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ABSTRACT   

 
The increasing use of social media and information sharing has given major benefits to humanity. 

With the enhancement in technology ,  social media showed immense growth but with the 

emerging trends there also comes the misuse of the freedom of speech , i.e. spread of hate content 

. These online abominations lead to real life consequences, such as escalation of fear and hate 

throughout communities . It is high time to realize and find viable solutions in order to control the 

same . 

 

It is high time to develop solution for the existing problem . The proposed idea is to invent a tool 

for hate speech detection whose purpose is to pick out the abusive language and slangs 

determining the context of the speech on different datasets. In order to develop the same  we are 

going to make use of the python based natural language processing(NLP) machine learning 

techniques to accomplish various tasks by training them through data .To remove the unwanted 

content text pre-processing technique is applied where we remove punctuation, stopwords, 

stemming and removal of urls, the processed data is passed for feature extraction. Here we are 

going to include sentimental analysis to differentiate the content into polarities and thus finally 

detecting the hate content. 

 

The results clearly show that differentiating hate speech and offensive language is a challenging 

task. It also indicates the benefits of using the proposed features, and provides a valuable resource 

for detecting the problem of toxic language on twitter. Although a detailed analysis of the features 

as well as errors could lead to more robust feature extraction methods and also help us in solving 

the existing challenges in this field. 
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CHAPTER-1   

INTRODUCTION   

 

Hate crimes are unfortunately nothing new in society. However, social media and other means of 

online communication have begun playing a larger role in hate crimes. For instance, suspects in 

several recent hate-related terror attacks had an extensive social media history of hate-related posts, 

suggesting that social media contributes to their radicalization. In some cases, social media can play 

an even more direct role; video footage from the suspect of the 2019 terror attack in Christchurch, 

New Zealand, was broadcast live on Facebook. Vast online communication forums, including 

social media, enable users to express themselves freely, at times, anonymously. While the ability 

to freely express oneself is a human right that should be cherished, inducing and spreading hate 

towards another group is an abuse of this liberty. 

  

Detecting hate speech is a challenging task, however. First, there are disagreements in how hate 

speech should be defined. This means that some content can be considered hate speech to some and 

not to others, based on their respective definitions. We start by covering competing definitions, 

focusing on the different aspects that contribute to hate speech. 

  

The proposed solutions employ machine learning techniques to classify text as hate speech. One 

limitation of these approaches is that the decisions they make can be opaque and difficult for 

humans to interpret why the decision was made. This is a practical concern because systems that 

automatically censor a person’s speech likely need a manual appeal process. To address this 

problem, we propose a new hate speech classification approach that allows for a better 

understanding of the decisions and show that it can even outperform existing approaches on some 

datasets. Some of the existing approaches use external sources, such as a hate speech lexicon, in 

their systems. This can be effective, but it requires maintaining these sources and keeping them up 

to date which is a problem in itself. Here, our approach does not rely on external resources and 

achieves reasonable accuracy. 

 

 

 

 



1.1 FORMULATION OF PROBLEM 
  

The term ‘hate speech’ was formally defined as ‘any communication that disparages a person or a 

group on the basis of some characteristics (to be referred to as types of hate or hate classes) such as 

race, colour, ethnicity, gender, sexual orientation, nationality, religion, or other characteristics’. 

Building effective counter measures for online hate speech requires as the first step, identifying and 

tracking hate speech online. For years, social media companies such as Twitter, Facebook, and 

YouTube have been investing hundreds of millions of euros every year on this task but are still 

being criticised for not doing enough. This is largely because such efforts are primarily based on 

manual moderation to identify and delete offensive materials. The process is labour intensive, time 

consuming, and not sustainable or scalable in reality. 

 

A large number of research has been conducted in recent years to develop automatic methods for 

hate speech detection in the social media domain. These typically employ semantic content analysis 

techniques built on Natural Language Processing (NLP) and Machine Learning (ML) methods, 

both of which are core pillars of the Semantic Web research. The task typically involves classifying 

textual content into non-hate or hateful, in which case it may also identify the types of the hate 

speech. Although current methods have reported promising results, we notice that their evaluations 

are largely biased towards detecting content that is non-hate, as opposed to detecting and classifying 

real hateful content. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

1.2 PROPOSED IDEA 
 

 

It is high time to develop solution for the existing problem . The proposed idea is to 

invent a tool for hate speech detection whose purpose is to pick out the abusive 

language and slangs determining the context of the speech on different datasets. In 

order to develop the same  we are going to make use of the python based natural 

language processing(NLP) machine learning techniques to accomplish various tasks 

by training them through data .To remove the unwanted content text pre-processing 

technique is applied where we remove punctuation, stopwords, stemming and 

removal of urls, the processed data is passed for feature extraction. Here we are going 

to include sentimental analysis to differentiate the content into polarities and thus 

finally detecting the hate content. 

 

 

 

 

‘ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1.3  ARCHITECTURAL DIAGRAM FOR PROPOSED 

SYSTEM  

 
 

 

 

 

 
 

 

 

FIG 1 ARCHITECTURE DIAGRAM 



 
FIG 2 SYSTEM  OVERVIEW 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 2 

LITERATURE SURVEY 

 

Title: Automated Hate Speech Detection and the Problem of Offensive Language 

  

  

Authors: 

Thomas Davidson (Cornell University) 

Dana Warmsley (Cornell University) 

Michael Macy(Cornell University) 

Ingmar Weber(Hamad Bin Khalifa University) 

  

  

Year of Publications: 

  

                             2017-05-03 

  

ABSTRACT: 

A key challenge for automatic hate-speech detection on social media is the separation of hate speech 

from other instances of offensive language. Lexical detection methods tend to have low precision 

because they classify all messages containing particular terms as hate speech and previous work 

using supervised learning has failed to distinguish between the two categories. We used a crowd-

sourced hate speech lexicon 

to collect tweets containing hate speech keywords. We use crowd-sourcing to label a sample of 

these tweets into three categories: those containing hate speech, only offensive language, and those 

with neither. We train a multi-class classifier to distinguish between these different categories. 

Close analysis of the predictions and the errors shows when we can reliably separate hate speech 

from other offensive language and when this differentiation is more difficult. We find that racist 

and homophobic tweets are more likely to be classified as hate speech but that sexist tweets are 

generally classified as offensive. Tweets without explicit hate keywords are also more difficult to 

classify. 

  

 

  

CONCLUSION: 

  

If we conflate hate speech and offensive language then we erroneously consider many people to be 

hate speakers (errors in the lower triangle of Figure 1) and fail differentiate between commonplace 

offensive language and serious hate speech (errors in the upper triangle of Figure 1). Given the 

legal and moral implications of hate speech it is important that we are able to accurately distinguish 



between the two. Lexical methods are effective ways to identify potentially offensive terms but are 

inaccurate at identifying hate speech; only a small percentage of tweets flagged by the Hatebase 

lexicon were considered hate speech by human coders.4 While automated classification methods 

can achieve relatively high accuracy at differentiating between these different classes, close 

analysis of the results shows that the presence or absence of particular offensive or hateful terms 

can both help and hinder accurate classification. 

  

  

  

  

  

 Title: Deep Learning Models for Multilingual Hate Speech Detection 

  

  Authors: Sai Saketh Aluru , Binny Mathew , Punyajoy Saha , and Animesh Mukherjee 

  

Year of Publications: 14 Apr 2020 

  

                              

  

ABSTRACT: 

Hate speech detection is a challenging problem with most of the datasets available in only one 

language: English. In this paper, we conduct a large scale analysis of multilingual hate speech in 9 

languages from 16 different sources. We observe that in low resource setting, simple models such 

as LASER embedding with logistic regression performs the best, while in high resource setting 

BERT based models perform better. In case of zero-shot classification, languages such as Italian 

and Portuguese achieve good results. Our proposed framework could be used as an efficient 

solution for low-resource languages. These models could also act as good baselines for future 

multilingual hate speech detection tasks. We have made our code and experimental settings public  

for other researchers. 

 

  

CONCLUSION: 

In this paper, we perform the first large scale analysis of multilingual hate speech. Using 16 datasets 

from 9 languages, we use deep learning models to develop classifiers for multilingual hate speech 

classification. We perform many experiments under various conditions – low and high resource, 

monolingual and multilingual settings – for a variety of languages. Overall we see that for low 

resource, LASER + LR is more effective while for high resource BERT models are more effective. 

We finally suggest a catalogue which we believe will be beneficial for future research in 

multilingual hate speech detection. 

  



  

  

  

  

Title: HateCheck: Functional Tests for Hate Speech Detection Models 

  

 Authors: 

Paul Rottger , Bertram Vidgen , Dong Nguyen, Zeerak Waseem , Helen Margetts, and Janet B. 

Pierrehumbert 

  

Year of Publications: 

2021 

  

                              

  

ABSTRACT: 

Detecting online hate is a difficult task that even state-of-the-art models struggle with. Typically, 

hate speech detection models are evaluated by measuring their performance on held-out test data 

using metrics such as accuracy and F1 score. However, this approach makes it difficult to identify 

specific model weak points. It also risks overestimating generalisable model performance due to 

increasingly well-evidenced systematic gaps and biases in hate speech datasets. To enable more 

targeted diagnostic insights, we introduce HATECHECK, a suite of functional tests for hate speech 

detection models. We specify 29 model functionalities motivated by a review of previous research 

and a series of interviews with civil society stakeholders. We craft test cases for each functionality 

and validate their quality through a structured annotation process. To illustrate HATECHECK’s 

utility, we test near-state-of-the-art transformer models as well as two popular commercial models, 

revealing critical model weaknesses. 

 

 

CONCLUSION: 

In this article, we introduced HATECHECK, a suite of functional tests for hate speech detection 

models. We motivated the selection of functional tests through interviews with civil society 

stakeholders and a review of previous hate speech research, which grounds our approach in both 

practical and academic applications of hate speech detection models. We designed the functional 

tests to offer contrasts between hateful and non-hateful content that are challenging to detection 

models, which enables more accurate evaluation of their true functionalities. For each functional 

test, we crafted sets of targeted test cases with clear gold standard labels, which we validated 

through a structured annotation process. We demonstrated the utility of HATECHECK as a 

diagnostic tool by testing near-state-of-the-art transformer models as well as two commercial 

models for hate speech detection. HATECHECK showed critical weaknesses for all models. 



Specifically, models appeared overly sensitive to particular keywords and phrases, as evidenced by 

poor performance on tests for reclaimed slurs, counter speech and negated hate. The transformer 

models also exhibited strong biases in target coverage. Online hate is a deeply harmful 

phenomenon, and detection models are integral to tackling it. Typically, models have been 

evaluated on held-out test data, which has made it difficult to assess their generalisability and 

identify specific weaknesses. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 3 

WORKING OF PROJECT 
 

3.1 IMPORTING LIBRARIES: 

import pandas as panda 

from nltk.tokenize import word_tokenize 

from nltk.corpus import stopwords 

from nltk.stem.porter import * 

import string 

import nltk 

from textstat.textstat import * 

from sklearn.feature_extraction.text import CountVectorizer 

from sklearn.feature_extraction.text import TfidfVectorizer 

from sklearn.metrics import confusion_matrix 

import seaborn 

from sklearn.linear_model import LogisticRegression 

from sklearn.model_selection import train_test_split 

from sklearn.metrics import f1_score 

from sklearn.feature_selection import SelectFromModel 

from sklearn.metrics import classification_report 

from sklearn.metrics import accuracy_score 

from sklearn.svm import LinearSVC 

from sklearn.ensemble import RandomForestClassifier 

from sklearn.naive_bayes import GaussianNB 

import numpy as np 

from nltk.sentiment.vader import SentimentIntensityAnalyzer as VS 

import warnings 

warnings.simplefilter(action='ignore', category=FutureWarning) 

%matplotlib inline 

 

 

3.2 DATA COLLECTION 

 

In this research study, we collected publicly available hate  speech tweets dataset. This dataset is 

compiled and labeled by CrowdFlower. In this dataset, the tweets are labeled into three  distinct 

classes, namely, hate speech, not offensive, and offensive but not hate speech.  

Our project analyzed a dataset CSV file from Kaggle containing 10,670 tweets. The dataset was 

heavily skewed with 93% of tweets or 10,670 tweets containing non-hate labeled Twitter data and 

7% or 476 tweets containing hate-labeled Twitter data. 

  



 
 

 

3.3 TEXT PREPROCESSING 

 Several research studies have explained that using text preprocessing makes better classification 

results. So, in our dataset, we applied different preprocessing-techniques to filter noisy and non-

informative features from the tweets. In preprocessing, we changed the tweets into lower case. Also, 

we removed all the URLs, usernames, white spaces, hashtags, punctuations and stop-words using 

pattern matching techniques from the collected tweets. Besides this, we have also performed 

tokenization and stemming from preprocessed tweets. The tokenization, converts each single tweet 

into tokens or words, then the porter stemmer converts words to their root forms, such as offended 

to offend using porter stemmer. 

CODE: 

# Adding text-length as a field in the dataset 

dataset['text length'] = dataset['tweet'].apply(len) 

print(dataset.head()) 

 

 
                                       FIG-3  Text Length of a tweet  

  

# collecting only the tweets from the csv file into a variable name tweet 

tweet=dataset.tweet 



Preprocesing of tweets 

## 1. Removal of punctuation and capitlization 

## 2. Tokenizing 

## 3. Removal of stopwords 

## 4. Stemming 

 

stopwords = nltk.corpus.stopwords.words("english") 

 

#extending the stopwords to include other words used in twitter such as retweet(rt) etc. 

other_exclusions = ["#ff", "ff", "rt"] 

stopwords.extend(other_exclusions) 

stemmer = PorterStemmer() 

 

def preprocess(tweet):   

     

    # removal of extra spaces 

    regex_pat = re.compile(r'\s+') 

    tweet_space = tweet.str.replace(regex_pat, ' ') 

 

    # removal of @name[mention] 

    regex_pat = re.compile(r'@[\w\-]+') 

    tweet_name = tweet_space.str.replace(regex_pat, '') 

 

    # removal of links[https://abc.com] 

    giant_url_regex =  re.compile('http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|' 

            '[!*\(\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+') 

    tweets = tweet_name.str.replace(giant_url_regex, '') 

     

    # removal of punctuations and numbers 

    punc_remove = tweets.str.replace("[^a-zA-Z]", " ") 

    # remove whitespace with a single space 

    newtweet=punc_remove.str.replace(r'\s+', ' ') 

    # remove leading and trailing whitespace 

    newtweet=newtweet.str.replace(r'^\s+|\s+?$','') 

    # replace normal numbers with numbr 

    newtweet=newtweet.str.replace(r'\d+(\.\d+)?','numbr') 

    # removal of capitalization 

    tweet_lower = newtweet.str.lower() 

     

    # tokenizing 

    tokenized_tweet = tweet_lower.apply(lambda x: x.split()) 

     



    # removal of stopwords 

    tokenized_tweet=  tokenized_tweet.apply(lambda x: [item for item in x if item not in stopwords]) 

    # stemming of the tweets 

    tokenized_tweet = tokenized_tweet.apply(lambda x: [stemmer.stem(i) for i in x])  

     

    for i in range(len(tokenized_tweet)): 

        tokenized_tweet[i] = ' '.join(tokenized_tweet[i]) 

        tweets_p= tokenized_tweet 

     

    return tweets_p 

 

processed_tweets = preprocess(tweet)    

 

dataset['processed_tweets'] = processed_tweets 

print(dataset[["tweet","processed_tweets"]].head(10)) 

 
                                    Fig-4 Histogram of Processed Tweet 

 

3.4 FEATURE ENGINEERING 

 

The ML algorithms cannot understand the classification rules from the raw text. These algorithms 

need numerical features to understand classification rules. Hence, in text classification one of the 

key steps is feature engineering. This step is used for extracting the key features from raw text and 

representing the extracted features in numerical form. 

 



 

 
 

                                                    FIG-5  Visualization of most commonly used hate words 

  

 

3.5 DATA SPLITTING 

It is the class-wise distribution of the overall dataset as well as data set after splitting (i.e. Training 

set and Test set). We have used the 80-20 ratio to split the preprocessed data (i.e. 80% for Training 

Data and 20% for Test Data). The training data is used to train the classification model to learn 

classification rules. Moreover, the test data is further used to evaluate the classification model. 

 

 

3.6 MACHINE LEARNING MODELS 

According to “no free lunch theorem” , there is no any single classifier which best performs on all 

kinds of datasets. Therefore, it is recommended to apply several different classifiers on a master 

feature vector to observe which one reaches to the better results. Hence, we selected four  different 

classifiers . 



 

 

 

• Naïve Bayes :    It’s a probabilistic based classification algorithm, which uses the 

“Bayes theorem” to predict the class. It works on conditional independence among 

features. 

 

X_train_tfidf, X_test_tfidf, y_train, y_test = train_test_split(X.toarray(), y, 

random_state=42, test_size=0.2) 

nb=GaussianNB() 

nb.fit(X_train_tfidf,y_train) 

y_preds = nb.predict(X_test_tfidf) 

acc2=accuracy_score(y_test,y_preds) 

report = classification_report( y_test, y_preds ) 

print(report) 

print("Naive Bayes, Accuracy Score:",acc2) 

 

 
 

• Logistic Regression :   It is a predictive analysis. It uses a sigmoid function to 

explain the relationship between one independent variable and one or more 

independent variables. 

 

X = panda.DataFrame(modelling_features_two) 

y = dataset['class'].astype(int) 

X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0, test_size=0.2) 

 

model = LogisticRegression().fit(X_train,y_train) 

y_preds = model.predict(X_test) 

report = classification_report( y_test, y_preds ) 

print(report) 



acc=accuracy_score(y_test,y_preds) 

print("Logistic Regression, Accuracy Score:" , acc) 

 
 

 

• Support Vector Machine :   : It’s a supervised classification algorithm which 

constructs an optimal hyperplane by learning from training data which separates the 

categories while classifying new data. 

 

X = panda.DataFrame(modelling_features_three) 

y = dataset['class'].astype(int) 

X_train_features, X_test_features, y_train, y_test = train_test_split(X, y, random_state=0, 

test_size=0.2) 

support =LinearSVC(random_state=20) 

support.fit(X_train_features,y_train) 

y_preds = support.predict(X_test_features) 

acc3=accuracy_score(y_test,y_preds) 

report = classification_report( y_test, y_preds ) 

print(report) 

print("SVM, Accuracy Score:" ,acc3 ) 

 
 



• Random Forest :   It’s a type of ensemble classifier consisting of many decision 

trees. It classifies an instance based on voting decision of each decision trees class 

predictions. 

 

X = panda.DataFrame(modelling_features_three) 

y = dataset['class'].astype(int) 

X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0, test_size=0.2) 

rf=RandomForestClassifier() 

rf.fit(X_train,y_train) 

y_preds = rf.predict(X_test) 

acc1=accuracy_score(y_test,y_preds) 

report = classification_report( y_test, y_preds ) 

print(report) 

print("Random Forest, Accuracy Score:",acc1) 

 
 

 

 

 

 

 

3.7  Classifier Evaluation 

 In this step, the constructed classifier predicts the class of unlabeled text (i.e. “hate speech, 

offensive but not hate speech, neither hate speech nor offensive speech”) using test set. The 

classifier performance is evaluated by calculating true negatives (TN), false positives (FP), false 

negatives (FN) and true positives (TP). Different performance metrics are used to assess the 

performance of the constructed classifier. Some common performance measures in text 

categorization are discussed briefly below-: 

1. Precision: Precision is also known as the positive predicted value. It is the proportion of 

predictive positives which are actually positive. 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃/ (𝑇𝑃+𝐹𝑃) 

2. Recall: It is the proportion of actual positives which are predicted positive. 



 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃 (𝑇𝑃+𝐹𝑁) 

3.  F-Measure: It is the harmonic mean of precision and recall. The standard F-measure (F1) 

gives equal importance to precision and recall. 

               𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ×(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑟𝑒𝑐𝑎𝑙𝑙 )/ (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙 ) 

4. Accuracy: It is the number of correctly classified instances (true positives and true 

negatives).  

               𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑇𝑃+𝑇𝑁) 𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹N 

 

 

 

 

 

 
 

 

 

FIG 6 CONFUSION MATRIX 

 

 

 

 

 

 



CHAPTER 4 

RESULTS AND DISCUSSIONS 
 

4.1 RESULTS: 

The logistic regression algorithm works consistently well with all feature sets except for F7 as 

precision, recall and subsequently the f1-score for “hate” label results in zero  . Random Forest 

classifier works pretty well when it comes to F1 and also shows a significant performance in all 

other feature sets but its performance is hugely impacted when tf-idf scores are not included in the 

feature. The overall performance of the Naïve Bayes classifier is found to be less significant for the 

purpose of classifying tweets into hate, offensive or neither labels but it performs significantly 

better with feature set of F7 compared to other feature sets . SVM classifier also seems to be 

consistent throughout all feature sets except for F4 and F7 as shown in . From the above graphs we 

analyse that the most important feature was found to be F1 i.e. the tf-idf scores which helps in better 

classification of hate speech. The sentiment scores also prove to be an important feature for the 

differing of hate speech and offensive language .Doc2vec columns are not found to be very 

significant in classification purpose as it makes very less difference when it’s removed from the 

feature set. On comparing all the graphs above Random Forest is clearly the winner. 

 

 

4.1.1 CALCULATED ACCURACIES  : 

 

CLASSIFIER ACCURACY 

SVM 86.08 

NAÏVE BAYES 60.32 

RANDOM FORREST 74.61 

LOGISTIC REGRESSION 76.20 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

4.2 DISCUSSIONS: 

In the experimental work, we have evaluated four classifiers over two different feature engineering 

techniques, giving different analyses over hate speech dataset containing three classes. Our 

experimental results showed that the SVM algorithm with the combination of bigram with TFIDF 

FE techniques showed the best results. The theoretical analysis is discussed in subsequent sections.  

 

A. Feature Engineering : 

 

The selection of feature engineering is important in text classification. In this study, we 

compared two distinct feature extraction techniques namely, Bigram with TFIDF, and 

doc2vec. The experimental results exhibited that from these three techniques, bigram with 

TFIDF outperformed. Conversely, the Doc2vec showed lower results. The possible reason 

for the outperformance of bigram and TFIDF is that bigram maintains the sequence of 

words compared to doc2vec. Moreover, several studies showed that the TFIDF 

representation technique is better than the binary and term frequency representation. In 

our experimental results, Doc2Vec also showed lower performance. This might be because 

it performs low in case of very short length documents and the tweets which we used in 

our dataset often having 280 character length.  

 

B. Machine Learning Classifier: 

 Several studies proved that no single ML algorithm performed better on all kinds of data. 

Therefore, the comparison of various ML algorithms is required to discover which one is 

best performing on the given dataset. Hence, on our dataset, we used four different ML 

algorithms as discussed in ML Models. The experimental results proved that SVM achieved 

the best performance possibly because SVM uses threshold functions to separate the data, 

not the number of features based on margin. This shows that SVM is independent upon 

the presence of the number of features in the data. In addition, SVM has the capability to 

best perform on non-linear data apart from the linear data because of its kernel functions. 

The results obtained with RF and LR classifiers are a little lower than SVM results but are 

somewhat higher than the results of NB. The low performance of RF might be due to the 

unavailability of informative features which leads to incorrect predictions. It is possible that 

the performance of LR might be lower because its decision surface is linear in nature and 

cannot handle nonlinear data adequately. The lowest performance was obtained amongst 

the NB classifiers. The NB classifier works on conditional independence among features. 

Thus, the performance of the NB classifier is negatively affected as the conditional 

dependence becomes more complicated due to the increase in the number of features.  

 

C. Classwise Performance:  

A we have three classes name “hate speech”, “offensive but not hate speech” and “neither 

hate speech nor offensive speech”. The results show that all features and classifiers 

performed well for two classes (i.e. offensive but not hate speech, and neither hate speech 



nor offensive speech). Our experimental results showed that the combinations performed 

lowest for class hate speech. The class “Hate Speech” has the lowest training instances 

as compared to other classes, but the major reason for misclassification of class “Hate 

Speech” might be overlapping of different bigram words with higher frequency in other 

classes than hate speech class. For example, bigrams like “lame nigga, white trash, bitch 

made” are more frequently appearing in class “Offensive but not Hate Speech” as 

compared to class “Hate Speech”. Hence, it might be possible that the classifier learned 

weak learning rules. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 5 

CONCLUSIONS AND FUTURE SCOPE 
 

 

 

5.1 CONCLUSION: 
This study employed automated text classification techniques to detect hate speech messages. 

Moreover, this study compared three feature engineering techniques and eight ML algorithms to 

classify hate speech messages. The experimental results exhibited that the bigram features, when 

represented through TFIDF, showed better performance as compared to Doc2Vec features 

engineering techniques. Moreover, SVM and RF algorithms showed better results compared to LR, 

NB. The lowest performance was observed in KNN. The outcomes from this research study hold 

practical importance because this will be used as a baseline study to compare upcoming researches 

within different automatic text classification methods for automatic hate speech detection. 

Furthermore, this study also holds a scientific value because this study presents experimental results 

in form of more than one scientific measures used for automatic text classification. Our work has 

two important limitations. First, the proposed ML model is inefficient in terms of real-time 

predictions accuracy for the data. Finally, it only classifies the hate speech message in three 

different classes and is not capable enough to identify the severity of the message. Hence, in the 

future, the objective is to improve the proposed ML model which can be used to predict the severity 

of the hate speech message as well. Moreover, to improve the proposed model’s classification 

performance two approaches will be used. First, the lexiconbased techniques will be explored and 

assessed by comparing with other current state-of-the-art results. Secondly, more data instances 

will be collected, to be used for learning the classification rules efficiently. 

 

5.2 FUTURE SCOPE: 
 Future scope includes removal of hate speech after its detection . We will also analyze the gaps in 

the existing solutions and fulfill them to present the most feasible solutions.  

Firstly, we will explore other branches of methods that aim at compensating the lack of training 

data in supervised learning tasks. Methods such as transfer learning could be potentially promising. 

Secondly, the presence of abstract concepts such as ‘sexism’, ‘racism’ or even ‘hate’ in general is 

very difficult to detect if solely based on linguistic content. Therefore, we see the need to go beyond 

pure text classification and explore possibilities to model and integrate features about users, social 

groups, mutual communication and even background knowledge (e.g., concepts expressed from 

tweets) encoded in existing semantic knowledge base. 
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