
A Project Report

on

HATE SPEECH DETECTION – A

Comparative Study

Submitted in partial fulfillment of the

 requirement for the award of the degree of

Bachelor of Technology in Computer

Science and Engineering

Under The Supervision of
Mrs. Sonia Kukreja
Assistant Professor

Department of Computer Science and Engineering

Submitted By

19SCSE1180068 – Jagrit Popli

19SCSE1180012 – Karnica Vineet Katiyar

SCHOOL OF COMPUTING SCIENCE AND ENGINEERING

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

GALGOTIAS UNIVERSITY, GREATER NOIDA, INDIA

DECEMBER - 2021

SCHOOL OF COMPUTING SCIENCE AND
ENGINEERING

GALGOTIAS UNIVERSITY, GREATER NOIDA

CANDIDATE’S DECLARATION

I/We hereby certify that the work which is being presented in the project, entitled “Hate Speech

Detection – A Comparative Study” in partial fulfillment of the requirements for the award of the

BACHELOR OF TECHNOLOGY IN COMPUTER SCIENCE AND ENGINEERING submitted

in the School of Computing Science and Engineering of Galgotias University, Greater Noida,

is an original work carried out during the period of JULY-2021 to DECEMBER-2021, under

the supervision of Mrs. Sonia Kukreja, Assistant Professor, Department of Computer Science

and Engineering of School of Computing Science and Engineering , Galgotias University,

Greater Noida .

The matter presented in the project has not been submitted by me/us for the award of

any other degree of this or any other places.

19SCSE1180068 Jagrit Popli

19SCSE1180012 Karnica Vineet Katiyar

This is to certify that the above statement made by the candidates is correct to the best

of my knowledge.

Supervisor

 (Mrs. Sonia Kukreja, Assistant Professor)

CERTIFICATE

The Final Thesis/Project/ Dissertation Viva-Voce examination of 19SCSE1180068 Jagrit Popli

19SCSE1180012 Karnica Vineet Katiyar has been held on _________________ and his/her

work is recommended for the award of BACHELOR OF TECHNOLOGY IN COMPUTER

SCIENCE AND ENGINEERING.

Signature of Examiner(s) Signature of Supervisor(s)

Signature of Project Coordinator Signature of Dean

Date:

Place:

 ACKNOWLEDGEMENT

We would like to express my sincere gratitude to several people for supporting me throughout my

project . First, We wish to express my sincere gratitude to my Project guide , Mrs. SONIA

KUKREJA (Assistant Professor), for his enthusiasm, patience, insightful comments, helpful

information, practical advice and unceasing ideas that have helped me tremendously at all times .

Without his support and guidance, this project would not have been possible. We also wish to

express my sincere thanks to GALGOTIAS UNIVERSITY for accepting us into the graduate

program. In addition, we are thankful to our parents whose help at every stage has made this even

easier. We are grateful to each other’s wealthy contribution without which this project was

unimaginable .

Thanks for all your encouragement!

ABSTRACT

The increasing use of social media and information sharing has given major benefits to humanity.

With the enhancement in technology , social media showed immense growth but with the

emerging trends there also comes the misuse of the freedom of speech , i.e. spread of hate content

. These online abominations lead to real life consequences, such as escalation of fear and hate

throughout communities . It is high time to realize and find viable solutions in order to control the

same .

It is high time to develop solution for the existing problem . The proposed idea is to invent a tool

for hate speech detection whose purpose is to pick out the abusive language and slangs

determining the context of the speech on different datasets. In order to develop the same we are

going to make use of the python based natural language processing(NLP) machine learning

techniques to accomplish various tasks by training them through data .To remove the unwanted

content text pre-processing technique is applied where we remove punctuation, stopwords,

stemming and removal of urls, the processed data is passed for feature extraction. Here we are

going to include sentimental analysis to differentiate the content into polarities and thus finally

detecting the hate content.

The results clearly show that differentiating hate speech and offensive language is a challenging

task. It also indicates the benefits of using the proposed features, and provides a valuable resource

for detecting the problem of toxic language on twitter. Although a detailed analysis of the features

as well as errors could lead to more robust feature extraction methods and also help us in solving

the existing challenges in this field.

TABLE OF CONTENTS

 CHAPTER NO. TITLE PAGE

NO.

 CANDIDATES DECLARATION 1

 CERTIFICATE 2

 ACKNOWLEDGEMENT 3

 ABSTRACT 4

LIST OF TABLES 8

LIST OF FIGURES 8

 LIST OF ACRONYMS 9

1. INTRODUCTION 10

1.1 Problem Formulation 11

1.2 Proposed Idea 12

1.3 Architectural Diagram for Proposed Model 13

 1

2. LITERATURE SURVEY 14

3. WORKING OF MODELS 19

4. RESULTS AND DISCUSSIONS 28

4.1 Results

4.1.1 Classifier Accuracy 28

4.2 Discussions 29

5. CONCLUSIONS AND FUTURE SCOPE 30

 REFERENCES 32

 List of Table

Table Page

1. Classifier Accuracy

 List of Figures

Figure Page

1. Architectural diagram 6

2. System Overview 7

 Text Length of a tweet 20

3.

4. Visualization of most commonly used hate words 23

5. CONFUSION MATRIX 27

Acronyms

TF - IDF Term Frequency-Inverse Document Frequency

SVM Support Vector Machine

FE Feature Extraction

LR Logistic Regression

NB Naïve Bayes

TP True Positive

TN True Negative

FP False Positive

FN False Negative

CHAPTER-1

INTRODUCTION

Hate crimes are unfortunately nothing new in society. However, social media and other means of

online communication have begun playing a larger role in hate crimes. For instance, suspects in

several recent hate-related terror attacks had an extensive social media history of hate-related posts,

suggesting that social media contributes to their radicalization. In some cases, social media can play

an even more direct role; video footage from the suspect of the 2019 terror attack in Christchurch,

New Zealand, was broadcast live on Facebook. Vast online communication forums, including

social media, enable users to express themselves freely, at times, anonymously. While the ability

to freely express oneself is a human right that should be cherished, inducing and spreading hate

towards another group is an abuse of this liberty.

Detecting hate speech is a challenging task, however. First, there are disagreements in how hate

speech should be defined. This means that some content can be considered hate speech to some and

not to others, based on their respective definitions. We start by covering competing definitions,

focusing on the different aspects that contribute to hate speech.

The proposed solutions employ machine learning techniques to classify text as hate speech. One

limitation of these approaches is that the decisions they make can be opaque and difficult for

humans to interpret why the decision was made. This is a practical concern because systems that

automatically censor a person’s speech likely need a manual appeal process. To address this

problem, we propose a new hate speech classification approach that allows for a better

understanding of the decisions and show that it can even outperform existing approaches on some

datasets. Some of the existing approaches use external sources, such as a hate speech lexicon, in

their systems. This can be effective, but it requires maintaining these sources and keeping them up

to date which is a problem in itself. Here, our approach does not rely on external resources and

achieves reasonable accuracy.

1.1 FORMULATION OF PROBLEM

The term ‘hate speech’ was formally defined as ‘any communication that disparages a person or a

group on the basis of some characteristics (to be referred to as types of hate or hate classes) such as

race, colour, ethnicity, gender, sexual orientation, nationality, religion, or other characteristics’.

Building effective counter measures for online hate speech requires as the first step, identifying and

tracking hate speech online. For years, social media companies such as Twitter, Facebook, and

YouTube have been investing hundreds of millions of euros every year on this task but are still

being criticised for not doing enough. This is largely because such efforts are primarily based on

manual moderation to identify and delete offensive materials. The process is labour intensive, time

consuming, and not sustainable or scalable in reality.

A large number of research has been conducted in recent years to develop automatic methods for

hate speech detection in the social media domain. These typically employ semantic content analysis

techniques built on Natural Language Processing (NLP) and Machine Learning (ML) methods,

both of which are core pillars of the Semantic Web research. The task typically involves classifying

textual content into non-hate or hateful, in which case it may also identify the types of the hate

speech. Although current methods have reported promising results, we notice that their evaluations

are largely biased towards detecting content that is non-hate, as opposed to detecting and classifying

real hateful content.

1.2 PROPOSED IDEA

It is high time to develop solution for the existing problem . The proposed idea is to

invent a tool for hate speech detection whose purpose is to pick out the abusive

language and slangs determining the context of the speech on different datasets. In

order to develop the same we are going to make use of the python based natural

language processing(NLP) machine learning techniques to accomplish various tasks

by training them through data .To remove the unwanted content text pre-processing

technique is applied where we remove punctuation, stopwords, stemming and

removal of urls, the processed data is passed for feature extraction. Here we are going

to include sentimental analysis to differentiate the content into polarities and thus

finally detecting the hate content.

‘

1.3 ARCHITECTURAL DIAGRAM FOR PROPOSED

SYSTEM

FIG 1 ARCHITECTURE DIAGRAM

FIG 2 SYSTEM OVERVIEW

CHAPTER 2

LITERATURE SURVEY

Title: Automated Hate Speech Detection and the Problem of Offensive Language

Authors:

Thomas Davidson (Cornell University)

Dana Warmsley (Cornell University)

Michael Macy(Cornell University)

Ingmar Weber(Hamad Bin Khalifa University)

Year of Publications:

 2017-05-03

ABSTRACT:

A key challenge for automatic hate-speech detection on social media is the separation of hate speech

from other instances of offensive language. Lexical detection methods tend to have low precision

because they classify all messages containing particular terms as hate speech and previous work

using supervised learning has failed to distinguish between the two categories. We used a crowd-

sourced hate speech lexicon

to collect tweets containing hate speech keywords. We use crowd-sourcing to label a sample of

these tweets into three categories: those containing hate speech, only offensive language, and those

with neither. We train a multi-class classifier to distinguish between these different categories.

Close analysis of the predictions and the errors shows when we can reliably separate hate speech

from other offensive language and when this differentiation is more difficult. We find that racist

and homophobic tweets are more likely to be classified as hate speech but that sexist tweets are

generally classified as offensive. Tweets without explicit hate keywords are also more difficult to

classify.

CONCLUSION:

If we conflate hate speech and offensive language then we erroneously consider many people to be

hate speakers (errors in the lower triangle of Figure 1) and fail differentiate between commonplace

offensive language and serious hate speech (errors in the upper triangle of Figure 1). Given the

legal and moral implications of hate speech it is important that we are able to accurately distinguish

between the two. Lexical methods are effective ways to identify potentially offensive terms but are

inaccurate at identifying hate speech; only a small percentage of tweets flagged by the Hatebase

lexicon were considered hate speech by human coders.4 While automated classification methods

can achieve relatively high accuracy at differentiating between these different classes, close

analysis of the results shows that the presence or absence of particular offensive or hateful terms

can both help and hinder accurate classification.

 Title: Deep Learning Models for Multilingual Hate Speech Detection

 Authors: Sai Saketh Aluru , Binny Mathew , Punyajoy Saha , and Animesh Mukherjee

Year of Publications: 14 Apr 2020

ABSTRACT:

Hate speech detection is a challenging problem with most of the datasets available in only one

language: English. In this paper, we conduct a large scale analysis of multilingual hate speech in 9

languages from 16 different sources. We observe that in low resource setting, simple models such

as LASER embedding with logistic regression performs the best, while in high resource setting

BERT based models perform better. In case of zero-shot classification, languages such as Italian

and Portuguese achieve good results. Our proposed framework could be used as an efficient

solution for low-resource languages. These models could also act as good baselines for future

multilingual hate speech detection tasks. We have made our code and experimental settings public

for other researchers.

CONCLUSION:

In this paper, we perform the first large scale analysis of multilingual hate speech. Using 16 datasets

from 9 languages, we use deep learning models to develop classifiers for multilingual hate speech

classification. We perform many experiments under various conditions – low and high resource,

monolingual and multilingual settings – for a variety of languages. Overall we see that for low

resource, LASER + LR is more effective while for high resource BERT models are more effective.

We finally suggest a catalogue which we believe will be beneficial for future research in

multilingual hate speech detection.

Title: HateCheck: Functional Tests for Hate Speech Detection Models

 Authors:

Paul Rottger , Bertram Vidgen , Dong Nguyen, Zeerak Waseem , Helen Margetts, and Janet B.

Pierrehumbert

Year of Publications:

2021

ABSTRACT:

Detecting online hate is a difficult task that even state-of-the-art models struggle with. Typically,

hate speech detection models are evaluated by measuring their performance on held-out test data

using metrics such as accuracy and F1 score. However, this approach makes it difficult to identify

specific model weak points. It also risks overestimating generalisable model performance due to

increasingly well-evidenced systematic gaps and biases in hate speech datasets. To enable more

targeted diagnostic insights, we introduce HATECHECK, a suite of functional tests for hate speech

detection models. We specify 29 model functionalities motivated by a review of previous research

and a series of interviews with civil society stakeholders. We craft test cases for each functionality

and validate their quality through a structured annotation process. To illustrate HATECHECK’s

utility, we test near-state-of-the-art transformer models as well as two popular commercial models,

revealing critical model weaknesses.

CONCLUSION:

In this article, we introduced HATECHECK, a suite of functional tests for hate speech detection

models. We motivated the selection of functional tests through interviews with civil society

stakeholders and a review of previous hate speech research, which grounds our approach in both

practical and academic applications of hate speech detection models. We designed the functional

tests to offer contrasts between hateful and non-hateful content that are challenging to detection

models, which enables more accurate evaluation of their true functionalities. For each functional

test, we crafted sets of targeted test cases with clear gold standard labels, which we validated

through a structured annotation process. We demonstrated the utility of HATECHECK as a

diagnostic tool by testing near-state-of-the-art transformer models as well as two commercial

models for hate speech detection. HATECHECK showed critical weaknesses for all models.

Specifically, models appeared overly sensitive to particular keywords and phrases, as evidenced by

poor performance on tests for reclaimed slurs, counter speech and negated hate. The transformer

models also exhibited strong biases in target coverage. Online hate is a deeply harmful

phenomenon, and detection models are integral to tackling it. Typically, models have been

evaluated on held-out test data, which has made it difficult to assess their generalisability and

identify specific weaknesses.

CHAPTER 3

WORKING OF PROJECT

3.1 IMPORTING LIBRARIES:

import pandas as panda

from nltk.tokenize import word_tokenize

from nltk.corpus import stopwords

from nltk.stem.porter import *

import string

import nltk

from textstat.textstat import *

from sklearn.feature_extraction.text import CountVectorizer

from sklearn.feature_extraction.text import TfidfVectorizer

from sklearn.metrics import confusion_matrix

import seaborn

from sklearn.linear_model import LogisticRegression

from sklearn.model_selection import train_test_split

from sklearn.metrics import f1_score

from sklearn.feature_selection import SelectFromModel

from sklearn.metrics import classification_report

from sklearn.metrics import accuracy_score

from sklearn.svm import LinearSVC

from sklearn.ensemble import RandomForestClassifier

from sklearn.naive_bayes import GaussianNB

import numpy as np

from nltk.sentiment.vader import SentimentIntensityAnalyzer as VS

import warnings

warnings.simplefilter(action='ignore', category=FutureWarning)

%matplotlib inline

3.2 DATA COLLECTION

In this research study, we collected publicly available hate speech tweets dataset. This dataset is

compiled and labeled by CrowdFlower. In this dataset, the tweets are labeled into three distinct

classes, namely, hate speech, not offensive, and offensive but not hate speech.

Our project analyzed a dataset CSV file from Kaggle containing 10,670 tweets. The dataset was

heavily skewed with 93% of tweets or 10,670 tweets containing non-hate labeled Twitter data and

7% or 476 tweets containing hate-labeled Twitter data.

3.3 TEXT PREPROCESSING

 Several research studies have explained that using text preprocessing makes better classification

results. So, in our dataset, we applied different preprocessing-techniques to filter noisy and non-

informative features from the tweets. In preprocessing, we changed the tweets into lower case. Also,

we removed all the URLs, usernames, white spaces, hashtags, punctuations and stop-words using

pattern matching techniques from the collected tweets. Besides this, we have also performed

tokenization and stemming from preprocessed tweets. The tokenization, converts each single tweet

into tokens or words, then the porter stemmer converts words to their root forms, such as offended

to offend using porter stemmer.

CODE:

Adding text-length as a field in the dataset

dataset['text length'] = dataset['tweet'].apply(len)

print(dataset.head())

 FIG-3 Text Length of a tweet

collecting only the tweets from the csv file into a variable name tweet

tweet=dataset.tweet

Preprocesing of tweets

1. Removal of punctuation and capitlization

2. Tokenizing

3. Removal of stopwords

4. Stemming

stopwords = nltk.corpus.stopwords.words("english")

#extending the stopwords to include other words used in twitter such as retweet(rt) etc.

other_exclusions = ["#ff", "ff", "rt"]

stopwords.extend(other_exclusions)

stemmer = PorterStemmer()

def preprocess(tweet):

 # removal of extra spaces

 regex_pat = re.compile(r'\s+')

 tweet_space = tweet.str.replace(regex_pat, ' ')

 # removal of @name[mention]

 regex_pat = re.compile(r'@[\w\-]+')

 tweet_name = tweet_space.str.replace(regex_pat, '')

 # removal of links[https://abc.com]

 giant_url_regex = re.compile('http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|'

 '[!*\(\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+')

 tweets = tweet_name.str.replace(giant_url_regex, '')

 # removal of punctuations and numbers

 punc_remove = tweets.str.replace("[^a-zA-Z]", " ")

 # remove whitespace with a single space

 newtweet=punc_remove.str.replace(r'\s+', ' ')

 # remove leading and trailing whitespace

 newtweet=newtweet.str.replace(r'^\s+|\s+?$','')

 # replace normal numbers with numbr

 newtweet=newtweet.str.replace(r'\d+(\.\d+)?','numbr')

 # removal of capitalization

 tweet_lower = newtweet.str.lower()

 # tokenizing

 tokenized_tweet = tweet_lower.apply(lambda x: x.split())

 # removal of stopwords

 tokenized_tweet= tokenized_tweet.apply(lambda x: [item for item in x if item not in stopwords])

 # stemming of the tweets

 tokenized_tweet = tokenized_tweet.apply(lambda x: [stemmer.stem(i) for i in x])

 for i in range(len(tokenized_tweet)):

 tokenized_tweet[i] = ' '.join(tokenized_tweet[i])

 tweets_p= tokenized_tweet

 return tweets_p

processed_tweets = preprocess(tweet)

dataset['processed_tweets'] = processed_tweets

print(dataset[["tweet","processed_tweets"]].head(10))

 Fig-4 Histogram of Processed Tweet

3.4 FEATURE ENGINEERING

The ML algorithms cannot understand the classification rules from the raw text. These algorithms

need numerical features to understand classification rules. Hence, in text classification one of the

key steps is feature engineering. This step is used for extracting the key features from raw text and

representing the extracted features in numerical form.

 FIG-5 Visualization of most commonly used hate words

3.5 DATA SPLITTING

It is the class-wise distribution of the overall dataset as well as data set after splitting (i.e. Training

set and Test set). We have used the 80-20 ratio to split the preprocessed data (i.e. 80% for Training

Data and 20% for Test Data). The training data is used to train the classification model to learn

classification rules. Moreover, the test data is further used to evaluate the classification model.

3.6 MACHINE LEARNING MODELS

According to “no free lunch theorem” , there is no any single classifier which best performs on all

kinds of datasets. Therefore, it is recommended to apply several different classifiers on a master

feature vector to observe which one reaches to the better results. Hence, we selected four different

classifiers .

• Naïve Bayes : It’s a probabilistic based classification algorithm, which uses the

“Bayes theorem” to predict the class. It works on conditional independence among

features.

X_train_tfidf, X_test_tfidf, y_train, y_test = train_test_split(X.toarray(), y,

random_state=42, test_size=0.2)

nb=GaussianNB()

nb.fit(X_train_tfidf,y_train)

y_preds = nb.predict(X_test_tfidf)

acc2=accuracy_score(y_test,y_preds)

report = classification_report(y_test, y_preds)

print(report)

print("Naive Bayes, Accuracy Score:",acc2)

• Logistic Regression : It is a predictive analysis. It uses a sigmoid function to

explain the relationship between one independent variable and one or more

independent variables.

X = panda.DataFrame(modelling_features_two)

y = dataset['class'].astype(int)

X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0, test_size=0.2)

model = LogisticRegression().fit(X_train,y_train)

y_preds = model.predict(X_test)

report = classification_report(y_test, y_preds)

print(report)

acc=accuracy_score(y_test,y_preds)

print("Logistic Regression, Accuracy Score:" , acc)

• Support Vector Machine : : It’s a supervised classification algorithm which

constructs an optimal hyperplane by learning from training data which separates the

categories while classifying new data.

X = panda.DataFrame(modelling_features_three)

y = dataset['class'].astype(int)

X_train_features, X_test_features, y_train, y_test = train_test_split(X, y, random_state=0,

test_size=0.2)

support =LinearSVC(random_state=20)

support.fit(X_train_features,y_train)

y_preds = support.predict(X_test_features)

acc3=accuracy_score(y_test,y_preds)

report = classification_report(y_test, y_preds)

print(report)

print("SVM, Accuracy Score:" ,acc3)

• Random Forest : It’s a type of ensemble classifier consisting of many decision

trees. It classifies an instance based on voting decision of each decision trees class

predictions.

X = panda.DataFrame(modelling_features_three)

y = dataset['class'].astype(int)

X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0, test_size=0.2)

rf=RandomForestClassifier()

rf.fit(X_train,y_train)

y_preds = rf.predict(X_test)

acc1=accuracy_score(y_test,y_preds)

report = classification_report(y_test, y_preds)

print(report)

print("Random Forest, Accuracy Score:",acc1)

3.7 Classifier Evaluation

 In this step, the constructed classifier predicts the class of unlabeled text (i.e. “hate speech,

offensive but not hate speech, neither hate speech nor offensive speech”) using test set. The

classifier performance is evaluated by calculating true negatives (TN), false positives (FP), false

negatives (FN) and true positives (TP). Different performance metrics are used to assess the

performance of the constructed classifier. Some common performance measures in text

categorization are discussed briefly below-:

1. Precision: Precision is also known as the positive predicted value. It is the proportion of

predictive positives which are actually positive. 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃/ (𝑇𝑃+𝐹𝑃)

2. Recall: It is the proportion of actual positives which are predicted positive.

 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃 (𝑇𝑃+𝐹𝑁)

3. F-Measure: It is the harmonic mean of precision and recall. The standard F-measure (F1)

gives equal importance to precision and recall.

 𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ×(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑟𝑒𝑐𝑎𝑙𝑙)/ (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙)

4. Accuracy: It is the number of correctly classified instances (true positives and true

negatives).

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑇𝑃+𝑇𝑁) 𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹N

FIG 6 CONFUSION MATRIX

CHAPTER 4

RESULTS AND DISCUSSIONS

4.1 RESULTS:

The logistic regression algorithm works consistently well with all feature sets except for F7 as

precision, recall and subsequently the f1-score for “hate” label results in zero . Random Forest

classifier works pretty well when it comes to F1 and also shows a significant performance in all

other feature sets but its performance is hugely impacted when tf-idf scores are not included in the

feature. The overall performance of the Naïve Bayes classifier is found to be less significant for the

purpose of classifying tweets into hate, offensive or neither labels but it performs significantly

better with feature set of F7 compared to other feature sets . SVM classifier also seems to be

consistent throughout all feature sets except for F4 and F7 as shown in . From the above graphs we

analyse that the most important feature was found to be F1 i.e. the tf-idf scores which helps in better

classification of hate speech. The sentiment scores also prove to be an important feature for the

differing of hate speech and offensive language .Doc2vec columns are not found to be very

significant in classification purpose as it makes very less difference when it’s removed from the

feature set. On comparing all the graphs above Random Forest is clearly the winner.

4.1.1 CALCULATED ACCURACIES :

CLASSIFIER ACCURACY

SVM 86.08

NAÏVE BAYES 60.32

RANDOM FORREST 74.61

LOGISTIC REGRESSION 76.20

4.2 DISCUSSIONS:

In the experimental work, we have evaluated four classifiers over two different feature engineering

techniques, giving different analyses over hate speech dataset containing three classes. Our

experimental results showed that the SVM algorithm with the combination of bigram with TFIDF

FE techniques showed the best results. The theoretical analysis is discussed in subsequent sections.

A. Feature Engineering :

The selection of feature engineering is important in text classification. In this study, we

compared two distinct feature extraction techniques namely, Bigram with TFIDF, and

doc2vec. The experimental results exhibited that from these three techniques, bigram with

TFIDF outperformed. Conversely, the Doc2vec showed lower results. The possible reason

for the outperformance of bigram and TFIDF is that bigram maintains the sequence of

words compared to doc2vec. Moreover, several studies showed that the TFIDF

representation technique is better than the binary and term frequency representation. In

our experimental results, Doc2Vec also showed lower performance. This might be because

it performs low in case of very short length documents and the tweets which we used in

our dataset often having 280 character length.

B. Machine Learning Classifier:

 Several studies proved that no single ML algorithm performed better on all kinds of data.

Therefore, the comparison of various ML algorithms is required to discover which one is

best performing on the given dataset. Hence, on our dataset, we used four different ML

algorithms as discussed in ML Models. The experimental results proved that SVM achieved

the best performance possibly because SVM uses threshold functions to separate the data,

not the number of features based on margin. This shows that SVM is independent upon

the presence of the number of features in the data. In addition, SVM has the capability to

best perform on non-linear data apart from the linear data because of its kernel functions.

The results obtained with RF and LR classifiers are a little lower than SVM results but are

somewhat higher than the results of NB. The low performance of RF might be due to the

unavailability of informative features which leads to incorrect predictions. It is possible that

the performance of LR might be lower because its decision surface is linear in nature and

cannot handle nonlinear data adequately. The lowest performance was obtained amongst

the NB classifiers. The NB classifier works on conditional independence among features.

Thus, the performance of the NB classifier is negatively affected as the conditional

dependence becomes more complicated due to the increase in the number of features.

C. Classwise Performance:

A we have three classes name “hate speech”, “offensive but not hate speech” and “neither

hate speech nor offensive speech”. The results show that all features and classifiers

performed well for two classes (i.e. offensive but not hate speech, and neither hate speech

nor offensive speech). Our experimental results showed that the combinations performed

lowest for class hate speech. The class “Hate Speech” has the lowest training instances

as compared to other classes, but the major reason for misclassification of class “Hate

Speech” might be overlapping of different bigram words with higher frequency in other

classes than hate speech class. For example, bigrams like “lame nigga, white trash, bitch

made” are more frequently appearing in class “Offensive but not Hate Speech” as

compared to class “Hate Speech”. Hence, it might be possible that the classifier learned

weak learning rules.

CHAPTER 5

CONCLUSIONS AND FUTURE SCOPE

5.1 CONCLUSION:
This study employed automated text classification techniques to detect hate speech messages.

Moreover, this study compared three feature engineering techniques and eight ML algorithms to

classify hate speech messages. The experimental results exhibited that the bigram features, when

represented through TFIDF, showed better performance as compared to Doc2Vec features

engineering techniques. Moreover, SVM and RF algorithms showed better results compared to LR,

NB. The lowest performance was observed in KNN. The outcomes from this research study hold

practical importance because this will be used as a baseline study to compare upcoming researches

within different automatic text classification methods for automatic hate speech detection.

Furthermore, this study also holds a scientific value because this study presents experimental results

in form of more than one scientific measures used for automatic text classification. Our work has

two important limitations. First, the proposed ML model is inefficient in terms of real-time

predictions accuracy for the data. Finally, it only classifies the hate speech message in three

different classes and is not capable enough to identify the severity of the message. Hence, in the

future, the objective is to improve the proposed ML model which can be used to predict the severity

of the hate speech message as well. Moreover, to improve the proposed model’s classification

performance two approaches will be used. First, the lexiconbased techniques will be explored and

assessed by comparing with other current state-of-the-art results. Secondly, more data instances

will be collected, to be used for learning the classification rules efficiently.

5.2 FUTURE SCOPE:
 Future scope includes removal of hate speech after its detection . We will also analyze the gaps in

the existing solutions and fulfill them to present the most feasible solutions.

Firstly, we will explore other branches of methods that aim at compensating the lack of training

data in supervised learning tasks. Methods such as transfer learning could be potentially promising.

Secondly, the presence of abstract concepts such as ‘sexism’, ‘racism’ or even ‘hate’ in general is

very difficult to detect if solely based on linguistic content. Therefore, we see the need to go beyond

pure text classification and explore possibilities to model and integrate features about users, social

groups, mutual communication and even background knowledge (e.g., concepts expressed from

tweets) encoded in existing semantic knowledge base.

REFERENCES

[1] Hern, A., Facebook, YouTube, Twitter, and Microsoft sign the EU hate speech code.

The Guardian, 2016. 31.

[2] Rosa, J., and Y. Bonilla, Deprovincializing Trump, decolonizing diversity, and unsettling

anthropology. American Ethnologist, 2017. 44(2): p. 201-208.

[3] Travis, A., Anti-Muslim hate crime surges after Manchester and London Bridge attacks.

The Guardian, 2017.

[4] MacAvaney, S., et al., Hate speech detection: Challenges and solutions. PloS one,

2019. 14(8): p. e0221152.

[5] Fortuna, P. and S. Nunes, A survey on automatic detection of hate speech in text. ACM

Computing Surveys (CSUR), 2018. 51(4): p. 85.

[6] Mujtaba, G., et al., Prediction of cause of death from forensic autopsy reports using

text classification techniques: A comparative study. Journal of forensic and legal medicine,

2018. 57: p. 41-50.

[7] Cavnar, W.B. and J.M. Trenkle. N-gram-based text categorization. in Proceedings of

SDAIR-94, 3rd annual symposium on document analysis and information retrieval. 1994.

Citeseer.

[8] Ramos, J. Using tf-idf to determine word relevance in document queries. in

Proceedings of the first instructional conference on machine learning. 2003. Piscataway,

NJ.

[9] Mikolov, T., et al. Distributed representations of words and phrases and their

compositionality. in Advances in neural information processing systems. 2013.

[10] Le, Q. and T. Mikolov. Distributed representations of sentences and documents. in

International conference on machine learning. 2014.

[11] Kotsiantis, S.B., I.D. Zaharakis, and P.E. Pintelas, Machine learning: a review of

classification and combining techniques. Artificial Intelligence Review, 2006. 26(3): p. 159-

190.

[12] Lewis, D.D. Naive (Bayes) at forty: The independence assumption in information

retrieval. in European conference on machine learning. 1998. Springer.

[13] Xu, B., et al., An Improved Random Forest Classifier for Text Categorization. JCP,

2012. 7(12): p. 2913-2920.

