
A Project Report

on

ALGORITHM VISUALIZER: MITIGATE ALGORITHM

COMPLEXITIES

Submitted in partial fulfillment of the

 requirement for the award of the degree of

Bachelor of Technology in Computer Science and

Engineering

Under The Supervision of

Ms. AANCHAL VIJ:

ASSISTANT PROFESSOR

Submitted By

ADITYA BHARDWAJ – 19SCSE1180007

SHIVAM GOEL – 19SCSE1180006

SCHOOL OF COMPUTING SCIENCE AND ENGINEERING

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

GALGOTIAS UNIVERSITY, GREATER NOIDA

INDIA

DECEMBER, 2021

SCHOOL OF COMPUTING SCIENCE AND
ENGINEERING

GALGOTIAS UNIVERSITY, GREATER NOIDA

CANDIDATE’S DECLARATION

I/We hereby certify that the work which is being presented in the project, entitled “ALGORITHM

VISUALIZER: Mitigate Algorithm Complexities” in partial fulfillment of the requirements for

the award of the BACHELOR OF TECHNOLOGY IN COMPUTER SCIENCE AND

ENGINEERING submitted in the School of Computing Science and Engineering of Galgotias

University, Greater Noida, is an original work carried out during the period of JULY, 2021 TO

DECEMBER, 2021, under the supervision of MS. AANCHAL VIJ, Assistant Professor,

Department of Computer Science and Engineering of School of Computing Science and

Engineering , Galgotias University, Greater Noida

The matter presented in the project has not been submitted by me/us for the award of any other

degree of this or any other places.

Aditya Bhardwaj - 19SCSE1180007

Shivam Goel - 19SCSE1180006

This is to certify that the above statement made by the candidates is correct to the best of my

knowledge.

 Ms. Aanchal Vij

Assistant Professor

CERTIFICATE

The Final Thesis/Project/ Dissertation Viva-Voce examination of ADITYA BHARDWAJ:

19SCSE1180007 AND SHIVAM GOEL: 19SCSE1180006 has been held on

_________________ and his/her work is recommended for the award of BACHELOR OF

TECHNOLOGY IN COMPUTER SCIENCE AND ENGINEERING.

Signature of Examiner(s) Signature of Supervisor(s)

Signature of Project Coordinator Signature of Dean

Date: December, 2021

Place: Greater Noida

Abstract

In this project we have made an Algorithm Visualizer. In that we have

implemented a path finding visualizer and sorting visualizer as well. By

this project we not only aim to demonstrate the uses of these various

algorithms but also want to create a tool to be used for better

understanding of these concepts. Algorithms like Dijkstra’s , A* , Depth

First Search (DFS), Breadth First Search (BFS) , Quick Sort, Heap Sort,

Selection Sort, Bubble Sort, etc. are some of the most basic algorithms

often used as building blocks for understanding design and analysis of

various algorithms. These algorithms are also present in software all

around us like google maps, internet searches, etc. In the past, algorithms

have been taught through exhaustive chalkboard drawings and pseudo-

code guidelines. Visualization tools are therefore an attractive learning

essential for instructors and students alike . Hence here we have tried to

create a tool using HTML, CSS, ExpressJS, etc. to visually depict the

working of these algorithms. Our goal is to simplify the algorithm into a

series of visual steps that can be understood by elementary computer

science students.

Table of Contents

Title Page

No.

Candidates Declaration I

Acknowledgement II

Abstract III

Contents IV

List of Figures V

Acronyms VI

Chapter 1 Introduction 1

 1.1 Introduction 2

 1.2 Formulation of Problem 3

 1.2.1 Tool and Technology Used 4

Chapter 2 Literature Survey/Project Design 5

Chapter 3 Functionality/Working of Project 7

Chapter 4 Results and Discussion 18

Chapter 5 Conclusion and Future Scope 24

 5.1 Conclusion 25

 5.2 Future Scope 26

 Reference 27

 Publication/Copyright/Product

List of Figures

S.No. Caption Page No.

1 Bubble Sort 25

2 Insertion Sort 26

3 Selection Sort 26

4 Quick Sort 27

5 Heap Sort 27

6 Dijkstra's Algorithm (unweighted) 28

7 Dijkstra's Algorithm (weighted) 29

8 DFS 29

9 BFS 30

10 A* 30

Acronyms

AWS Amazon Web Services

AV Algorithm Visualizer

Js JAVA Script

DFS Depth First Search

BFS Breadth First Search

CHAPTER-1

Introduction

Sorting and path finding are some of the popular concepts and algorithms

that any person working in software industry learns initially. This is

because not only these have extensive applications in other algorithms but

also because we can see this algorithm in work around us in common

applications.

These reasons make these algorithms of extreme importance which made

us decide to work on them and create a better medium to understand them.

We tried to use various algorithms in our visualizer to depict the processes

as accurately as possible.

The algorithms being used are –

• Selections Sort

• Bubble Sort

• Insertions Sort

• Quick Sort

• Merge Sort

• Heap Sort

• A* Algorithm

• Depth First Search (DFS)

• Breadth First Search (BFS)

• Dijkstra’s Algorithm

Based on a comparison operator on the elements, a Sorting Algorithm

rearranges the items of an array or list. In this project we have randomly

generated arrays with elements varying in magnitude. We have

implemented the algorithms in such a way that not only do we get a visual

of the finally sorted array but also get the visualization of the sorting

process as it takes place in front of our eyes. This becomes a very great way

to see all these algorithms in play. We have used colored animations to

depict changes so that they are clearly visible.

Path Finding algorithms are a type of algorithm that determines the

shortest path between two nodes on a graph. Here we use them to find the

path between two points. We assume the entire grid as the graph and apply

various graph algorithms on it. We can also place walls on the graph

which are basically nothing just breaking the connections between two

grid elements.

We can also attach weights to each grid element which could be used to

visualize the working of path finding algorithms in weighted graphs. Also,

we have used color scheme to highlight the various phases of recursion.

We have also made the speed of all the above processes alterable so any

user can understand at his/her pace. Also, we have added many useful

features like resetting the board, reloading the site or choosing new

algorithms on the spot and picking up from where you left off without

reloading the site. We have also added for the user to easily access the site

by making it very responsive.

All of the above algorithms and their respective visualizations have been

implemented using pure JavaScript and no external libraries. We have also

added styling using CSS to make the site more appealing and easier to use

for the user. A good knowledge of all these concepts is displayed

throughout. While selecting the above algorithms we kept in mind to select

a diversity of them representing various use cases and various time and

space complexities ranging from O(NlogN) to O(N2) .

We chose algorithms like Breadth First Search (BFS) to show the shortest

path edgewise or in an unweighted and graph and to show level wise

traversal, we kept Depth First Search (DFS) to show how it is not a good

path finding algorithm because of its approach of traversing each individual

branch one after another, Dijkstra’s to have an efficient path finding

algorithm in weighted graphs/layouts.

We chose basic high time complexity sorting like bubble sort, selection sort

and insertion sort to explain sorting and help people experience firsthand

the reason why they are slow as they have to traverse twice through the

array. Then we have also added optimized sorting algorithms like merge

sort, quick sort and heap sort to show their edge over the other three

algorithms.

All these algorithms are quite interesting and can be seen in real world in

applications like google maps, Computational services like AWS and much

more. The most common use case could be Google Maps finding us the

shortest route to our work through the traffic and minimizing time. So, by

visualizing and trying out various path finding algorithms we can easily

identify that google treats its maps as a weighted graph with roads with

higher traffic having higher weights and then it implements similar path

finding algorithms to find you the best path so that you reach on time.

Formulation Of Problem

We specifically chose to work on this project because we experienced

this problem first hand. During the first year of our college life when

both us were learning these algorithms we faced numerous difficulties

due to the extremely theoretical nature of all the leaning courses and we

were never able to visualize these algorithms and there working.

Even while going through the time and space complexities analysis of all

these algorithms it wasn’t easy to visually understand reason for their

logarithmic or second order complexities.

So, when we were presented with the opportunity of doing a project in

algorithms this semester we just jumped upon this idea as we feel the

mathematics behind these algorithms should be fun as well and our idea

of making them fun is through direct visualization of working of these

algorithms.

Furthermore choosing these algorithms was based upon our exploring

various data structures and algorithms and realizing just how important

these algorithms are . Many problems directly or indirectly use these

algorithms which made it clear that these things even though taught in

beginning as basics are building blocks for developing an interest in

algorithms design and analysis. Hence working on this project was a no

brainer for us.

Through this project we aim to create not just an sorting or path finding

visualizer but aim to grow it into a collection of various algorithms

visualizations including advanced topics like dynamic programming,

backtracking other popular graph algorithms and much more

Tool and Technology Used

We have tried to create an intuitive UI that is easy to understand and
use for the user.

Technology Stack –

• HTML

• CSS

• JavaScript

• NodeJS

• ExpressJS

CHAPTER-2

Literature Survey

AVs have a long history in computer science education, dating from the

1981 video “Sorting out Sorting” by Ronald Baeker and the BALSA

system [Brown and Sedgewick 1984]. Since then, hundreds of AVs have

been implemented and provided free to educators, and scores of papers

have been written about them [AlgoViz.org 2010].

Good AVs bring algorithms to life by graphically representing their

various states and animating the transitions between those states. They

illustrate data structures in natural, abstract ways instead of focusing on

memory addresses and function calls.

Algorithm visualization (AV) technology graphically illustrates how

algorithms work. Despite the intuitive appeal of the technology, it has

failed to catch on in mainstream computer science education. Some have

attributed this failure to the mixed results of experimental studies

designed to substantiate AV technology’s educational effectiveness.

An important conclusion from the literature is that to make AVs

pedagogically useful, they must support student interaction and active

learning [Naps et al. 2002].

Certainly, many AVs exist and are widely (and freely) available via the

Internet. Unfortunately, those of high quality can be lost among the

many of lower quality. The most common way to make an algorithm

animation is to annotate the algorithm code with scripting instructions

that produce the visualisation. John Stasko and his colleagues created the

first system based on a scripting language, which is part of a larger

family of algorithm visualisation systems (Tango, Polka, Samba and

JSamba).

Animations are made up of a file that contains graphical instructions that

correlate to key events in the algorithm being shown. Another set of

systems, such as MatrixPro, Trakla2, and Ville, offer "Algorithm

Simulation Exercises," in which the learner must manually carry out a

particular algorithm, either by dragging pieces to new or target places or

by clicking on buttons to fulfil a certain function.

The creation of frameworks for the so-called domain of algorithm

visualisation, which is defined as the visualisation of a high-level

description of a piece of software, has seen significant progress in recent

years. People who develop algorithms are well aware that their brain (or,

more precisely, its right side [6]) automatically performs imaginative

work, consisting of conjuring mental images that correspond to the main

characteristics of the various phases of algorithm analysis, development,

and implementation.

As a result, automated visualisation may be a helpful assistance for

teaching as well as designing and comprehending algorithms, as discussed

in [8]. (both in the design phase and in the analysis and development

ones). [11] contains a survey on the more broad topic of software

visualisation (in short, SV), which includes twelve visualisation solutions

(some of them includes (BALSA [7], TANGO [10], ANIM [4]).

On the other hand, demonstrating how the values of programme

variables change will not expose the algorithm's logic. Students will

want acceptable graphical representations of the algorithm that

correspond to their conceptual ideas of how it works.
Ville is a new addition to the family and supports a variety of

programming languages, including C++ and Java. It has a built-in editor

for creating interactive quizzes and examinations that show as pop-up

windows. JHave offers a big library of algorithm visualisations and has

sparked a lot of attention among educators.

Alvis Live! is a modern algorithm animation system. It is a software

development environment that uses the SALSA scripting language to

facilitate the creation and interactive presentation of algorithm

visualizations. It has tools that help with storyboarding.

Algorithm Visualization (AV) systems try to address this demand by

visualizing abstract ideas and unravelling the algorithm's underlying

logic, assisting students in the development of multiple mental models,

the interconnection of construct hierarchies, and the generalization of

problem-solving patterns. In the literature, the phrases static and

dynamic algorithm visualizations are used to distinguish between the

level of involvement and students' exploration of the visualization.

Algorithm Animations for Teaching and Learning Basic Sorting Concepts

which has been extensively reviewed and explained in [5]. To increase the

effect of visualization, the authors strive to use Bloom's taxonomy and

establish an efficient model to describe algorithms and instructional

material. They employ an unusual card view technique to depict the items

on which the algorithm operates during the implementation phase.

Sorting Algorithms in Pictures - The web-based platform employs sound

effects as well as visual aids to improve user involvement. It tends to

improve the pupils' understanding of sorting procedures. Despite the fact

that arrays are an ubiquitous data structure in basic programming courses,

there has been minimal study on students' mental models and

programming challenges while utilizing arrays[2, 3].

According to a survey of computer academics, the arrays and loops are

two of the three programming fundamentals that novice students struggle

with. According to Du Boulay, students have trouble distinguishing

between an array index and its cell, as well as working with arrays that

contain indices as array items.

According to an unpublished study of 102 students in Greek secondary

schools, the majority of pupils had inaccurate or partial models of the

array notion, resulting in misunderstandings and substantial difficulty in

solving simple algorithmic issues that involve the usage of array data

structures (K-12).

In CS education, there are two types of visualisation systems: programme

visualisation and algorithm visualisation. PV systems generate visual

representations of programming structures and/or programme execution

phases (e.g., values of variables, internal programme structures, method

frames, data structures, objects etc.). Jype, UUhistle, and Online Python

Tutor are among contemporary PV systems for visualising Python

programmes; Jeliot 3 is a well-known PV system for visualising Java

programmes.

The creation of frameworks for the so-called domain of algorithm

visualisation, which is defined as the visualisation of a high-level

description of a piece of software, has seen significant progress in recent

years. People who develop algorithms are well aware that their brain (or,

more precisely, its right side [6]) automatically performs imaginative

work, consisting of conjuring mental images that correspond to the main

characteristics of the various phases of algorithm analysis, development,

and implementation.

Project Design

The major features of this project are described below. We have two

main sections on our front page using which the user can choose to

either go to the sorting visualizer or the path finding visualizer.

The website is divided into two sections whose features are described

further-

Path Finding Visualizer

• We have created an option to easily browse through and choose

among the various path finding algorithms.

• There is also the option to choose whether the layout should be

weighted or unweighted so that you can see and understand the

benefit of algorithms such as Dijkstra’s.

• We have also created an option to alter speed to understand and see

things working at your own convenience.

• Also, there are three centrally placed buttons to start the process,

reset the layout and reload the site.

Sorting Visualizer

• There is the option to browse among and choose from various

sorting algorithms.

• We have also kept the option to change the array size as per your

requirement.

• We have also created an option to alter speed to understand and see

things working at your own convenience.

CHAPTER – 3

Functionality/Working of Project

We have tried to create an intuitive UI that is easy to understand and use

for the user . The major features of this project are described below. We

have two main sections on our front page using which the user can

choose to either go to the sorting visualizer or the path finding

visualizer.

The website is divided into two sections whose features are described

further-

Path Finding Visualizer

• We have created an option to easily browse through and choose

among the various path finding algorithms

• There is also the option to choose whether the layout should be

weighted or unweighted so that you can see and understand the

benefit of algorithms such as Dijkstra’s

• We have also created an option to alter speed to understand and see

things working at your own convenience.

• Also there are three centrally placed buttons to start the process,

reset the layout and reload the site

Sorting Visualizer

• There is the option to browse among and choose from various

sorting algorithms

• We have also kept the option to change the array size as per you

requirement .

• We have also created an option to alter speed to understand and see

things working at your own convenience.

• Also there are two centrally placed buttons to start the process and

reload the site

Project Deployment Link –

https://adityabhardwaj16-shivamgoel08.netlify.app/index.html

Project Github Repository Link –

https://github.com/adityabhardwaj16/algorithm-visualizer

https://adityabhardwaj16-shivamgoel08.netlify.app/index.html
https://github.com/adityabhardwaj16/algorithm-visualizer

Sorting Visualizer

In this there is a centered box inside which the generated array is

display . We have used bars with heights proportional to their

magnitudes in the array. This helps us in providing a visual

representation of the array. We chose to particularly display in this way

as this helps us intuitively identify which element is greater and which is

smaller just by looking which is taller and which is shorter.

There is also the feature to generate new array to try these algorithms

with various different arrays and each array that is generated is random

and not hard coded. The following is the method used to achieve the

above result.

Furthermore, each time a bar or a value of the array is being worked

upon the corresponding bar for it gets red thereby showing where and on

which index the work is being performed at that instant. Then we can

see dynamically being moved to its next position achieved using

JavaScript .

For this the way we achieve this is when we are in the loop executing for

that particular array element we find its corresponding bar using DOM

API built in JavaScript and color that red and just before executing that

iteration of the loop we turn it back to grey.

We have implemented the speed controller by using a global variable for

speed and having a function that is attached with an event listener that

updates the global speed whenever speed is altered.

After this we obviously also have implemented all the above mentioned

sorting algorithms.

As mentioned earlier we have implemented 5 sorting algorithms.

• Selection Sort

• Bubble Sort

• Insertion Sort

• Heap Sort

• Quick Sort

Similarly other sorting algorithms have also been implemented. In the

project we have tried to maintain a good overall file structure so that

anyone can easily go through the project understand its working.

Path Finding Visualizer

In our path finding visualizer we have created a grid like layout similar

to very basic map that can be edited and played upon by the user . The

user can build walls and choose the algorithms as well as reset the board

or reload the page or start the entire path finding process by just the

simple click of a button.

We have implemented all this using pure vanilla JavaScript and no

external libraries for that matter.

There is also the choice for using weighted or unweighted scenario .

If supposing a user chooses weighted graphs we already have predefined

weights for each grid element to the delight of our user so that the user is

always ready to experiment.

The user can also choose and change the algorithms being used to get

the path according to his/her wish .

We have also restricted the weighted graphs option to Dijkstra’s so as

that is the only algorithm that works for finding path with weighted

graphs rest don’t consider the weights.

Apart from this we have implemented the algorithms in a clean and

concise manner trying to follow good software development practices.

• Dijkstra’s Algorithm

• Depth First Search (DFS)

• A* Algorithm

• Breadth First Search (BFS)

We have implemented the remaining algorithms in a similar fashion. We

have also resolved many bugs that came us during testing of this

application and have created something that we feel delivers on its

expectation.

CHAPTER – 4

Results and Discussion

We successfully implemented our both sorting and pathfinding

visualizers using all the above mentioned algorithms.

Sorting Visualizer

In this we have used red color to denote bars of array elements on which

work is currently being done while green represents the ones that have

been sorted and work on them is complete.

• Bubble Sort :

• Insertion Sort

• Selection Sort

• Quick Sort

• Heap Sort

So, this way we have try to visualize the sorting algorithms where one

graph depicts the sorting technique and the other graph depicts the final

result of the sorting algorithm.

Similarly, we have implemented the Path Finding Algorithms.

Path Finder Visualizer

In this we have used numbers to depict their distance from the starting

node in the manner the traversal is taking place for unweighted graphs

while in case of weighted graphs we have used the numbers to display

the respective weights of the grid elements . We have used green color

to denote the path and red color to denote the visited nodes . Uncolored

nodes are still unvisited and hence have no color.

• Dijkstra’s Algorithm in unweighted graph

Now same we can visualize for a weighted graph.

• Dijkstra’s Algorithm in weighted graph

• Depth First Search (DFS)

• Breadth First Search (BFS)

• A* Algorithm

CHAPTER – 5

Conclusion

We successfully implemented the algorithm visualizer in which we

showed the real life visualization of various graph and sorting

algorithms. We implemented depth first search (DFS) , breadth first

search (BFS) , A* algorithm and Dijkstra’s algorithm and tried to show

that how maps work based on these algorithms. The very famous google

maps are based on these graph algorithms. We also added various

features like we can create walls or obstructions so as to make it more

complex. We also used a very vibrant color scheme so as to make the

project eye catchy. Moreover, the project also works for weighted edges.

We also implemented the various sorting algo’s such as heap sort, quick

sort, bubble sort and insertion sort. The project shows that how these

sorting algorithms sort the array. We can also vary the speed of sorting

so as to understand it clearly and one can also very the size of the array

on which the sorting is to be applied. We also added the reset button and

reload button for ease of accessibility of user. We also successfully

implemented random generation of array feature so that the user can

easily test various algorithms

When students initially study about these sorting algorithms they found

it a little bit confusing and tricky especially quick sort. So, this project

helps to understand the every aspect of these algorithms. The project

gives a very clear perception about the algorithms and moreover when

we see the algorithm actually working we will able to understand it in

much better way and in very less time.

From development point of view, we got to learn about various frontend

frameworks which will eventually help us in future. The overall

experience we gained during making of this project is enormous.

Future Works

In this project we saw how we can use multiple graph and sorting

algorithms together in one project for multiple use cases.

Not only that this project demonstrates how theoretical concepts like

these can be implemented practically implemented and used create

something that can be used in real world to impact a change and make

our lives easier.

Now that we have made this project our future plan is to implement these

on a proper platform so that students can use this project to increase their

understanding of graph and sorting Algorithms. We plan to bring on more

advanced algorithms like dynamic programming , backtracking, graph

algorithms, etc. and establish it into a platform where students can code

and visualize at the same time.

We also plan to add whiteboard functionality to the website so that

students can perform dry run on the website itself and the website could

function as a complete teaching tool for any teacher.

We would also like to give it a proper interface so as to convert it into a

full-fledged working website. We will also try to improve the frontend

part so as to improve the accuracy and speed of Algorithms.

Furthermore , we would like to add a discussion feature to the website

like a forum with sections and pages for various topics where students

and teachers can contribute quality work , articles, interesting and

related things to foster research and development in the field of

algorithm design and analysis.

Acknowledgement

We'd want to thank our professors and Galgotias University from the

bottom of our hearts for giving us the excellent opportunity to work on

this fantastic project on Algorithm Visualizer: Mitigate Algorithm

Complexities, which has allowed us to conduct significant study and learn

about many new things. Second, we'd like to thank Ms. Aanchal Vij, our

guide, for her essential support in finishing this project in such a short

amount of time.

References

We have taken help from the following resources to implement out

project:

[1] K. Mehlhorn and P. Sanders, Algorithms and Data

Structures. Berlin Heidelberg: Springer-Verlag, 2008.

[2] J. Genci, “Possibilities to solve some of the Slovak

higher education problems using information

technologies,” in 2012 IEEE 10th International

Conference on Emerging eLearning Technologies and

Applications (ICETA), 2012.

[3] C. D. Hundhausen, S. A. Douglas, and J. T. Stasko,

“A Meta- Study of Algorithm Visualization Effective-

ness,” J. Visual Lang. Comput, vol. 13, pp. 259–290.

[4] J. L. Bentley and B. W. Kernighan, “A System for

Algorithm Animation,” Ooniptitinp Systems, vol. 4,

pp. 5–30, 1991.

[5] V. Ladislav and S. Veronika, “Algorithm Animations

for Teaching and Learningthe Main Ideas of

Basic Sortings”,” Informatics in Education, vol. 16,

no. 1, pp. 121–140, 2017.

[6] B. Edwards, “Drawing on the right side of the brain,” in

CHI ’97 extended abstracts on Human factors in

computing systems looking to the future - CHI ’97,

1997.

[7] M. H. Brown and R. Sedgewick, “A system for algorithm

 animation,” Comput. Graph. (ACM), vol. 18, no. 3,

pp. 177–186, 1984.

[8] C. V. Jones, “Visualization and Optimization,” J. Oper.

 Res. Soc., vol. 48, no. 9, pp. 964–964, 1997.

[9] B. A. Price, R. M. Baecker, and I. S. Small, “A Principled

Taxonomy of Software Visu- alization,” Journal of

Visual languages and Computing, vol. 4, no. 14, pp.

211–266, 1993.

[10] J. T. Stasko, “Tango: A Framework and System for

Algorithm Animation,” Jñññ Cont- puter, vol. 23, pp.

 27–39, 1990.

[11] B. A. Price, R. M. Baecker, and I. S. Small, “A

Principled Taxonomy of Sofware Visualization’,”

 Journal of Visual Languages and Computing, vol. 4,

 no. 3, pp. 211–266.

[12] Wikipedia contributors, “A* search algorithm,”

Wikipedia, The Free Encyclopedia,

13-Dec-2021. [Online].

Available:https://en.wikipedia.org/w/index.php?title=

A*_search_algorithm&oldid=1060160033.

