

i

A Project Report

on

 SHOOTING GAME USING UNREAL ENGINE IN C++

Submitted in partial fulfillment of the

 requirement for the award of the degree of

 BACHELOR OF TECHNOLOGY

Under The Supervision of

Mr. Anupam LakhanPal

Assistant Professor

Department of Computer Science and Engineering

Submitted By

 Aman Sharma - 19SCSE1010441

 Mansi - 19SCSE1010276

SCHOOL OF COMPUTING SCIENCE AND ENGINEERING

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING /

DEPARTMENT OF COMPUTERAPPLICATION

GALGOTIAS UNIVERSITY, GREATER NOIDA

INDIA

 DECEMBER-2021

ii

SCHOOL OF COMPUTING SCIENCE AND
ENGINEERING

GALGOTIAS UNIVERSITY, GREATER NOIDA

CANDIDATE’S DECLARATION

I/We hereby certify that the work which is being presented in the thesis/project/dissertation,

entitled “SHOOTING GAME USING UNREAL ENGINE IN C++” in partial fulfillment

of the requirements for the award of the BACHELOR OF TECHNOLOGY IN

COMPUTER SCIENCE AND ENGINEERING submitted in the School of Computing

Science and Engineering of Galgotias University, Greater Noida, is an original work carried

out during the period of JULY-2021 to DECEMBER-2021, under the supervision of

Mr. Anupam Lakhanpal, Assistant Professor, Department of Computer Science and

Engineering, Galgotias University, Greater Noida.

The matter presented in the project has not been submitted by me/us for the award of any

other degree of this or any other places.

 Aman Sharma - 19SCSE1010441

 Mansi - 19SCSE1010276

This is to certify that the above statement made by the candidates is correct to the best of

my knowledge.

 Supervisor Name

 Mr. Anupam Lakhanpal

 (Assistant Professor)

iii

CERTIFICATE

The Final Thesis/Project/ Dissertation Viva-Voce examination of Aman Sharma

(19SCSE1010441), Mansi (19SCSE1010276) has been held on _________________ and

his/her work is recommended for the award of BACHELOR OF TECHNOLOGY IN

COMPUTER SCIENCE AND ENGINEERING.

Signature of Examiner(s) Signature of Supervisor(s)

Signature of Project Coordinator Signature of Dean

Date: December, 2021

Place: Greater Noida

iv

 ABSTRACT

The goal of this project is to prove the development of a videogame using Unreal

Engine, based on an agile methodology that is viable in an economic, quick and

sustainable way. This methodology has four stages that are: preproduction,

production, testing and postproduction that were advantageous to finish the

project on time. To achieve this, we have designed and developed an action

platform game following the previously mentioned stages. In conclusion, we

achieve to prove the applicability of the four stages methodology since we made

a high quality game in a short period of time, using limited resources. We are

going to develop a game using unreal engine in C++. This will be 3D game. Our

character will be full animated third person character. We will add sorts of

enterprises to add movement system and aiming system, animation on the top of

all this. We are going to add shooting mechanics, we are going to have

deaths/lives. We will kill of enemy AI with shooting mechanics and also have

health for ourselves. Finally, we’re going have win/lose conditions. So, if I get

shot to pieces, the game's gonna notice that and it's going to restart the mental for

and display this handy message telling us what's going on. The same happens if

we managed to kill off all the enemies in the level we win and get a similar

message.

v

TABLE OF CONTENTS

 Topics Page number:

Declaration ii

Certificate iii

Abstract iv

Table of Contents v

List of Figures/Tables vi

Chapter 1: Introduction about Project 1

1.1 Overview
 1.2 Literature Review

Chapter 2: Requirements, Feasibility and Scope/Objective 3

 2.1 Objective

 2.2 Background

 2.3 Requirements

 2.3.1 Functional Requirement

 2.3.2 User Requirements

 2.3.3 Data requirement

 2.3.4 Environment requirements

 2.3.5 Usability requirements

 2.3.6 Performance/Response time requirement

vi

Chapter 3: Activity Time Schedule 5

Chapter 4: Design 6

 4.1 USE CASE Diagram

 4.2 Game Mechanics

 4.2.1) Game Flow

 4.2.2) Game Controls

 4.2.3) Winning/Losing

 4.2.4) Game Modes

Chapter 5: Implementation 10

 5.1 Setting up your report

 5.2 Implementing your character

 5.3 Implementing projectile

 5.4 Adding character animation

 5.5 Weapon fire system

 5.6 Instant-hit weapon fire

 5.7 Projectile weapon fire

 5.8 Player inventory

 5.9 Player camera

 5.10 Menu system

 5.11 Screenshots of the game

Chapter 6: Future Scope of the Project, Limitations and Conclusions: 19

 6.1 Future Scope of the Project

 6.2 Limitations

 6.3 Conclusion

References 21

vii

 List Of Figures

Figure No. Title Page No.

1. USE CASE 6

2. Game Flow 7

3. Modes 9

1

 CHAPTER: 1

 Introduction About Project

1.1) Introduction

The goal of this project is to prove the development of a videogame using Unreal

Engine, based on an agile methodology that is viable in an economic, quick and

sustainable way. This methodology has four stages that are: preproduction,

production, testing and postproduction that were advantageous to finish the

project on time. To achieve this, we have designed and developed an action

platform game following the previously mentioned stages. In conclusion, we

achieve to prove the applicability of the four stages methodology since we made

a high quality game in a short period of time, using limited resources.

1.2) Literature Reviews/Comparative study:

The games industry has had much growth in recent years. It is a great industry to

get involved in as it allows creativity, innovation and freedom for developers and

hobbyists. They get a chance to experiment with all forms of media including

sound design, environment design and programming. As there has been an

explosion of the new ‘Indie’ market of games, the gaming industry now allows

smaller-scale games to be developed and released more freely than in the past.

Today it has become so easy to create a game. A large studio is no longer needed

and the freely available tools make it so simple to create an idea from the comfort

of your own home. Indie games show more innovation and developers are willing

to take risks on their games. ‘Indie’ games also have a large market base with

many of the games being released on PC, Android etc. put a lot of research into

trying to find out what users want from a game. I had to decide between a first

person shooter or a third person shooter, and what type of environment would be

2

best to build my game. I finally decided to go with a FPS in a horror style

environment

3

 CHAPTER: 2

 Requirements, Feasibility and Scope Objective

2.1) OBJECTIVE:

The goal of this project is to prove the development of a videogame using Unreal

Engine, based on an agile methodology that is viable in an economic, quick and

sustainable way. The purpose of this project is to develop a first person shooter

game with good graphics, audio and animations made with basic technologies

and a low budget. I wanted to make a game that was easy to install and show what

can be done with just a bit of time and effort.

2.2) BACKGROUND:

UNREAL ENGINE

VISUAL STUDIO

C++

A-Star Pathfinding Algorithm

2.3) Requirements

2.3.1) Functional Requirements

This section shows the basic needs for the game in order to have the game up and

running in the time that is required.

i. Main Menu: The game should have a main menu where the player can

decide what option they would like to invoke.

ii. Terrain: The game should have a terrain where the characters can exist. It

should have realistic physics including gravity, wind and borders.

4

iii. Characters: The game must have a set of characters who will either act as

the Artificial intelligence or the player character

iv. Weapon: The player must be provided with a weapon in order to kill and

damage an enemy.

v. Play Game: The player should be able to select the play game option from

the main menu. The play game button will give a short background story

(which the player can skip if they wish) before the game will start.

vi. Controls: The player should be able to select the controls option from the

main menu which will show them the buttons used to control the player.

vii. Volume: The player should be able to adjust the volume of the background

audio. A slider is presented on the main menu screen.

viii. Interactable Objects: The player should be able interact with a few

objects in the game. The player can interact with an object by using the E

key.

ix. Game Completed: The player should be able to complete the game and

receive recognition from the game that it is over. The player should

complete the game once they have collected their soul after defeating the

boss. When the player walks through the door and into the soul it will load

the game over screen which will then bring them back to the main menu

where they can decide to play again or quit.

x. Pause Game: The player should be able to pause the game. The player will

press the ESC button or press the pause button in the corner of the screen

which will pause the game and give the player the option to continue, return

to main menu or quit the game.

xi. Game: The player should be able to quit the game and stop playing. To

prevent accidental exit, the game will ask is the user sure. They can click

yes to exit the game or no to continue.

xii. Fight/Defeat Enemies: The player should be able to shoot and kill enemies

in the game. These enemies will make the game more challenging as the

5

player will need to pass them. The player can fight them or attempt to run

away from them.

xiii. Health System: The player must be able to lose health when attacked by

enemies. When the player has run out of health they will have to respawn

which will bring them back to the start of the game. Health will be restored

to max health and any enemies they have already killed will remain in that

state.

xiv. Player Movement: The player should be able to move the controllable

character. The character can be moved using the movement keys and they

can jump, crouch and shoot.

xv. Aim And Sight: The player should be able to aim the gun and look down

the sight of the gun. This is achieved by pressing the right mouse click.

xvi. Intelligent Enemy AI: The game requires multiple enemies which attack

the player. When the user has defeated these enemies, a boss character will

be introduced which will be stronger and harder to defeat. This boss

character will also be more intelligent and it will provide the player with a

challenge.

2.3.2) User requirements:

 The user requirements are used to describe what the user will need in order to

run and play the game. The user must have a computer or laptop capable of

running a modern version of the Windows operating system (must be Windows

XP or higher) and the graphics card requirements will vary depending on the type

of game. As this project consists of simple graphics, the standard graphics cards

in the users’ PC should be able to run the game. Internet access will also be

required for the user to be able to download the application. When the game is

compiled, it is built into an executable file which is separate from Unreal Engine

which will benefit the user as they will not be required to download and install

6

Unreal Engine if they want to play the game. The game can also be compiled to

run on web browsers. The user must also have a computer, key board, mouse and

speakers/headphones to play the game.

2.3.3) Data requirements

All data is passed in the background. These are variables that monitor the

positions of both the player and the enemy and keep track of the players health.

Information is only saved during a game. No information is saved when the

application is closed.

2.3.4) Environmental requirements

In order to play the game, the users will need a Windows, Linux or Mac operating

system environment but the game was designed to use on the Windows platform.

There’s No Place Like Home 14 This application will run on a computer or laptop

capable of running a modern version of the Windows operating system (must be

Windows XP or higher)

2.3.5) Usability requirements

The menu for the game should be easily accessible and visible, and clearly laid

out to provide a clear understanding of the game menu. It should be easy for the

user to accomplish a task and navigate through the menu. The game should not

overwhelm the users and the UI should be clearly laid out and visually appealing.

2.3.6) Performance/Response time requirement

It is important to ensure that the game does not suffer any graphical or

performance problems as this can lead to a frustrating game play. The game needs

to run at a consistent frame rate to ensure that the graphics and animations remain

smooth. The response time of the game should be immediate so that when the

player initiates an action in the game, the results will be immediate. The player

7

will need precision for jumping and attacking, so the response time for input

methods must be very quick.

5

 Chapter: 3

 Analysis, Activity Time Schedule (changes)

Sr. No. Activity/Objective Duration

1. Planning and assigning 10 Days

2. Data Assembling 10 Days

3. Programming 20 Days

4. Testing (2-3 round) 20 Days

Quality Plan

The goal of the plan is to ensure that game is an error free game. Throughout the

development, testers will be brought in to test the mechanics and the levels of the

game to ensure there are no errors in the game.

We will divide quality testing into three main phases:

▪ Module testing will perform during coding by using debug messages to check

that the written code produces wanted results. An important requirement is that

the code will compile with zero bugs.

▪ Integration testing will perform after finish module testing in order to validate

if each module can work fine with each other.

▪ System testing includes two phases: functional testing and usability testing.

These will perform after the product reaches its final version. During functional

test phase, the tester will test if the product meets the game requirements. The

usability test will perform to understand how easy it is to learn to play the game.

Any person out of the team members will perform this test by playing the game.

6

 Chapter:4

 Game Design And Mechanics

Framework Designing assists the examiner with understanding the usefulness of

the framework and models are utilized to speak with clients. Various models

present the framework from alternate points of view. External viewpoint showing

the framework's specific circumstance or climate. Behavioural point of view

showing the conduct of the framework. Structural point of view showing the

framework or information engineering

4.1) USE CASE DIAGRAM:

 Figure 1: Use Case Diagram

Play

Game

Local Game

Controls
Control

screen

Exit Game Yes Exit

Game

No Continue

Are you

sure?

7

When the player starts up the game the main menu will be displayed. The player

will be presented with 3 options to choose from. The ‘Play Game’ option will bring

the player to play the game. The ‘Controls' option will bring the player to a screen

that will show the controls for the game and the ‘Exit Game’ option will allow the

player to quit the game and exit the application. A pop-up menu will appear asking

the player are they sure. If the user selects yes, the application will close, if they

select no, they can continue as normal.

4.2) Game Mechanics

4.2.1) Game Flow

 Figure:1 Game Flow

8

4.2.2) Game Controls

 The game will utilize the mouse and keyboard for input. Here is the list how to control

the game.

Movement

▪ Left - A

▪ Right - D

▪ Forward - W

▪ Backward - S

▪ Jump – Space

▪ Crouch-C

Actions

▪ Looking/Aiming – Mouse

▪ Fire Weapon- Left Mouse

▪ Use Equipment-Right Mouse

▪ Change weapon - numb 1-9

▪ Reload - R

▪ Use – E

4.2.3) Winning/Losing

The object of the game is to kill all enemy before they kill the player. The player has

only one life. When his/her health reduces to zero or lower, the player will die. When

the player dies, he/she will lose the game. If the player shoots all enemies before

dying, the player wins the game.

4.2.4) Game Modes

The game has a design with only single-player mode. In the single-player mode, one

can find three sub-modes: easy, normal and hard. Depends on sub-modes, the number

of enemies and pick-ups will vary. When the game becomes harder, the number of

enemies will increase and the number of power-ups will reduce. The table below

provides information on the number of power-ups and enemies in each mode.

9

Mode No. Of Enemies

Easy 10

Medium 15

Hard 20

 Table 1: Modes

10

 Chapter: 5

 Implementation and Testing

5.1) Setting up your project:

Steps

▪ 1.1 - Project Setup

▪ 1.2 - Opening the Project in Visual Studio

▪ 1.3 - Adding Log Messaging

▪ 1.4 - Compiling the Project

▪ 1.5 - Setting the Default Game Mode

5.2) Implementing your Character

 Steps

▪ 2.1 - Making a New Character

▪ 2.2 - Setting up Axis Mapping

▪ 2.3 - Implementing Character Movement Functions

▪ 2.4 - Implementing Mouse Camera Control

▪ 2.5 - Implementing Character Jumping

▪ 2.6 - Adding a Mesh to Your Character

▪ 2.7 - Changing the Camera View

▪ 2.8 - Add a First Person Mesh to Your Character

5.3) Implementing Projectiles

Steps

▪ 3.1 - Adding Projectiles to Your Game

▪ 3.2 - Implementing Shooting

▪ 3.3 - Setting Up Projectile Collision and Lifetime

11

▪ 3.4 - Getting Projectiles to Interact with the World

▪ 3.5 - Adding Crosshairs to Your Viewport

5.4) Adding Character Animation

Steps

▪ 4.1 - Animating Your Character

▪ 4.2 - Setting Up Your Event Graph

▪ 4.3 - Adding an Animation State Machine

▪ 4.4 - Adding Animation Transition States

▪ 4.4.1 - Add Idle to/from Run Transitions

▪ 4.4.2 - Add Idle to Jump Start Transition

▪ 4.4.3 - Add Run to Jump Start Transition

▪ 4.4.4 - Add Jump Start to Jump Loop Transition

▪ 4.4.5 - Add Jump Loop to Jump End Transition

▪ 4.4.6 - Add Jump End to Idle Transition

▪ 4.5 - Associating Animation and Character Blueprint

5.5) Weapon Fire System

The weapon is switched to its firing state on the local client and server (via RPC

calls). DetermineWeaponState() is called in StartFire()/StopFire() which performs

some logic to decide which state the weapon should be in and then

calls SetWeaponState() to place the weapon into the appropriate state. Once in firing

state, the local client will repeatedly call HandleFiring() which, in turn,

calls FireWeapon(). Then it updates ammo and calls ServerHandleFiring() to do the

same on the server. The server version is also responsible for notifying remote clients

about each fired round via the BurstCounter variable.

12

5.6) Instant-Hit Weapon Fire

Instant-hit detection is used for fast firing weapons, such as rifles or laser guns. The

basic concept is that when the player fires the weapon, a line check is performed in

the direction the weapon is aimed at that instant to see if anything would be hit.

This method allows high precision and works with Actors that do not exist on server

side (e.g., cosmetic or torn off). The local client performs the calculations and informs

the server of what was hit. Then, the server verifies the hit and replicates it if

necessary.

In FireWeapon(), the local client does a trace from the camera location to find the first

blocking hit under the crosshair and passes it to ProcessInstantHit(). From there, one

of three things happens:

▪ The hit is sent to the server for verification (ServerNotifyHit() --

> ProcessInstantHit_Confirmed()).

▪ If the hit Actor does not exist on server, the hit is processed locally

(ProcessInstantHit_Confirmed()).

▪ If nothing was hit, the server is notified (ServerNotifyMiss()).

Confirmed hits apply damage to the hit Actors, spawn trail and impact effects, and

notify remote clients by setting data about the hit in the HitNotify variable. Misses

just spawn trails and set HitNotify for remote clients, which look

for HitNotify changes and perform the same trace as the local client, spawning trails

and impacts as needed.

The instant-hit implementation also features weapon spread. For trace/verification

consistency, local client picks a random seed each time FireWeapon() is executed and

passes it in every RPC and HitNotify pack.

13

5.7) Projectile Weapon Fire

Projectile fire is used to simulate weapons that fire rounds which are slower moving,

explode on impact, affected by gravity,

1. These are cases where the outcome of the weapon fire cannot be determined at

the exact instant the weapon is fired, such as launching a grenade. For this type

of weapon, an actual physical object, or projectile, is spawned and sent moving

in the direction the weapon is aimed. A hit is determined by the projectile

colliding with another object in the world.

For projectile fire, the local client does a trace from camera to check what Actor is

under the crosshair in FireWeapon(), similar to the instant-hit implementation. If the

player is aiming at something, it adjusts the fire direction to hit that spot and

calls ServerFireProjectile() on the server to spawn a projectile Actor in the direction

the weapon was aimed.

When the movement component of the projectile detects a hit on the server, it

explodes dealing damage, spawning effects, and tears off from replication to notify

the client about that event. Then, the projectile turns off collision, movement, and

visibility and destroys itself after one second to give client time for replication update.

On clients, explosion effects are replicated via OnRep_Exploded().

5.8) Player Inventory

The player's inventory is an array of AShooterWeapon references stored in

the Inventory property of the player's Pawn (AShooterCharacter). The currently

equipped weapon is replicated from the server, and

additionally, AShooterCharacter stores its current weapon locally

14

in CurrentWeapon property, which allows the previous weapon to be un-equipped

when a new weapon is equipped.

When the player equips a weapon, the appropriate weapon mesh - first-person for

local, third-person for others - is attached to the Pawn and an animation is played on

the weapon. The weapon is switched to the equipping state for the duration of the

animation.

5.9) Player Camera

In first-person mode, the Pawn's mesh is hard-attached to the camera so that the arms

always appear relative to the player's view. The downside of this approach is that it

means the legs are not visible in the player's view, since the entire mesh rotates to match

the camera yaw and pitch.

The basic flow of the camera update is:

▪ AShooterCamera::UpdateCamera() is executed each tick.

▪ APlayerCamera::UpdateCamera() is called to update the camera rotation

based on the player's input.

▪ AShooterCharacter::OnCameraUpdate() is called to perform the

calculations necessary to rotate the first person mesh to match the camera.

When the player dies, it switches to a death camera that has a fixed location and

rotation set in the AShooterPlayerController::PawnDied()

1. This function calls AShooterPlayerController::FindDeathCameraSpot(),

which cycles through several different locations and uses the first one not

obstructed by the level's geometry.

15

5.10) Menu System

The menu system is created using the Slate UI framework. It consists

of menus, menu widgets, and menu items. Each menu has a single menu widget

(SSHooterMenuWidget) that is responsible for layout, internal event handling, and

animations for all of the menu items. Menu items (SSHooterMenuItem) are compound

objects that can perform actions and contain any number of other menu items. These

can be as simple as a label or button or "tabs" that contain complete submenus made

up of other menu items. This menu can be operated using a keyboard or controller,

but there is only limited mouse support at this time.

Each menu is constructed via the Construct() function, which adds all of the

necessary menu items, including sub-items, and attaches delegates to them where

necessary. This is done using the helper methods

- AddMenuItem(), AddMenuItemSP(), etc. - defined in the MenuHelper namespace

in the SShooterMenuWidget.h file.

Navigation to previous menus is done using an array of shared pointers to menus and

is stored in the MenuHistory variable of the menu widget. MenuHistory acts like

stack to hold previously entered menus and makes it easy to go back. By using this

method, no direct relationship is created between menus and the same menu can be

reused in different places if necessary.

Animations are performed using interpolation curves defined

in SShooterMenuWidget::SetupAnimations(). Each curve has start time, duration,

and interpolation method. Animations can be played forward and in reverse and their

attributes can be animated at a specific time using GetLerp(), which returns a value

from 0.0f to 1.0f. There are several different interpolation methods available, defined

in ECurveEaseFunction::Type in SlateAnimation.h.

https://docs.unrealengine.com/4.27/en-US/ProgrammingAndScripting/Slate

16

 Main Menu

The main menu is opened automatically when the game starts by specifying the

ShooterEntry map as the default. It loads a special GameMode, AShooterGameMode,

that uses the AShooterPlayerController_Menu class which opens the main menu by

creating a new instance of the FShooterMainMenu class in its

PostInitializeComponents() function.

 In-Game Menu

The in-game menu is created in the PostInitializeComponents() function of

the AShooterPlayerController class, and opened or closed via

the OnToggleInGameMenu() function.

17

5.11) SCREENSHOTS of the Game:

18

19

 Chapter: 6

 Future Scope and Limitations of the project

6.1 FUTURE SCOPE:

 There are many ways that this project can be expanded in the future. I could

create a new world with new characters and have the storyline continue on. I

could make the game more challenging by adding in a more difficult enemy to

defeat, adding more levels or by adding in obstacles to overcome like timers,

missions etc. I could expand on weapons and have the option to switch weapon

while playing the game. As I did not have time to incorporate a save feature, this

is something I would definitely implement in the future. A multiplayer option

could also be introduced which would expand the game. It would have to be

published to a server where users can play as a team and help each other in the

battle. A difficulty option could also be put in so users stay challenged and

interested. A website could also be created to compliment the game. News and

updates would be available on this. Users could write a short review of the game

and give a rating. This feedback would be helpful in providing a better game play

experience.

6.2 Limitation:

This game is not available in multiplayer mode.

6.3 CONCLUSION:

In my opinion there are many advantages to creating this type of project. It is a

chance to do something different, step outside my comfort zone and learn how

games are created. I liked that I had full freedom with the creativity of the game

and I could implement it with my vision in mind. It was evident during

20

development that this type of game is extremely large and complex to develop

thus requiring a substantial amount of time to even get it to a playable state.

21

REFERENCES:

1. https://docs.unrealengine.com/4.27/en-

US/ProgrammingAndScripting/ProgrammingWithCPP/CPPTutorials/Firs

tPersonShooter/

2. Apa.org. (2016). [online] Available at:

http://www.apa.org/monitor/2014/02/videogame.aspx [Accessed 4 May

2016].

3. Rival{Theory}. (2016). Features - Rival{Theory}. [online] Available at:

 http://rivaltheory.com/rain/features/ [Accessed 5 May 2016].

 star, D. (2016).

4. Difference and advantages between dijkstra & A star.

[online]Stackoverflow.com. Available at:

 http://stackoverflow.com/questions/13031462/difference-and-

advantagesbetween-dijkstra-a-star [Accessed 5 May 2016].

5. YouTube. (2016). CodersExpo. [online] Available at:

https://www.youtube.com/user/CodersExpo [Accessed 2016].

6. Rival{Theory}. (2016). Features - Rival{Theory}. [online] Available at:

http://rivaltheory.com/rain/features/ [Accessed 5 May 2016].

7. Arongranberg.com. (2016). A* Pathfinding Project. [online] Available at:

http://arongranberg.com/astar/ [Accessed 12 Mar. 2016].

https://docs.unrealengine.com/4.27/en-US/ProgrammingAndScripting/ProgrammingWithCPP/CPPTutorials/FirstPersonShooter/
https://docs.unrealengine.com/4.27/en-US/ProgrammingAndScripting/ProgrammingWithCPP/CPPTutorials/FirstPersonShooter/
https://docs.unrealengine.com/4.27/en-US/ProgrammingAndScripting/ProgrammingWithCPP/CPPTutorials/FirstPersonShooter/
http://stackoverflow.com/questions/13031462/difference-and-

