
A Thesis/Project/Dissertation Report

on

CHATTING APPLICATION USING SWING AND

NETWORKING

Submitted in partial fulfillment of the

requirement for the award of the degree of

B.TECH(CSE)

Under The Supervision of

Ms. AANCHAL VIJ

ASSISTANT

PROFESSOR

Submitted By

AYUSHI PANDEY

19021011481

HARSH JAISWAL

19021180024

SCHOOL OF COMPUTING SCIENCE AND ENGINEERING

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

GALGOTIAS UNIVERSITY, GREATER NOIDA

INDIA

OCT,2021

SCHOOL OF COMPUTING SCIENCE AND
ENGINEERING

GALGOTIAS UNIVERSITY, GREATER NOIDA

CANDIDATE’S DECLARATION

I/We hereby certify that the work which is being presented in the thesis/project/dissertation, entitled

“CHATTING APPLICATION USING SWING AND NETWORKING” in partial fulfillment of the

requirements for the award of the BACHELOR OF TECHNOLOGY IN COMPUTER SCIENCE AND

ENGINEERING submitted in the School of Computing Science and Engineering of Galgotias University,

Greater Noida, is an original work carried out during the period of JULY-2021 to DECEMBER-2021, under

the supervision of Ms. AANCHAL VIJ ASSISTANT PROFESSOR, Department of Computer Science and

Engineering, Galgotias University, Greater Noida

The matter presented in the thesis/project/dissertation has not been submitted by me/us for the award of any

other degree of this or any other places.

 HARSH JAISWAL 19021180024

AYUSHI PANDEY 19021011481

This is to certify that the above statement made by the candidates is correct to the

best of my knowledge.

 __

 Supervisor

 (Ms. AANCHAL VIJ ASSISTANT PROFESSOR)

CERTIFICATE

The Final Thesis/Project/ Dissertation Viva-Voce examination of Harsh Jaiswal(19SCSE1180026)

and Ayushi Pandey(19SCSE1010293) has been held on 24th December, 2021and his/her work is

recommended for the award of BACHELOR OF TECHNOLOGY IN COMPUTER SCIENCE

AND ENGINEERING.

Signature of Examiner(s) Signature of Supervisor(s)

Signature of Project Coordinator Signature of Dean

Date: 24th December, 2021

Place: Greater Noida

Abstract

In todays world everyone in there life is busy in race of achieving goals and for that

they need to run a lot from here to there. Also these days, if any big meeting is to be

done or any big gatherings are needed to be held then a person will think many times

for attending it considering the factors of traffic jam on his way, facilities for having

night stays there. Recently whole world is suffering from viruses like corona where it

is impossible to have social gatherings. So to overcome these problem we need a

platform where people can virtually chat with others. So chat application can be very

efficient solution to this problem.

In this project, one can do live chat with others. For this we use server- client

architecture. In this, we used to have a server and with this server different clients can

connect. Now, in order to establish connection with server with clients we use the

concept of socket programming. It is a desktop based application.

The tools which we are using here are- Language

Used- Java Core

Concept Used- Swing and Socket Programming

IDE Used- Apache NetBeans

If throwing some light on the future of this program, so this project has

great scope in future. In future we will include many features to this program.

• Like we can enable username and password method to the code and maintain

the database of the clients connection to the server.

• We can increase the capacity of server, so that more number of clients can

make connection with the server.

• Features of reacting on particular message needs to be enabled.

List of Tables

Table

No.

Page

Number
Table Name

1. Table for Student Data 3

2. Table for Faculty Data 4

List of Figures

Figure

No.

Page

Number
Table Name

1. Diagram 1

2. Diagram 5

3. Data Flow Diagram 6

4. Project Design 6

Acronyms

B.Tech. Bachelor of Technology

M.Tech. Master of Technology

BCA Bachelor of Computer Applications

MCA Master of Computer Applications

B.Sc. (CS) Bachelor of Science in Computer Science

M.Sc. (CS) Master of Science in Computer Science

SCSE School of Computing Science and Engineering

Table of Contents

Title Page

No.
Abstract I

List of Table II

List of Figures III

Chapter 1 Introduction 1
 1.1 Introduction 2
 1.2 Formulation of Problem 2
 1.2.1 Tool and Technology Used

Chapter 2 Literature Survey/Project Design
RESULTS

3

 CHAPTER- 3 WORKING OF PROJECT

FUTURE SCOPE

CONCLUSION

REFERENCES

CHAPTER-1

Introduction

1.1 INTRODUCTION

This project is about how different users can communicate in real time with each.

With real time it can said to communicate live with each other on a single platform.

So to make this thing possible we have a communication platform for chatting which

is client server architecture. In this application, we will have various clients who can

join a private or public server and can communicate with other clients using that

server. In this world we have different platforms which uses this concept like

youtube. In youtube, when someone do live streaming you will see various people

are chatting side by side of video in real time. So here there is a server of youtube

and we have various users as clients who are connected to that server and it is server-

client architecture through which it was possible that all users were able to have a

communication with other clients in present time on a single platform. Now in this

chat app to communicate through machines of individuals and server we have a thing

in each machine known as sockets. These are only sockets through which it was

possible for different machines to establish connection with each other. This

establishment of different machines is possible only due to socket programming. Due

to socket programming it is possible for machines to have end to end communication

and send data from one device to other. Now we will see about sockets in detail in

system development section. There is one more application where this web chat is

brought in great use.

Above is an to demonstrate the use of Desktop Chat. In this example, you can see

that we have Web Chat application in which we have different users who are doing

real time chat on a common platform which is its server. Each user’s machine would

be having its socket and server would be having its server through which connection

took place between them and they were able to chat with each other. In this

CHAPTER-1

Introduction

application, we would be using the java and socket programming. For sending data

from machine M1 to machine M2, Output-stream is used and to receive data from

machine M2 to M1 Input-stream is used. In socket programming client should know

the IP address of server and port number of applications in order to do distribution

of data.

CHAPTER-1

Introduction

1.2 Formulation of Problem

In todays world everyone in there life is busy in race of achieving goals and for that

they need to run a lot from here to there. Also these days, if any big meeting is to be

done or any big gatherings are needed to be held then a person will think many times

for attending it considering the factors of traffic jam on his way, facilities for having

night stays there.

Recently whole world is suffering from viruses like corona where it is impossible to

have social gatherings. So to overcome these problem we need a platform where

people can virtually attended meetings and do talking to each other in live. So web

chat app can be a very good and efficient solution to this problem. Using socket

programming and client-server architecture it is very easy to do remote chatting for

users from there homes. But practically it is not possible that everyone has a

computer and he can do web chatting. So it is also platform independent. As these

days a cheaper smartphone is available with sockets as is capable of doing virtual

live chats. So no matter how far you are the only thing required is any type of

connection with server and one can use the benefits of web chat.

Now major question is how to achieve this communication. For this we will use

client-server architecture approach. In this different clients located at different

locations can connect to a common server by knowing the address of server and

server will distribute the data of one server with other users. Now working of this

chat app will be seen in implementation section.

1.2.1 Tools and Technology Used

Language Used- Java Core

Concept Used- Swing and Socket Programming

IDE Used- Apache NetBea

CHAPTER-2

Literature Survey

These days social networking is very common thing which is performed by people.

Social networking is the thing which not only deals with text or sentences but also

deals with pictures which we have achieved to operate the picture for performing

face detection and finding the expressions. In an organization, colleagues working

there can send and get reply of messages instantly in very less time without having

face to face conversation, and in the mean time the report of work can be shared/sent

instantly during the chat session. With this application it is possible to have virtual

conference without getting all the people together in a meeting room physically

present. Doing instant messages for company communication is more efficient than

making phone calls or doing emails. Various clients can do chatting concurrently.

Dependent on a conference call or doing electronic mail message for meeting with

colleagues is time consuming, but with this application everybody can join and have

a discussion on various topics in very less time. If you really want to have fast

communication then this application is far better than e-mails. With the support of

fast messages one can send a message and get response of message in very few

seconds.

Now, the architecture constitute of client and server module which include the given

below steps:

1. Initial step is to execute server program on server machine.

2. After that client send request to server through its device and on that basis server

give response to him/her and connection start taking place.

3. When the client-server connection is successfully established, the server then

broadcast a list to of its connected users to its each connected client.

4. Client has the right to view all its active users and thus can make communication

with them.

5. Server establishes a separate connection for each of its connected client, for which

server produces a personal thread for each client connection. Now this thread is

responsible to send/receive data from and to clients.

6. Whenever a client creates and sends a message to other client, this message

initially is transferred to the server.

7. Then the server transmits the following message to the desired receiver of user.

8. Now, when the receiver client receives the message, receiver can read it.

9. In reflection receiver can send back reply but again follow the process of same

process as mentioned above.

10. This chat application brings the use of concept of socket programming and the

concept of multithreading. There will be different threads in it. One thread is for

running server program and a different thread to control each client that wants to

establish connection.

Java Socket Programming

Basically java socket programming is brought in use for communicating between

different applications executing on various Java Runtime Environment. Java Socket

programming can have two types of mediums to communicate. Communications can

be connection-oriented or can be connection-less.

If we talk about connection-oriented sockets then for those we have classes like

Socket and Server Socket while, for connection-less socket programming we have

Datagram Socket and Datagram packet classes.

The client who are doing socket programming should know two things about server:

1. Client should know the IP Address of Server

2. And Most importantly it should know the port number of server.

Now here we are preparing to establish one-way client and server communication.

Taking about this application, client/user transmits a message to the server, then

server reads the message using read-line and then prints the message. Here basically

we are making use of two classes that includes Server Socket and Socket.

The Socket class is brought in use to communicate between server and client. By

using this class, we can do reading and writing of messages. In server program we

have server-socket class.

We have a method called accept() in Server Socket class which blocks the console

till the time the client is connected. When the client is successfully connected, it

brings back the instance of Socket towards side of server. Basically a socket is an

endpoint for communications between two devices. To create a socket we have

socket class. Various essential methods in socket class which are use includes

getinputStream(), getOutputStream(). In server socket class we have socket accept(),

synchronised close().

The desktop chat application is based on client - server architecture within a Local

Area Network. This client server model of doing computing is basically a distributed

application that do pieces of tasks between the provider of resource or we can say

that service called servers and service requesters are called clients. The Server side

always would be continuously running service listening to a different - different

clients enquiring its service. The servers will maintain database of users. Whenever a

client makes login to the application, the Server immediately makes authentication of

the user . Once the user is been authenticated the IP address of the client/user will

registered to the list of the Server and user transmits that list of online client partners

and remaining relevant data to the Client/user. When the client wants to have some

chat with any other user, then that user’s IP address along with his Port address

would be sent to the client and vice versa. So a connection would take place and the

two clients would be able to chat with each other.

Figure 2

PROJECT DESIGN

Figure 3

Figure 4

Module Description

Modules of Online Chat Application:

• Chat Profile Management Module: Used for managing the Chat Profile details.

• Multi Chat Module: Used for managing the details of Multi Chat

• Users Module: Used for managing the users of the system

RESULTS

CHAPTER- 3

WORKING OF PROJECT

Client- Side Establishment

To connect to another machine we need a socket connection. A socket connection

means the two machines have information about each other’s network location (IP

Address) and TCP port. The java.net.Socket class represents a Socket. To open a

socket:

Socket socket = new Socket(“127.0.0.1”, 5000)

The first argument – IP address of Server. (127.0.0.1 is the IP address of

localhost, where code will run on the single stand-alone machine).

The second argument – TCP Port. (Just a number representing which application to

run on a server.

For example, HTTP runs on port 80. Port number can be from 0 to 65535)

Communication

To communicate over a socket connection, streams are used to both input and

output the data.

Closing the connection

The socket connection is closed explicitly once the message to the server is sent.

In the program, the Client keeps reading input from a user and sends it to the server

until “Over” is typed.

// A Java program for a Client

import java.net.*;
import java.io.*;

public class Client

{

// initialize socket and input output streams

private Socket socket = null;

private DataInputStream input = null;

private DataOutputStream out = null;

// constructor to put ip address and port

public Client(String address, int port)

{

// establish a connection

try
{

socket = new Socket(address, port);

System.out.println("Connected");

// takes input from terminal

input = new DataInputStream(System.in);

// sends output to the socket

out = new DataOutputStream(socket.getOutputStream());

}

catch(UnknownHostException u)

{
System.out.println(u);

}
catch(IOException i)

{

System.out.println(i);

}

// string to read message from input

String line = "";

// keep reading until "Over" is input

while (!line.equals("Over"))

{
try

{

}

line = input.readLine();

out.writeUTF(line);

catch(IOException i)

{

System.out.println(i);

}

}

// close the connection

try

{

input.close();

out.close();

socket.close();
}

catch(IOException i)

{
System.out.println(i);

}

}

public static void main(String args[])

{
Client client = new Client("127.0.0.1", 5000);

}

}

Server Programming

• A ServerSocket which waits for the client requests (when a client makes a

new Socket())

• A plain old Socket socket to use for communication with the client.

Communication

getOutputStream() method is used to send the output through the socket.

Close the Connection

After finishing, it is important to close the connection by closing the socket as

well as input/output streams.

// A Java program for a Server

import java.net.*;

import java.io.*;

public class Server

{

//initialize socket and input stream

private Socket socket = null;

private ServerSocket server = null;

private DataInputStream in = null;

// constructor with port

public Server(int port)
{

// starts server and waits for a connection

try

{

server = new ServerSocket(port);

System.out.println("Server started");

System.out.println("Waiting for a client ...");

socket = server.accept();

System.out.println("Client accepted");

// takes input from the client socket

in = new DataInputStream(

new BufferedInputStream(socket.getInputStream()));

String line = "";

// reads message from client until "Over" is sent

while (!line.equals("Over"))
{

try

{

line = in.readUTF();

System.out.println(line);

}

catch(IOException i)

{

System.out.println(i);

}

}
System.out.println("Closing connection");

// close connection

socket.close();

in.close();

}
catch(IOException i)

{
System.out.println(i);

}

}

public static void main(String args[])

{

Server server = new Server(5000);
}

}

• Server application makes a ServerSocket on a specific port which is 5000.

This starts our Server listening for client requests coming in for port 5000.

• Then Server makes a new Socket to communicate with the client.

socket = server.accept()

• The accept() method blocks(just sits there) until a client connects to the

server.

• Then we take input from the socket using getInputStream() method. Our

Server keeps receiving messages until the Client sends “Over”.

• After we’re done we close the connection by closing the socket and the input

stream.

• To run the Client and Server application on your machine, compile both of

them. Then first run the server application and then run the Client

application.

Group Chat Application

import java.net.*;

import java.io.*;

import java.util.*;

public class GroupChat

{

private static final String TERMINATE = "Exit";

static String name;

static volatile boolean finished = false;

public static void main(String[] args)
{

if (args.length != 2)

System.out.println("Two arguments required: <multicast-host>

<port-number>");

else

{

try

{

InetAddress group = InetAddress.getByName(args[0]);

int port = Integer.parseInt(args[1]);

Scanner sc = new Scanner(System.in);

System.out.print("Enter your name: ");

name = sc.nextLine();
MulticastSocket socket = new MulticastSocket(port);

// Since we are deploying

socket.setTimeToLive(0);

//this on localhost only (For a subnet set it as 1)

socket.joinGroup(group);

Thread t = new Thread(new

ReadThread(socket,group,port));

// Spawn a thread for reading messages

t.start();

// sent to the current group

System.out.println("Start typing messages...\n");

while(true)
{

String message;

message = sc.nextLine();

if(message.equalsIgnoreCase(GroupChat.TERMINATE))

{

finished = true;

socket.leaveGroup(group);

socket.close();

break;

}

message = name + ": " + message;

byte[] buffer = message.getBytes();

DatagramPacket datagram = new

DatagramPacket(buffer,buffer.length,group,port);

socket.send(datagram);
}

}
catch(SocketException se)

{

System.out.println("Error creating socket");

se.printStackTrace();
}

catch(IOException ie)

{

socket");

}

}

}

}

System.out.println("Error reading/writing from/to

ie.printStackTrace();

class ReadThread implements Runnable

{

private MulticastSocket socket;

private InetAddress group;

private int port;

private static final int MAX_LEN = 1000;

ReadThread(MulticastSocket socket,InetAddress group,int port)
{

this.socket = socket;

this.group = group;

this.port = port;

}

@Override

public void run()

{
while(!GroupChat.finished)

{

try

{

}

catch(IOException e)

{

System.out.println("Socke

t closed!");

}

}

}

}

byte[] buffer = new byte[ReadThread.MAX_LEN];

DatagramPacket datagram = new

DatagramPacket(buffer,buffer.length,group,port);

String message;

socket.receive(datagram);

message = new

String(buffer,0,datagram.getLength(),"UTF-8");

if(!message.startsWith(GroupChat.name))

System.out.println(message);

FUTURE SCOPE

With the knowledge we have gained by developing this application, we are confident

that in the future we can make the application more effectively by adding this services.

• Extending this application by providing Authorisation service.

• Creating Database and maintaining users.

• Increasing the effectiveness of the application by providing Voice Chat.

• Extending it to Web Support.

Conclusion

There is always a room for improvements in any apps. Right now, we are just dealing

with text communication. There are several android apps which serve similar purpose

as this project, but these apps were rather difficult to use and provide confusing

interfaces. A positive first impression is essential in human relationship as well as in

human computer interaction. This project hopes to develop a chat service Android app

with high quality user interface. In future we may be extended to include features such

as:

1. CSS to beautify the project

2. File Transfer

REFERENCES

• www.wikipedia.com

• www.forbes.com

http://www.wikipedia.com/

