
A Project Report

on

Deepfake in Picture using Autoencoder

Submitted in partial fulfillment of the

requirement for the award of the degree

of

Bachelor of Technology in Computer Science and

Engineering

Under The Supervision of

Mr. Padmanabhan P.

Assistant Professor

Department of Computer Science and Engineering

Submitted By

20SCSE1010776- ANIKET GUPTA

20SCSE1010777- RISHABH CHAUDHARY

SCHOOL OF COMPUTING SCIENCE AND ENGINEERING

DEPARTMENT OF COMPUTER SCIENCE AND

ENGINEERING GALGOTIAS UNIVERSITY, GREATER

NOIDA, INDIA DECEMBER - 2021

SCHOOL OF COMPUTING

SCIENCE AND ENGINEERING

GALGOTIAS UNIVERSITY, GREATER

NOIDA

CANDIDATE’S DECLARATION

I/We hereby certify that the work which is being presented in the project, entitled “Deepfake in

Picture using Autoencoder” in partial fulfillment of the requirements for the award of the

BACHELOR OF TECHNOLOGY IN COMPUTER SCIENCE AND ENGINEERING

submitted in the School of Computing Science and Engineering of Galgotias University,

Greater Noida, is an original work carried out during the period of JULY-2021 to

DECEMBER-2021, under the supervision of Mr. Padmanabhan P., Assistant Professor,

Department of Computer Science and Engineering of School of Computing Science and

Engineering, Galgotias University, Greater Noida

The matter presented in the project has not been submitted by me/us for the award of any

other degree of this or any other places.

20SCSE1010776- ANIKET GUPTA

20SCSE1010777 – RISHABH CHAUDHARY

This is to certify that the above statement made by the candidates is correct to the best of my

knowledge.

Supervisor

(Mr. Padmanabhan P, Assistant

Professor)

 CERTIFICATE

The Final Thesis/Project/ Dissertation Viva-Voce examination of 20SCSE1010776 – ANIKET

GUPTA, 20SCSE1010777 – RISHABH CHAUDHARY has been held on _ and

his/her work is recommended for the award of BACHELOR OF TECHNOLOGY IN

COMPUTER SCIENCE AND ENGINEERING.

Signature of Examiner(s) Signature of Supervisor(s)

Signature of Project Coordinator Signature of Dean

Date:

Place:

ABSTRACT

Generative neural networks are usually the most essential part of

deepfake, a technique of image-to-image translation, designed to

combine and overlay objects in images or videos creating deceptively

realistic counterfeits. In this paper, four leading methods used for

deepfake generation: autoencoders, variational autoencoders, variational

autoencoders generative adversarial networks and cycle generative

adversarial networks, in problem of face-to-face conversion, are

analyses. We present results of experiments conducted on face-swapping

task, performed on specially preprocessed data from VoxCeleb2 dataset.

Due to the lack of numerical methods for deepfake comparison, a

descriptive assessment method was proposed, and all obtained results

were rated in a visual evaluation process. General conclusions

concerning applicability of considered approaches to deepfake

generation problem were formulated.

Table of Contents

Title
Page

No.

Candidates Declaration

Acknowledgement

Abstract

List of Table

List of

Figures

Acronyms

Chapter 1 Introduction 1

• DEEPFAKE 2

• FACE SWAP AND ETC

Chapter 2 Literature Survey/Project Design 5

Chapter 3 Functionality/Working of Project 9

Chapter 4 Results and Discussion 11

Chapter 5 Conclusion and Future Scope 41

• Conclusion 41

• Future Scope 42

Reference 43

Publication/Copyright/Product 45

List of Figures

S.No. Caption Page No.

1 Arrangement of Dart Files and Packages 9

2 Architectural Layers of Flutter 10

3 Class Diagram 12

4 Sequence Diagram 18

List of Tables

S.No. Title Page No.

1 Data Table 6

2 Information Data 11

3

4

Acronyms

SVM Support Vector Maching

ML Machine Learning

DL Deep Learning

CNN Convolution Neural Networks

CHAPTER-1

Introduction

Machine learning has found many different

applications in the field of image data processing and

computer vision. From picture classification to

image denoising and resolution enhancement, deep

neural networks has gained the opinion of

exceptionally useful tools. But for some time, a new,

controversial use-case has been getting more and

more attention: so-called deepfake technology has

opened doors to many new possibilities of picture

generation, but also raised many issues of moral and

legal matters.

Deepfake is a machine learning technology

designed to combine and overlay objects in images

or videos, creating deceptively realistic counterfeits.

It is usually based on generative neural networks,

such as various kinds of autoen- coders (AE),

generative adversarial networks (GAN), or

CycleGAN networks. Deepfake videos, almost

impossible to distinguish with the naked eye, are

created for entertainment purposes on many

YouTube channels as for example “Ctrl Shift Face”.

Many of them are created with one of the most

advanced ready to use, open-source tool for

deepfake generation “DeepFaceLab” which allows

generating exceptionally believable deepfakes

without having to acquire extensive knowledge in

the field of machine learning. Another, very

effective, open-source tool for creating high-quality

deepfakes is “FaceSwap” project. Although there

are many malicious ways of using deepfake

technology, it might also be used for good reasons.

Besides, to be able to detect such artificial image

modifications it might be vital to understand

algorithms and techniques behind it, especially in

case of various possible applications of this

technology.In this paper, we present results of

experiments conducted on basic building blocks of

deepfake techniques, namely generative neural

networks, used for swapping face images. Four

main approaches were examined and compared on a

task of human faces replacement. In additional to

regular autoencoders, also variational autoencoders

(VAE), variational autoencoder generative

adversarial networks (VAE-GAN) and CycleGAN

were considered. It is, to our knowledge, the first

study aiming at comparing these methods of

generating deepfakes.

Deepfakes are AI-generated synthetic videos of

any person or celebrity that impersonates the actual

person and makes them act or say anything they

originally never did. The process of creation of

deepfakes is technically complex and generally

requires a vast amount of data which is then fed to

a neural network to train and generate the synthetic

video.

Deepfake

Deepfakes are synthetic media in which a person in

an existing image or video is replaced with

someone else's likeness. The act of injecting a fake

person in an image is not new. However, recent

Deepfakes methods usually leverage the recent

advancements of powerful models, aiming at facial

manipulation.

In general, facial manipulation is usually conducted

with Deepfakes and can be categorized in the

following categories:

• Face synthesis

• Face swap

• Facial attributes and expression

Face synthesis

In this category, the objective is to create non-existent

realistic faces using GANs. The most popular

approach is StyleGAN. Briefly, a new generator

architecture learns separation of high-level attributes

(e.g., pose and identity when trained on human faces)

without supervision and stochastic variation in the

generated images (e.g., freckles, hair), and it enables

intuitive, scale-specific control of the synthesis. The

StyleGAN’s generator is shown in Figure 2.

The input is mapped through several fully connected

layers to an intermediate representation w which is

then fed to each convolutional layer through adaptive

instance normalization (AdaIN), where each feature

map is normalized separately. Gaussian noise is

added after each convolution. The benefit of adding

noise directly in the feature maps of each layer is that

global aspects such as identity and pose are

unaffected.

The StyleGAN generator architecture makes it

possible to control the image synthesis via scale-

specific modifications to the styles. The mapping

network and affine transformations are a way to draw

samples for each style from a learned distribution, and

the synthesis network is a way to generate an image

based on a collection of styles. The effects of each

style are localized in the network, i.e., modifying a

specific subset of the styles can be expected to affect

only certain aspects of the image. The reason for this

localization, is based on the AdaIN operation that first

normalizes each channel to zero mean and unit

variance, and only then applies scales and biases

based on the style. The new per-channel statistics, as

dictated by the style, modify the relative importance

of features for the subsequent convolution operation,

but they do not depend on the original statistics

because of the normalization. Thus each style

controls only one convolution before being

overridden by the next AdaIN operation.

Face swap

Face swap is the most popular face manipulation

category nowadays. The aim here is to detect whether

an image or video of a person is fake after swapping

its face. The most popular database with fake and real

videos is Face Forensics++. The fake videos in this

dataset were made using computer graphics (Face

Swap) and deep learning methods (Deepfake Face

Swap). The Face Swap app is written in Python and

uses face alignment, Gauss-Newton optimization, and

image blending to swap the face of a person seen by

the camera with a face of a person in a provided

image. (For further details check the official repo)

The Deepfake Face Swap approach is based on two

autoencoders with a shared encoder that are trained to

reconstruct training images of the source and the

target face, respectively.

A face in a target sequence is replaced by a face that

has been observed in a source video or image

collection. A face detector is used to crop and to align

the images. To create a fake image, the trained

encoder and decoder of the source face are applied to

the target face. The autoencoder output is then

blended with the rest of the image using Poisson

image editing.

• a CNN-based system trained through

handcrafted features

• a CNN-based system with convolution layers

that try to suppress the high-level content of the

image

• a CNN-based system with a global pooling layer

that computes four statistics (mean, variance,

maximum, and minimum)

• the CNN MesoInception-4 detection system

• the CNN-based system XceptionNet pre-trained

using ImageNet dataset and trained again for the

face swap task. XceptionNet is a CNN

architecture inspired from Inception and uses

depth-wise separable convolutions.

Project Design

 State of the art

Although the deepfake idea is relatively new, a few

impressively effective methods has been already

developed. The most frequently chosen approaches,

in case of generative neural networks are

autoencoders, variational au- to encoders,

generative adversarial networks and so called

CycleGAN networks. They are not complete, stand-

alone methods for deepfake generation but rather

key-parts of deepfake generation schemes.

Arrangement of Dart Files and Packages

Architectural Layers of Flutter

Data preprocessing

To prepare dataset best suited for purpose of this

study, following preparations were made:

• Two actors (Leonardo DiCaprio and Robert

Downey Jr.), further called subject X and subject

Y, were chosen as targets of face replacement.

This choice was made based on how well their

faces are known and recognizable, which

facilitates the final assessment.

• From the set of all videos of chosen subjects

available in “VoxCeleb2” dataset, those which

presented subjects in similar age, and had good

recording quality, were selected.

• From each video, every tenth frame was extracted,

to limit the amount of nearly identical images.

Additionally, by Haar feature-based cascade

classifiers, the face itself was cut out from each

extracted frame to discard unnecessary parts of

pictures.

• Resolutions of all obtained face images varied,

therefore data had to be rescaled to a common

resolution of 160 by 160 pixels.

Class Diagram

Autoencoder

Autoencoder is an unsupervised artificial neural

network that learns how to efficiently compress and

encode data then learns how to reconstruct the data

back from the reduced encoded representation to a

representation that is as close to the original input

as possible. Autoencoder, by design, reduces data

dimensions by learning how to ignore the noise in

the data.

Autoencoders are an unsupervised learning

technique in which we leverage neural

networks for the task of representation learning.

Specifically, we'll design a neural network

architecture such that we impose a bottleneck in

the network which forces

a compressed knowledge representation of the

original input. If the input features were

each independent of one another, this compression

and subsequent reconstruction would be a very

difficult task. However, if some sort of structure

exists in the data (i.e. correlations between input

features), this structure can be learned and

consequently leveraged when forcing the input

through the network's bottleneck.

Here is an example of the input/output image from

the dataset

Because neural networks are capable of learning

nonlinear relationships, this can be thought of as a

more powerful (nonlinear) generalization of PCA.

Whereas PCA attempts to discover a lower

dimensional hyperplane which describes the original

data, autoencoders are capable of learning nonlinear

manifolds (a manifold is defined in simple terms as a

continuous, non-intersecting surface). The difference

between these two approaches is visualized below.

https://www.jeremyjordan.me/principal-components-analysis/
http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/
http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

An undercomplete autoencoder has no explicit

regularization term - we simply train our model

according to the reconstruction loss. Thus, our only

way to ensure that the model isn't memorizing the

input data is the ensure that we've sufficiently

restricted the number of nodes in the hidden layer(s).

For deep autoencoders, we must also be aware of

the capacity of our encoder and decoder models.

Even if the "bottleneck layer" is only one hidden

node, it's still possible for our model to memorize

the training data provided that the encoder and

decoder models have sufficient capability to learn

some arbitrary function which can map the data to

an index.

Given the fact that we'd like our model to discover

latent attributes within our data, it's important to

ensure that the autoencoder model is not simply

learning an efficient way to memorize the training

data. Similar to supervised learning problems, we

can employ various forms of regularization to the

network in order to encourage good generalization

properties.

Sequence Diagram

Autoencoder Components:

Autoencoders consists of 4 main parts:

1- Encoder: In which the model learns how to

reduce the input dimensions and compress the input

data into an encoded representation.

2- Bottleneck: which is the layer that contains the

compressed representation of the input data. This is

the lowest possible dimensions of the input data.

3- Decoder: In which the model learns how to

reconstruct the data from the encoded representation

to be as close to the original input as possible.

4- Reconstruction Loss: This is the method that

measures measure how well the decoder is

performing and how close the output is to the

original input.

The training then involves using back propagation in

order to minimize the network’s reconstruction loss.

Autoencoder Architecture

The network architecture for autoencoders can vary

between a simple Feed Forward network, LSTM

network or Convolutional Neural Network

depending on the use case. We will explore some of

those architectures in the new next few lines.

1.Autoencoder for Anomaly Detection

2.Image Denoising

Impact of Deepfakes

Deepfakes and AI avatars can have varying impacts

depending on how it’s used. While the negative

effects of deepfake can be scary and frightening to

imagine, it also can be useful in other circumstances

and use cases.

Pros of Deepfakes-

• Deepfakes can be used as a form of art to bring

people from the past back to life. For example, a

painting of the Mona Lisa can be used for

generating a synthetic image of talking Mona

Lisa as a form of art.

• Deepfake technology can be used to create AI

avatars in training videos. Startups like London-

based Synthesia have been getting more

attention from the corporate world during the

COVID pandemic since lockdowns and health

concerns have made video shoots involving real

people much more difficult to pull off.

• Deepfakes can be used to create personal avatars

to try on clothes or new hairstyles before trying

them in real.

Deepfakes can also be used in identity protection

and anonymization in various fields like

investigative news reporting, finance, etc.

Cons of Deepfakes-

• Deepfakes can be used to spread fake news with

morphed videos of celebrities.

• Deepfakes can also be misused for creating

misinformation campaigns on social media that

can shift public opinion and lead to negative

consequences.

Working of Project

Creating Deepfakes

While deepfakes can be used or misused in multiple

ways, creating them is becoming easier with more

advancements in AI with every passing day.

We can now create a deepfake with just 1 small

source video of the person. Yes, that is now easily

possible with the latest advancements in neural

networks. Read to know more!

Let’s break down the solution into two parts –

• Voice Cloning

• Video Lip Syncing

Voice Cloning part of Deepfakes

SV2TTS is a framework for deep learning that can

be trained to quantify and represent audio as

numbers and parameters based on only a small few

second of audio of the voice of a person. This

numeric depiction of the voice sample can be used to

guide and train a text-to-speech model to generate

new audio with the exact same voice with any text

data as input. Thus, Using the extracted audio from

the sample source video, a voice clone can be easily

created with SV2TTS.

Example of Deepfake

• Deepfake video has also been used in politics. In

2018, for example, a Belgian political party

released a video of Donald Trump giving a

speech calling on Belgium to withdraw from the

Paris climate agreement. Trump never gave that

speech, however - it was a deepfake.

• That was not the first use of a deepfake to create

misleading videos, and tech-savvy political

experts are bracing for a future wave of fake

news that features convincingly realistic

deepfakes.

Flow Diagram of Deepfake in Picture using

Autoencoder

Technical Diagram

Advantages of Deepfake

• In Art:

Star Wars fans are likely aware of the use of

deepfake tech to bring the actor Peter Cushing back

to “life” for 2016’s Rogue One.

• Professional training:

Deepfake technology can be used to create AI

avatars for use in training videos.

• Identity protection:

AI-generated avatars have been used to protect the

identity of interviewees in news reports.

Disadvantages of Deepfake

• Scamming :

Another area of concern is financial scams. Audio

deepfakes have already been used to clone voices

and convince people they are talking to someone

trusted and defraud them. Earlier this year,

scammers used a deepfake of a tech CEOs voice to

try and convince an employee at the company to

transfer money to the scammer’s account.

 And this is not the first time: last year, scammers

using the exact same trick managed to defraud a

company out of $240,000.

• Damage reputations.

• Fabricate evidence.

• Defraud the public.

• Undermine trust in democratic institutions.

SOURCE CODE AND OUTPUT

import numpy as np

import pandas as pd

import os

import matplotlib.pyplot as plt

import cv2

from tensorflow.keras.models import load_model

from sklearn.model_selection import train_test_split

import keras

from keras import layers

from tensorflow.keras.callbacks import ModelCheckpoint

import tensorflow as tf

import time

from PIL import Image

def create_dataset(path):

images = []

for dirname, _, filenames in os.walk(path):

for filename in filenames:

image = cv2.imread(os.path.join(dirname, filename))

image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

image = image.astype('float32')

image /= 255.0

images.append(image)

images = np.array(images)

return images

def deepfake():

faces_1 = create_dataset('/kaggle/input/presidentsfacesdataset/trump/')

faces_2 = create_dataset('/kaggle/input/presidentsfacesdataset/biden/')

X_train_a, X_test_a, y_train_a, y_test_a = train_test_split(faces_1, faces_1, test_size=0.20,

random_state=0)

X_train_b, X_test_b, y_train_b, y_test_b = train_test_split(faces_2, faces_2, test_size=0.15,

random_state=0)

input_img = layers.Input(shape=(120, 120, 3))

x = layers.Conv2D(256,kernel_size=5, strides=2, padding='same',activation='relu')(input_img) x

= layers.MaxPooling2D((2, 2), padding='same')(x)

x = layers.Conv2D(512,kernel_size=5, strides=2, padding='same',activation='relu')(x) x

= layers.MaxPooling2D((2, 2), padding='same')(x)

x = layers.Conv2D(1024,kernel_size=5, strides=2, padding='same',activation='relu')(x) x

= layers.MaxPooling2D((2, 2), padding='same')(x)

x = layers.Flatten()(x)

x = layers.Dense(9216)(x)

encoded = layers.Reshape((3,3,1024))(x)

encoder = keras.Model(input_img, encoded,name="encoder")

decoder_input= layers.Input(shape=((3,3,1024)))

x = layers.Conv2D(1024,kernel_size=5, strides=2, padding='same',activation='relu')(decoder_input) x

= layers.UpSampling2D((2, 2))(x)

x = layers.Conv2D(512,kernel_size=5, strides=2, padding='same',activation='relu')(x) x

= layers.UpSampling2D((2, 2))(x)

x = layers.Conv2D(256,kernel_size=5, strides=2, padding='same',activation='relu')(x) x

= layers.Flatten()(x)

x = layers.Dense(np.prod((120, 120, 3)))(x)

decoded = layers.Reshape((120, 120, 3))(x)

decoder = keras.Model(decoder_input, decoded,name="decoder")

auto_input = layers.Input(shape=(120,120,3))

encoded = encoder(auto_input)

decoded = decoder(encoded)

autoencoder = keras.Model(auto_input, decoded,name="autoencoder")

autoencoder.compile(optimizer=keras.optimizers.Adam(lr=5e-5, beta_1=0.5, beta_2=0.999),

loss='mae')

autoencoder.summary()

checkpoint1 = ModelCheckpoint("/kaggle/working/autoencoder_a.hdf5", monitor='val_loss',

verbose=1,save_best_only=True, mode='auto', period=1)

history1 = autoencoder.fit(X_train_a, X_train_a, epochs=2700, batch_size=512, shuffle=True,

validation_data=(X_test_a, X_test_a), callbacks=[checkpoint1])

%matplotlib inline

plt.figure()

plt.imshow(X_test_a[30])

plt.show()

autoencoder_a = load_model("/kaggle/working/autoencoder_a.hdf5")

output_image = autoencoder_a.predict(np.array([X_test_a[30]]))

plt.figure()

plt.imshow(output_image[0])

plt.show()

checkpoint2 = ModelCheckpoint("/kaggle/working/autoencoder_b.hdf5", monitor='val_loss',

verbose=1,save_best_only=True, mode='auto', period=1)

history2 = autoencoder.fit(X_train_b,

X_train_b,epochs=2700,batch_size=512,shuffle=True,validation_data=(X_test_b,

X_test_b),callbacks=[checkpoint2])

plt.figure()

plt.imshow(X_test_b[0])

plt.show()

autoencoder_b = load_model("/kaggle/working/autoencoder_b.hdf5")

output_image = autoencoder_b.predict(np.array([X_test_b[0]]))

plt.figure()

plt.imshow(output_image[0])

plt.show()

TO LOAD ONLY THE ENCODER A

encoder_a = keras.Model(autoencoder_a.layers[1].input, autoencoder_a.layers[1].output) #

TO LOAD ONLY THE DECODER A

decoder_a = keras.Model(autoencoder_a.layers[2].input, autoencoder_a.layers[2].output) #

TO LOAD ONLY THE ENCODER B

encoder_b = keras.Model(autoencoder_b.layers[1].input, autoencoder_b.layers[1].output) #

TO LOAD ONLY THE DECODER B

decoder_b = keras.Model(autoencoder_b.layers[2].input, autoencoder_b.layers[2].output)

TO TRANSFORM SRC IMAGES

input_test = encoder_a.predict(np.array([X_test_a[30]]))

output_test = decoder_b.predict(input_test)

TO TRANSFORM DST IMAGES

input_test = encoder_b.predict(np.array([X_test_b[30]]))

output_test = decoder_a.predict(input_test)

def convert(input):

for i in range(1, 101, 2):

print(input, "->", i, "%")

time.sleep(1)

showResult(input)

def showResult(input):

cap = cv2.VideoCapture('C:\\Users\\anike\\Downloads\\DeepFakes-main\\deepfakeDFL.mp4')

while(cap.isOpened()):

ret, frame = cap.read() if

ret == True:

gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

cv2.imshow('frame', gray)

& 0xFF is required for a 64-bit system if

cv2.waitKey(20) & 0xFF == ord('q'):

break

else:

break

cap.release()

cv2.destroyAllWindows() def

learningphase():

K.set_learning_phase(1)

Number of CPU cores

num_cpus = os.cpu_count()

Input/Output resolution

RESOLUTION = 64 # 64x64, 128x128, 256x256

assert (RESOLUTION % 64) == 0, "RESOLUTION should be 64, 128, or 256."

Batch size

batchSize = 4

Use motion blurs (data augmentation)

set True if training data contains images extracted from videos

use_da_motion_blur = False

Use eye-aware training

require images generated from prep_binary_masks.ipynb

use_bm_eyes = True

Probability of random color matching (data augmentation)

prob_random_color_match = 0.5

da_config = {

"prob_random_color_match": prob_random_color_match,

"use_da_motion_blur": use_da_motion_blur,

"use_bm_eyes": use_bm_eyes

}

Path to training images

img_dirA = './faceA/rgb'

img_dirB = './faceB/rgb'

img_dirA_bm_eyes = "./faceA/binary_mask"

img_dirB_bm_eyes = "./faceB/binary_mask"

Path to saved model weights

models_dir = "./models"

Architecture configuration

arch_config = {}

arch_config['IMAGE_SHAPE'] = (RESOLUTION, RESOLUTION, 3)

arch_config['use_self_attn'] = True

arch_config['norm'] = "hybrid" # instancenorm, batchnorm, layernorm, groupnorm, none

arch_config['model_capacity'] = "lite" # standard, lite

Loss function weights configuration

loss_weights = {}

loss_weights['w_D'] = 0.1 # Discriminator

loss_weights['w_recon'] = 1. # L1 reconstruction loss

loss_weights['w_edge'] = 0.1 # edge loss

loss_weights['w_eyes'] = 30. # reconstruction and edge loss on eyes area

loss_weights['w_pl'] = (0.01, 0.1, 0.3, 0.1) # perceptual loss (0.003, 0.03, 0.3, 0.3)

Init. loss config.

loss_config = {}

loss_config["gan_training"] = "mixup_LSGAN"

loss_config['use_PL'] = False

loss_config["PL_before_activ"] = True

loss_config['use_mask_hinge_loss'] = False

loss_config['m_mask'] = 0.

loss_config['lr_factor'] = 1.

loss_config['use_cyclic_loss'] = False

def trainig():

train_A = glob.glob(img_dirA+"/*.*")

train_B = glob.glob(img_dirB+"/*.*")

train_AnB = train_A + train_B

for config, value in loss_config.items():

print(f"{config} = {value}")

model = FaceswapGANModel(**arch_config)

model.load_weights(path=save_path)

#vggface = VGGFace(include_top=False, model='resnet50', input_shape=(224, 224, 3)) vggface

= RESNET50(include_top=False, weights=None, input_shape=(224, 224, 3))

vggface.load_weights("rcmalli_vggface_tf_notop_resnet50.h5")

model.build_pl_model(vggface_model=vggface, before_activ=loss_config["PL_before_activ"])

train_batchA = DataLoader(train_A, train_AnB, batchSize, img_dirA_bm_eyes,

RESOLUTION, num_cpus, K.get_session(), **da_config) train_batchB

= DataLoader(train_B, train_AnB, batchSize, img_dirB_bm_eyes,

RESOLUTION, num_cpus, K.get_session(), **da_config)

assert len(train_A), "No image found in " + str(img_dirA)

assert len(train_B), "No image found in " + str(img_dirB)

print ("Number of images in folder A: " + str(len(train_A)))

print ("Number of images in folder B: " + str(len(train_B)))

data_A = train_batchA.get_next_batch()

data_B = train_batchB.get_next_batch()

errDA, errDB = model.train_one_batch_D(data_A=data_A, data_B=data_B)

errDA_sum +=errDA[0]

errDB_sum +=errDB[0]

Train generators for one batch

data_A = train_batchA.get_next_batch()

data_B = train_batchB.get_next_batch()

errGA, errGB = model.train_one_batch_G(data_A=data_A, data_B=data_B)

errGA_sum += errGA[0]

errGB_sum += errGB[0]

for i, k in enumerate(['ttl', 'adv', 'recon', 'edge', 'pl']):

errGAs[k] += errGA[i] errGBs[k]

+= errGB[i]

gen_iterations+=1
convert("Play Convert video")

Conclusion and Future Scope

Deepfake can be used to anonymize voice and faces

to protect their privacy. Deepfakes may be used to

create avatar experiences for individuals online for

self-expression.

Open-source intelligence, i.e., information collected

from public sources on the internet, can be used to

verify the credibility of images, videos, and other

sources. Using open-source techniques, it’s possible

to establish the veracity of a piece of information by

providing a context for it. Because with deepfakes,

it’s impossible to tell if an image or video is real or

not simply by looking at it. You have to go deeper.

Intelligence that indicates whether or not a piece of

information has been manipulated could include

information about when an image or video was

taken, where it was taken, and if it correlates to a

specific event. Decoding a fake could also involve

taking a closer look at the file information. If the

EXIF data has been stripped or changed in any way,

that is an indication that someone wants to hide

something and, therefore, that the file might be

manipulated.

Even though the growing field of innovation around

spotting deepfakes is tremendous, we still have a

long way to go. The problem is that as soon as

someone creates technology that can spot fakes,

someone else creates even better fakes. And with

advances in artificial intelligence, fakes will only

become more sophisticated and realistic over time.

For this reason, it becomes even more critical to take

matters into your own hands and conduct a simple

search of the information existing behind and around

an image or video. With that intelligence you can

create a more comprehensive picture and, ultimately,

discern what is fake and prove what is real.

Deepfake technology facilitates numerous

possibilities in the education domain. Schools and

teachers have been using media, audio, video in the

classroom for quite some time. Deepfakes can help

an educator to deliver innovative lessons that are far

more engaging than traditional visual and media

formats.

