed work. We perform both Erosion and dilation operations used 

together. 

 

Two main steps of the erosion and dilation morphological operation are opening 

and closing. The first step is the opening of the MRI binary image. The main work 

of opening operation is open up a gap which is present in between object and 

connect that to a small collection of pixels. After setting of the bridge, the erosion 

again restored with their actual size using dilation. If the binary image has been 

opened then the subsequent opened same structured elements have not affected on 

that image. After completing the opening operations next step is the closing 

operation. Based on the closing operation while keeping the original region sizes, 

the erosion and dilation can handle different hole in the image region. Dilation and 

Erosion are the basic morphological operations. Dilation adds pixels to the 

boundaries of objects in an image, while erosion removes pixels on object 

boundaries. 

 

Watershed Method: considers the gradient magnitude of an image as a topographic 

surface where high gradient denotes peaks, while low gradient denotes valleys. 

Start by filling every isolated valley with different coloured water. As the water 

rises, water from different valleys will start to merge. To avoid that, barriers are 

built in the locations where water merges. Continue the work of filling water and 

building barriers until all the peaks are under water. Then the created barriers give 

the segmentation result. 

 

MODULE 3: BRAIN TUMOR IMAGE CLASSIFICATION USING 

CONVOLUTIONAL NEURAL NETWORK 

 

Classification is the best approaches for identification of images like any kind of 

medical imaging. All classification algorithms are based on the prediction of image, 



where one or more features and that each of these features belongs to one of 

several classes. 

 

An automatic and reliable classification method Convolutional Neural Network 

(CNN) will be used since it is robust in structure which helps in identifying every 

minute details. A Convolutional Neural Network (ConvNet/CNN) is a Deep 

Learning algorithm which can take in an input image, assign importance to various 

aspects/objects in the image and be able to differentiate one from the other. The 

preprocessing required in a ConvNet is much lower as compared to other 

classification algorithms. While in primitive methods filters are hand-engineered, 

with enough training, ConvNet have the ability to learn these filters/characteristics. 

 

A ConvNet is able to successfully capture the spatial and temporal dependencies in 

an image through the application of relevant filters. The architecture performs a 

better fitting to the image dataset due to the reduction in the number of parameters 

involved And reusability of weights. In other words, the network can be trained to 

understand the sophistication of the image better. The role of the ConvNet is to 

reduce the images into a form which is easier to process, without losing features 

which are critical for getting a good prediction. 

 

For this step we need to import Keras and other packages that we’re going to use in 

building the CNN. Import the following packages: 

 

 Sequential is used to initialize the neural network. 

 

 Convolution2D is used to make the convolutional network that deals with the 

images. 

 

 MaxPooling2D layer is used to add the pooling layers. 

 

 Flatten is the function that converts the pooled feature map to a single column 

that is passed to the fully connected layer. 

 

 Dense adds the fully connected layer to the neural network. 

 

SEQUENTIAL: 

 

 To initialize the neural network, we create an object of the Sequential class. 

 

 classifier = Sequential () 



CONVOLUTION: 

 

 To add the convolution layer, we call the add function with the classifier object 

and pass in Convolution2D with parameters. The first argument feature_detectors 

which is the number of feature detectors that we want to create. The second and 

third parameters are dimensions of the feature detector matrix. 

 

 We used 256 feature detectors for CNNs. The next parameter is input shape 

which is the shape of the input image. The images will be converted into this shape 

during pre-processing. If the image is black and white it will be converted into a 

2D array and if the image is coloured it will be converted into a 3D array. 

 

 In this case, we’ll assume that we are working with coloured images. 

Input_shape is passed in a tuple with the number of channels, which is 3 for a 

coloured image, and the dimensions of the 2D array in each channel. If you are not 

using a GPU it’s advisable to use lower dimensions to reduce the computation time. 

The final parameter is the activation function. Classifying images is a nonlinear 

problem. So, we use the rectifier function to ensure that we don’t have negative 

pixel values during computation. That’s how we achieve non-linearity. 

 

 classifier.add (Convolution2D (256, 3, 3, input_shape = (256, 256, 3), 

activation=’relu’)) 

 

POOLING: 

 

 The Pooling layer is responsible for reducing the spatial size of the convolved 

feature. This is to decrease the computational power required to process the data 

through dimensionality reduction. Furthermore, it is useful for extracting dominant 

features which are rotational and positional invariant, thus maintaining the process 

of effectively training of the model. 

 

 There are two types of Pooling: Max Pooling and Average Pooling. Max 

Pooling returns the maximum value from the portion of the image covered by the 

Kernel. On the other hand, Average Pooling returns the average of all the values 

from the portion of the image covered by the Kernel. Generally, we use max 

pooling. 

 

 In this step we reduce the size of the feature map. Generally, we create a pool 

size of 2x2 for max pooling. This enables us to reduce the size of the feature map 

while not losing important image information. 



 classifier.add (MaxPooling2D (pool_size= (2,2))) 

 

FLATTENING: 

 

 In this step, all the pooled feature maps are taken and put into a single vector for 

inputting it to the next layer. 

 

 The Flatten function flattens all the feature maps into a single long column. 

 

 classifier.add (Flatten ()) 

 

FULLY CONNECTION: 

 

 The next step is to use the vector we obtained above as the input for the neural 

network by using the Dense function in Keras. The first parameter is output which 

is the number of nodes in the hidden layer. You can determine the most appropriate 

number through experimentation. The higher the number of dimensions the more 

computing resources you will need to fit the model. A common practice is to pick 

the number of nodes in powers of two. 

 

 classifier.add (Dense (output = 64)) 

 

 The next layer we have to add is the output layer. In this case, we’ll use the 

sigmoid activation function since we expect a binary outcome. If we expected more 

than two outcomes, we would use the SoftMax function. 

 

 The output here is 1 since we just expect the predicted probabilities of the 

classes. 

 

 classifier.add (Dense (output=1, activation=’sigmoid’)) 

 

 

 

 

 

 

 

 

 

 



Chapter 4  

Results and Discussion 

 

SAMPLE CODE AND RESULTS 

 

#SEGMENT 

import cv2 

# matplotlib is used for displaying images 

import matplotlib.pyplot as plt 

%matplotlib inline 

# numpy is used for matrix manipulations 

import numpy as np 

 

path = r’D: \images\yes\Y32.jpg' 

orig_img = cv2.imread(path,1) # 1 indicates color image 

# OpenCV uses BGR while Matplotlib uses RGB format 

# Display the color image with matplotlib 

plt.imshow(cv2.cvtColor(orig_img, cv2.COLOR_BGR2RGB)) 

plt.axis('off') 

plt.show() 

 

 
Input Image 

 

gray_img = cv2.cvtColor( orig_img, cv2.COLOR_BGR2GRAY ) 

plt.imshow(gray_img,cmap='gray') 

plt.axis('off') 

plt.show() 

 



 
Gray-scale Image 

 

# To remove salt and pepper noise #Using 5*5 kernel 

filtered = cv2.bilateralFilter(gray_img, 5,10,2.5) 

plt.imshow(filtered,cmap='gray') 

plt.axis('off') 

plt.show() 

 

 
Filtered Image 

 

# 3*3 Sobel Filters 

Gx= np.array([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]]) 

print ("Gx \n", Gx) 

Gy = np.array([[-1, -2, -1], [0, 0, 0], [1, 2, 1]]) 

print ("Gy \n", Gy) 

img_sobelx = cv2.Sobel(filtered,cv2.CV_8U,1,0,ksize=3) 

 

img_sobely = cv2.Sobel(filtered,cv2.CV_8U,0,1,ksize=3) 



#del f = Gx + Gy 

# Adding mask to the image 

img_sobel = img_sobelx + img_sobely+gray_img 

plt.imshow(img_sobel,cmap='gray') 

plt.axis('off') 

plt.show() 

 

 
Image after edge detection 

 

# Set threshold and maxValue 

threshold = 50 

maxValue = 255 

# Threshold the pixel values 

th, thresh = cv2.threshold(img_sobel, threshold, maxValue, 

cv2.THRESH_BINARY) 

plt.imshow(thresh,cmap='gray') 

plt.axis('off') 

plt.show() 

 



 
Thresholded and Binary Image 

 

# To remove any small white noises in the image using morphological opening. 

kernel = np.ones((3,3),np.uint8) 

opening = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel, iterations = 2) 

plt.imshow(opening,cmap='gray') 

plt.axis('off') 

plt.show() 

 

 
Morphological Image 

 

# White region shows sure foreground area 

sure_bg = cv2.dilate(opening,kernel,iterations=3) 

dist_transform = cv2.distanceTransform(opening, cv2.DIST_L2, 5) 

ret, sure_fg = cv2.threshold(dist_transform,0.7*dist_transform.max(),255,0) 

plt.imshow(sure_fg,cmap='gray') 

plt.axis('off') 

plt.show() 



 
Dilated Image 

 

#TRAINING DATA 

 

import tensorflow as tf 

from tensorflow.keras.datasets import cifar10 

from tensorflow.keras.preprocessing.image import ImageDataGenerator 

from tensorflow.keras.models import Sequential 

from tensorflow.keras.layers import Dense, Dropout, Activation, Flatten 

from tensorflow.keras.layers import Conv2D, MaxPooling2D 

 

import pickle 

pickle_in = open("XX.pickle","rb") 

X = pickle.load(pickle_in) 

pickle_in = open("YY.pickle","rb") 

y = pickle.load(pickle_in) 

 

X = X/255.0 

model = Sequential() 

 

model.add(Conv2D(256, (3, 3), input_shape=X.shape[1:])) 

model.add(Activation('relu')) 

model.add(MaxPooling2D(pool_size=(2, 2))) 

model.add(Conv2D(256, (3, 3))) 

model.add(Activation('relu')) 

model.add(MaxPooling2D(pool_size=(2, 2))) 

 

model.add(Flatten()) 

 



model.add(Dense(64)) 

model.add(Dense(1)) 

model.add(Activation('sigmoid')) 

 

model.compile(loss='binary_crossentropy', optimizer='adam',metrics=['accuracy']) 

model.fit(X, y, batch_size=164, epochs=10, validation_split=0.3) 

 

 
Training data history 

 

#DATALOAD 

 

import numpy as np 

import matplotlib.pyplot as plt 

import os 

import cv2 

from tqdm import tqdm 

 

DATADIR = "D:\dataset1" 

CATEGORIES = ["no", "yes"] 

 

for category in CATEGORIES: 



path = os.path.join(DATADIR,category) 

for img in os.listdir(path): 

img_array = 

cv2.imread(os.path.join(path,img) ,cv2.IMREAD_GRAYSCALE) 

# convert to array 

plt.imshow(img_array, cmap='gray') # graph it 

plt.show() # display! 

break # we just want one for now so break 

break #...and one more! 

print(img_array) 

print(img_array.shape) 

 

IMG_SIZE = 100 

new_array = cv2.resize(img_array, (IMG_SIZE, IMG_SIZE)) 

plt.imshow(new_array, cmap='gray') 

plt.show() 

 

training_data = [] 

 

def create_training_data(): 

for category in CATEGORIES: 

path = os.path.join(DATADIR,category) # create path 

class_num = CATEGORIES.index(category) # get the classification (0 or a 1). 

for img in tqdm(os.listdir(path)): # iterate over each image 

try: 

img_array = cv2.imread(os.path.join(path,img) 

,cv2.IMREAD_GRAYSCALE) # convert to array 

new_array = cv2.resize(img_array, (IMG_SIZE, IMG_SIZE)) # resize to 

normalize data size 

training_data.append([new_array, class_num]) # add this to our 

training_data 

except Exception as e: # in the interest in keeping the output clean... 

pass 

 

IMG_SIZE = 100 

new_array = cv2.resize(img_array, (IMG_SIZE, IMG_SIZE)) 

plt.imshow(new_array, cmap='gray') 

plt.show() 

 

training_data = [] 



 

def create_training_data(): 

for category in CATEGORIES: 

path = os.path.join(DATADIR,category) # create path 

class_num = CATEGORIES.index(category) # get the classification (0 or a 1). 

for img in tqdm(os.listdir(path)): # iterate over each image 

try: 

img_array = cv2.imread(os.path.join(path,img) 

,cv2.IMREAD_GRAYSCALE) # convert to array 

new_array = cv2.resize(img_array, (IMG_SIZE, IMG_SIZE)) # resize to 

normalize data size 

training_data.append([new_array, class_num]) # add this to our 

training_data 

except Exception as e: # in the interest in keeping the output clean... 

pass 

 

IMG_SIZE = 100 

new_array = cv2.resize(img_array, (IMG_SIZE, IMG_SIZE)) 

plt.imshow(new_array, cmap='gray') 

plt.show() 

 

training_data = [] 

 

def create_training_data(): 

for category in CATEGORIES: 

path = os.path.join(DATADIR,category) # create path 

class_num = CATEGORIES.index(category) # get the classification (0 or a 1). 

for img in tqdm(os.listdir(path)): # iterate over each image 

try: 

img_array = cv2.imread(os.path.join(path,img) 

,cv2.IMREAD_GRAYSCALE) # convert to array 

new_array = cv2.resize(img_array, (IMG_SIZE, IMG_SIZE)) # resize to 

normalize data size 

training_data.append([new_array, class_num]) # add this to our 

training_data 

except Exception as e: # in the interest in keeping the output clean... 

pass 

 

IMG_SIZE = 100 

new_array = cv2.resize(img_array, (IMG_SIZE, IMG_SIZE)) 



plt.imshow(new_array, cmap='gray') 

plt.show() 

 

training_data = [] 

 

def create_training_data(): 

for category in CATEGORIES: 

path = os.path.join(DATADIR,category) # create path 

class_num = CATEGORIES.index(category) # get the classification (0 or a 1). 

for img in tqdm(os.listdir(path)): # iterate over each image 

try: 

img_array = cv2.imread(os.path.join(path,img) 

,cv2.IMREAD_GRAYSCALE) # convert to array 

new_array = cv2.resize(img_array, (IMG_SIZE, IMG_SIZE)) # resize to 

normalize data size 

training_data.append([new_array, class_num]) # add this to our 

training_data 

except Exception as e: # in the interest in keeping the output clean... 

pass 

 

IMG_SIZE = 100 

new_array = cv2.resize(img_array, (IMG_SIZE, IMG_SIZE)) 

plt.imshow(new_array, cmap='gray') 

plt.show() 

 

training_data = [] 

 

def create_training_data(): 

for category in CATEGORIES: 

path = os.path.join(DATADIR,category) # create path 

class_num = CATEGORIES.index(category) # get the classification (0 or a 1). 

for img in tqdm(os.listdir(path)): # iterate over each image 

try: 

img_array = cv2.imread(os.path.join(path,img) 

,cv2.IMREAD_GRAYSCALE) # convert to array 

new_array = cv2.resize(img_array, (IMG_SIZE, IMG_SIZE)) # resize to 

normalize data size 

training_data.append([new_array, class_num]) # add this to our 

training_data 

except Exception as e: # in the interest in keeping the output clean... 



pass 

 

IMG_SIZE = 100 

new_array = cv2.resize(img_array, (IMG_SIZE, IMG_SIZE)) 

plt.imshow(new_array, cmap='gray') 

plt.show() 

 

training_data = [] 

 

def create_training_data(): 

for category in CATEGORIES: 

path = os.path.join(DATADIR,category) # create path 

class_num = CATEGORIES.index(category) # get the classification (0 or a 1). 

for img in tqdm(os.listdir(path)): # iterate over each image 

try: 

img_array = cv2.imread(os.path.join(path,img) 

,cv2.IMREAD_GRAYSCALE) # convert to array 

new_array = cv2.resize(img_array, (IMG_SIZE, IMG_SIZE)) # resize to 

normalize data size 

training_data.append([new_array, class_num]) # add this to our 

training_data 

except Exception as e: # in the interest in keeping the output clean... 

pass 

 

IMG_SIZE = 100 

new_array = cv2.resize(img_array, (IMG_SIZE, IMG_SIZE)) 

plt.imshow(new_array, cmap='gray') 

plt.show() 

 

training_data = [] 

 

def create_training_data(): 

for category in CATEGORIES: 

path = os.path.join(DATADIR,category) # create path 

class_num = CATEGORIES.index(category) # get the classification (0 or a 1). 

for img in tqdm(os.listdir(path)): # iterate over each image 

try: 

img_array = cv2.imread(os.path.join(path,img) 

,cv2.IMREAD_GRAYSCALE) # convert to array 

new_array = cv2.resize(img_array, (IMG_SIZE, IMG_SIZE)) # resize to 



normalize data size 

training_data.append([new_array, class_num]) # add this to our 

training_data 

except Exception as e: # in the interest in keeping the output clean... 

pass 

 

IMG_SIZE = 100 

new_array = cv2.resize(img_array, (IMG_SIZE, IMG_SIZE)) 

plt.imshow(new_array, cmap='gray') 

plt.show() 

 

training_data = [] 

 

def create_training_data(): 

for category in CATEGORIES: 

path = os.path.join(DATADIR,category) # create path 

class_num = CATEGORIES.index(category) # get the classification (0 or a 1). 

for img in tqdm(os.listdir(path)): # iterate over each image 

try: 

img_array = cv2.imread(os.path.join(path,img) 

,cv2.IMREAD_GRAYSCALE) # convert to array 

new_array = cv2.resize(img_array, (IMG_SIZE, IMG_SIZE)) # resize to 

normalize data size 

training_data.append([new_array, class_num]) # add this to our 

training_data 

except Exception as e: # in the interest in keeping the output clean... 

pass 

 

IMG_SIZE = 100 

new_array = cv2.resize(img_array, (IMG_SIZE, IMG_SIZE)) 

plt.imshow(new_array, cmap='gray') 

plt.show() 

 

training_data = [] 

 

def create_training_data(): 

for category in CATEGORIES: 

path = os.path.join(DATADIR,category) # create path 

class_num = CATEGORIES.index(category) # get the classification (0 or a 1). 

for img in tqdm(os.listdir(path)): # iterate over each image 



try: 

img_array = cv2.imread(os.path.join(path,img) 

,cv2.IMREAD_GRAYSCALE) # convert to array 

new_array = cv2.resize(img_array, (IMG_SIZE, IMG_SIZE)) # resize to 

normalize data size 

training_data.append([new_array, class_num]) # add this to our 

training_data 

except Exception as e: # in the interest in keeping the output clean... 

pass 

 

IMG_SIZE = 100 

new_array = cv2.resize(img_array, (IMG_SIZE, IMG_SIZE)) 

plt.imshow(new_array, cmap='gray') 

plt.show() 

 

training_data = [] 

 

def create_training_data(): 

for category in CATEGORIES: 

path = os.path.join(DATADIR,category) # create path 

class_num = CATEGORIES.index(category) # get the classification (0 or a 1). 

for img in tqdm(os.listdir(path)): # iterate over each image 

try: 

img_array = cv2.imread(os.path.join(path,img) 

,cv2.IMREAD_GRAYSCALE) # convert to array 

new_array = cv2.resize(img_array, (IMG_SIZE, IMG_SIZE)) # resize to 

normalize data size 

training_data.append([new_array, class_num]) # add this to our 

training_data 

except Exception as e: # in the interest in keeping the output clean... 

pass 

 

IMG_SIZE = 100 

new_array = cv2.resize(img_array, (IMG_SIZE, IMG_SIZE)) 

plt.imshow(new_array, cmap='gray') 

plt.show() 

 

training_data = [] 

 

def create_training_data(): 



for category in CATEGORIES: 

path = os.path.join(DATADIR,category) # create path 

class_num = CATEGORIES.index(category) # get the classification (0 or a 1). 

for img in tqdm(os.listdir(path)): # iterate over each image 

try: 

img_array = cv2.imread(os.path.join(path,img) 

,cv2.IMREAD_GRAYSCALE) # convert to array 

new_array = cv2.resize(img_array, (IMG_SIZE, IMG_SIZE)) # resize to 

normalize data size 

training_data.append([new_array, class_num]) # add this to our 

training_data 

except Exception as e: # in the interest in keeping the output clean... 

pass 

 

IMG_SIZE = 100 

new_array = cv2.resize(img_array, (IMG_SIZE, IMG_SIZE)) 

plt.imshow(new_array, cmap='gray') 

plt.show() 

 

training_data = [] 

 

def create_training_data(): 

for category in CATEGORIES: 

path = os.path.join(DATADIR,category) # create path 

class_num = CATEGORIES.index(category) # get the classification (0 or a 1). 

for img in tqdm(os.listdir(path)): # iterate over each image 

try: 

img_array = cv2.imread(os.path.join(path,img) 

,cv2.IMREAD_GRAYSCALE) # convert to array 

new_array = cv2.resize(img_array, (IMG_SIZE, IMG_SIZE)) # resize to 

normalize data size 

training_data.append([new_array, class_num]) # add this to our 

training_data 

except Exception as e: # in the interest in keeping the output clean... 

pass 

 

IMG_SIZE = 100 

new_array = cv2.resize(img_array, (IMG_SIZE, IMG_SIZE)) 

plt.imshow(new_array, cmap='gray') 

plt.show() 



 

training_data = [] 

 

def create_training_data(): 

for category in CATEGORIES: 

path = os.path.join(DATADIR,category) # create path 

class_num = CATEGORIES.index(category) # get the classification (0 or a 1). 

for img in tqdm(os.listdir(path)): # iterate over each image 

try: 

img_array = cv2.imread(os.path.join(path,img) 

,cv2.IMREAD_GRAYSCALE) # convert to array 

new_array = cv2.resize(img_array, (IMG_SIZE, IMG_SIZE)) # resize to 

normalize data size 

training_data.append([new_array, class_num]) # add this to our 

training_data 

except Exception as e: # in the interest in keeping the output clean... 

pass 

 

IMG_SIZE = 100 

new_array = cv2.resize(img_array, (IMG_SIZE, IMG_SIZE)) 

plt.imshow(new_array, cmap='gray') 

plt.show() 

 

training_data = [] 

 

def create_training_data(): 

for category in CATEGORIES: 

path = os.path.join(DATADIR,category) # create path 

class_num = CATEGORIES.index(category) # get the classification (0 or a 1). 

for img in tqdm(os.listdir(path)): # iterate over each image 

try: 

img_array = cv2.imread(os.path.join(path,img) 

,cv2.IMREAD_GRAYSCALE) # convert to array 

new_array = cv2.resize(img_array, (IMG_SIZE, IMG_SIZE)) # resize to 

normalize data size 

training_data.append([new_array, class_num]) # add this to our 

training_data 

except Exception as e: # in the interest in keeping the output clean... 

pass 

 



IMG_SIZE = 100 

new_array = cv2.resize(img_array, (IMG_SIZE, IMG_SIZE)) 

plt.imshow(new_array, cmap='gray') 

plt.show() 

 

training_data = [] 

 

def create_training_data(): 

for category in CATEGORIES: 

path = os.path.join(DATADIR,category) # create path 

class_num = CATEGORIES.index(category) # get the classification (0 or a 1). 

for img in tqdm(os.listdir(path)): # iterate over each image 

try: 

img_array = cv2.imread(os.path.join(path,img) 

,cv2.IMREAD_GRAYSCALE) # convert to array 

new_array = cv2.resize(img_array, (IMG_SIZE, IMG_SIZE)) # resize to 

normalize data size 

training_data.append([new_array, class_num]) # add this to our 

training_data 

except Exception as e: # in the interest in keeping the output clean... 

pass 

 

IMG_SIZE = 100 

new_array = cv2.resize(img_array, (IMG_SIZE, IMG_SIZE)) 

plt.imshow(new_array, cmap='gray') 

plt.show() 

 

training_data = [] 

 

def create_training_data(): 

for category in CATEGORIES: 

path = os.path.join(DATADIR,category) # create path 

class_num = CATEGORIES.index(category) # get the classification (0 or a 1). 

for img in tqdm(os.listdir(path)): # iterate over each image 

try: 

img_array = cv2.imread(os.path.join(path,img) 

,cv2.IMREAD_GRAYSCALE) # convert to array 

new_array = cv2.resize(img_array, (IMG_SIZE, IMG_SIZE)) # resize to 

normalize data size 

training_data.append([new_array, class_num]) # add this to our 



training_data 

except Exception as e: # in the interest in keeping the output clean... 

pass 

 

 

create_training_data() 

print(len(training_data)) 

 

import random 

random.shuffle(training_data) 

 

for sample in training_data[:10]: 

print(sample[1]) 

 

IMG_SIZE = 100 

new_array = cv2.resize(img_array, (IMG_SIZE, IMG_SIZE)) 

plt.imshow(new_array, cmap='gray') 

plt.show() 

 

training_data = [] 

 

def create_training_data(): 

for category in CATEGORIES: 

path = os.path.join(DATADIR,category) # create path 

class_num = CATEGORIES.index(category) # get the classification (0 or a 1). 

for img in tqdm(os.listdir(path)): # iterate over each image 

try: 

img_array = cv2.imread(os.path.join(path,img) 

,cv2.IMREAD_GRAYSCALE) # convert to array 

new_array = cv2.resize(img_array, (IMG_SIZE, IMG_SIZE)) # resize to 

normalize data size 

training_data.append([new_array, class_num]) # add this to our 

training_data 

except Exception as e: # in the interest in keeping the output clean... 

pass 

 

 

X = [] 

y = [] 

for features,label in training_data: 



X.append(features) 

y.append(label) 

print(X[0].reshape(-1, IMG_SIZE, IMG_SIZE, 1)) 

X = np.array(X).reshape(-1, IMG_SIZE, IMG_SIZE, 1) 

 

import pickle 

pickle_out = open("XX.pickle","wb") 

pickle.dump(X, pickle_out) 

pickle_out.close() 

 

pickle_out = open("YY.pickle","wb") 

pickle.dump(y, pickle_out) 

pickle_out.close() 

 

 

 

EXPERIMENTAL RESULTS: 

 

Sample Input: 

 

 
 

Predicted Output: Yes 

 

Observed Output: 

 



 
 

 

 

Sample Input: 

 

 
 

Predicted Output: No 

 

Observed Output: 

 



 
 

 

 

 

 

 

 

PERFORMANCE MEASURES: 

 

The proposed algorithm has been assessed through various performance evaluation 

metrics that include True Positive, True Negative the former one that designates 

how many times does the proposed algorithm is able to correctly recognize the 

damaged region as damaged region and the later one designates how many times 

does the proposed algorithm correctly identified non-damaged region as non-

damaged region. And the False Positive (FN) and False Negative (FN) the former 

one designates how m my times does the proposed algorithm fails to recognize the 

damaged region correctly, and the later represents how many times does the 

proposed algorithm fails to identify the non-tumors region as non-tumors regions. 

Basing on values of TP, TN, FP, and FN, the values of Accuracy, Specificity and 

sensitivity are calculated of the proposed algorithm. 

 



 
 

PERFORMANCE EVALUTION: 

 

On experimentation, it was observed that the proposed methodology seems to be 

outperformed when compared to all different set of images. Among all the images, 

the proposed Convolutional Neural Network (CNN) based approach seems too 

much better in terms of quality of the output in 128 *128 images when compared 

to its other sized images which are represented in table and charts. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



TABLE 1 Represents the true positive, true negative, false positive and false 

negative values of the proposed approach for different set of images. 

 

 

 
Represents the performance analysis of CNN 

 

It is observed from table 2 upon performing proposed segmentation technique for 

different set of images that have the ability to recognize the isolated region from 

the MR images that are used to analyze the shape and size of the denoised image. 

We have Used Convolutional Neural Network (CNN) for segmentation, and the 

output of our proposed work is pleased with better accuracy, sensitivity, and 

computational time. 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

TABLE 2 Represents the Accuracy, Sensitivity, and Specificity of the proposed 

approach for different set of images. 

 

 

 
Represents the performance of proposed CNN 

 

 

 

 

 



Chapter 5  

Conclusion and Future Scope 

 

CONCLUSION: 

 

We proposed a computerized method for the segmentation and identification of a 

brain tumor using the Convolution Neural Network. The input MR images are read 

from the local device using the file path and converted into grayscale images. 

These images are pre-processed using an adaptive bilateral filtering technique for 

the elimination of noises that are present inside the original image. The binary 

thresholding is applied to the denoised image, and Convolution Neural Network 

segmentation is applied, which helps in figuring out the tumor region in the MR 

images. The proposed model had obtained an accuracy of 84% and yields 

promising results without any errors and much less computational time. 

 

FUTURE SCOPE: 

 

It is observed on extermination that the proposed approach needs a vast training set 

for better accurate results; in the field of medical image processing, the gathering 

of medical data is a tedious job, and, in few cases, the datasets might not be 

available. In all such cases, the proposed algorithm must be robust enough for 

accurate recognition of tumor regions from MR Images. The proposed approach 

can be further improvised through in cooperating weakly trained algorithms that 

can identify the abnormalities with a minimum training data and also self-learning 

algorithms would aid in enhancing the accuracy of the algorithm and reduce the 

computational time. 
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