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ABSTRACT 

 

Generative neural networks are usually the most essential part of 

deepfake, a technique of image-to-image translation, designed to 

combine and overlay objects in images or videos creating deceptively 



realistic counterfeits. In this paper, four leading methods used for 

deepfake generation: autoencoders, variational autoencoders, variational 

autoencoders generative adversarial networks and cycle generative 

adversarial networks, in problem of face-to-face conversion, are 

analyses. We present results of experiments conducted on face-swapping 

task, performed on specially preprocessed data from VoxCeleb2 dataset. 

Due to the lack of numerical methods for deepfake comparison, a 

descriptive assessment method was proposed, and all obtained results 

were rated in a visual evaluation process. General conclusions 

concerning applicability of considered approaches to deepfake 

generation problem were formulated. 
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CHAPTER-1 

 

Introduction 
 

 



 

Machine learning has found many different 

applications in the field of image data processing and 

computer vision. From picture classification to 

image denoising and resolution enhancement, deep 

neural networks has gained the opinion of 

exceptionally useful tools. But for some time, a new, 

controversial use-case has been getting more and 

more attention: so-called deepfake technology has 

opened doors to many new possibilities of picture 

generation, but also raised many issues of moral and 

legal matters. 

Deepfake is a machine learning technology 

designed to combine and overlay objects in images 

or videos, creating deceptively realistic counterfeits. 

It is usually based on generative neural networks, 

such as various kinds of autoen- coders (AE), 

generative adversarial networks (GAN), or 

CycleGAN networks. Deepfake videos, almost 

impossible to distinguish with the naked eye, are 

created for entertainment purposes on many 

YouTube channels as for example “Ctrl Shift Face”. 

Many of them are created with one of the most 

advanced ready to use, open-source tool for 

deepfake generation “DeepFaceLab” which allows 



generating exceptionally believable deepfakes 

without having to acquire extensive knowledge in 

the field of machine learning. Another, very 

effective, open-source tool for creating high-quality 

deepfakes is “FaceSwap” project. Although there 

are many malicious ways of using deepfake 

technology, it might also be used for good reasons. 

Besides, to be able to detect such artificial image 

modifications it might be vital to understand 

algorithms and techniques behind it, especially in 

case of various possible applications of this 

technology.In this paper, we present results of 

experiments conducted on basic building blocks of 

deepfake techniques, namely generative neural 

networks, used for swapping face images. Four 

main approaches were examined and compared on a 

task of human faces replacement. In additional to 

regular autoencoders, also variational autoencoders 

(VAE), variational autoencoder generative 

adversarial networks (VAE-GAN) and CycleGAN 

were considered. It is, to our knowledge, the first 

study aiming at comparing these methods of 

generating deepfakes. 



Deepfakes are AI-generated synthetic videos of 

any person or celebrity that impersonates the actual 

person and makes them act or say anything they 

originally never did. The process of creation of 

deepfakes is technically complex and generally 

requires a vast amount of data which is then fed to 

a neural network to train and generate the synthetic 

video. 

 

Deepfake 

Deepfakes are synthetic media in which a person in 

an existing image or video is replaced with 

someone else's likeness. The act of injecting a fake 

person in an image is not new. However, recent 

Deepfakes methods usually leverage the recent 

advancements of powerful models, aiming at facial 

manipulation. 

In general, facial manipulation is usually conducted 

with Deepfakes and can be categorized in the 

following categories: 

• Face synthesis 

• Face swap 

• Facial attributes and expression 



Face synthesis 

In this category, the objective is to create non-existent 

realistic faces using GANs. The most popular 

approach is StyleGAN. Briefly, a new generator 

architecture learns separation of high-level attributes 

(e.g., pose and identity when trained on human faces) 

without supervision and stochastic variation in the 

generated images (e.g., freckles, hair), and it enables 

intuitive, scale-specific control of the synthesis. The 

StyleGAN’s generator is shown in Figure 2. 

The input is mapped through several fully connected 

layers to an intermediate representation w which is 

then fed to each convolutional layer through adaptive 

instance normalization (AdaIN), where each feature 

map is normalized separately. Gaussian noise is 

added after each convolution. The benefit of adding 

noise directly in the feature maps of each layer is that 

global aspects such as identity and pose are 

unaffected. 

The StyleGAN generator architecture makes it 

possible to control the image synthesis via scale-

specific modifications to the styles. The mapping 

network and affine transformations are a way to draw 

samples for each style from a learned distribution, and 



the synthesis network is a way to generate an image 

based on a collection of styles. The effects of each 

style are localized in the network, i.e., modifying a 

specific subset of the styles can be expected to affect 

only certain aspects of the image. The reason for this 

localization, is based on the AdaIN operation that first 

normalizes each channel to zero mean and unit 

variance, and only then applies scales and biases 

based on the style. The new per-channel statistics, as 

dictated by the style, modify the relative importance 

of features for the subsequent convolution operation, 

but they do not depend on the original statistics 

because of the normalization. Thus each style 

controls only one convolution before being 

overridden by the next AdaIN operation. 

 

 

Face swap 

Face swap is the most popular face manipulation 

category nowadays. The aim here is to detect whether 

an image or video of a person is fake after swapping 

its face. The most popular database with fake and real 

videos is Face Forensics++. The fake videos in this 



dataset were made using computer graphics (Face 

Swap) and deep learning methods (Deepfake Face 

Swap). The Face Swap app is written in Python and 

uses face alignment, Gauss-Newton optimization, and 

image blending to swap the face of a person seen by 

the camera with a face of a person in a provided 

image. (For further details check the official repo) 

The Deepfake Face Swap approach is based on two 

autoencoders with a shared encoder that are trained to 

reconstruct training images of the source and the 

target face, respectively. 

A face in a target sequence is replaced by a face that 

has been observed in a source video or image 

collection. A face detector is used to crop and to align 

the images. To create a fake image, the trained 

encoder and decoder of the source face are applied to 

the target face. The autoencoder output is then 

blended with the rest of the image using Poisson 

image editing. 

• a CNN-based system trained through 

handcrafted features 

• a CNN-based system with convolution layers 

that try to suppress the high-level content of the 

image 



• a CNN-based system with a global pooling layer 

that computes four statistics (mean, variance, 

maximum, and minimum) 

• the CNN MesoInception-4 detection system 

• the CNN-based system XceptionNet pre-trained 

using ImageNet dataset and trained again for the 

face swap task. XceptionNet is a CNN 

architecture inspired from Inception and uses 

depth-wise separable convolutions. 

 

 

Project Design 

 

 

 State of the art 

 

Although the deepfake idea is relatively new, a few 

impressively effective methods has been already 

developed. The most frequently chosen approaches, 

in case of generative neural networks are 

autoencoders, variational au- to encoders, 

generative adversarial networks and so called 

CycleGAN networks. They are not complete, stand-



alone methods for deepfake generation but rather 

key-parts of deepfake generation schemes. 

 

 
Arrangement of Dart Files and Packages 
 
 
 
 
 
 

 

 

 

 

 
 

 

 



 

 
Architectural Layers of Flutter 

 

 
 

Data preprocessing 

 

To prepare dataset best suited for purpose of this 

study, following preparations were made: 

 



• Two actors (Leonardo DiCaprio and Robert 

Downey Jr.), further called subject X and subject 

Y, were chosen as targets of face replacement. 

This choice was made based on how well their 

faces are known and recognizable, which 

facilitates the final assessment. 

• From the set of all videos of chosen subjects 

available in “VoxCeleb2” dataset, those which 

presented subjects in similar age, and had good 

recording quality, were selected. 

• From each video, every tenth frame was extracted, 

to limit the amount of nearly identical images. 

Additionally, by Haar feature-based cascade 

classifiers, the face itself was cut out from each 

extracted frame to discard unnecessary parts of 

pictures. 

• Resolutions of all obtained face images varied, 

therefore data had to be rescaled to a common 

resolution of 160 by 160 pixels. 

 

 

 

 

 



 

 

 

 

Class Diagram 

 

 
 

Autoencoder 

 

Autoencoder is an unsupervised artificial neural 

network that learns how to efficiently compress and 

encode data then learns how to reconstruct the data 

back from the reduced encoded representation to a 

representation that is as close to the original input 

as possible. Autoencoder, by design, reduces data 



dimensions by learning how to ignore the noise in 

the data. 

Autoencoders are an unsupervised learning 

technique in which we leverage neural 

networks for the task of representation learning. 

Specifically, we'll design a neural network 

architecture such that we impose a bottleneck in 

the network which forces 

a compressed knowledge representation of the 

original input. If the input features were 

each independent of one another, this compression 

and subsequent reconstruction would be a very 

difficult task. However, if some sort of structure 

exists in the data (i.e. correlations between input 

features), this structure can be learned and 

consequently leveraged when forcing the input 

through the network's bottleneck. 



 

Here is an example of the input/output image from 

the dataset 



 

 

Because neural networks are capable of learning 

nonlinear relationships, this can be thought of as a 



more powerful (nonlinear) generalization of PCA. 

Whereas PCA attempts to discover a lower 

dimensional hyperplane which describes the original 

data, autoencoders are capable of learning nonlinear 

manifolds (a manifold is defined in simple terms as a 

continuous, non-intersecting surface). The difference 

between these two approaches is visualized below. 

https://www.jeremyjordan.me/principal-components-analysis/
http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/
http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/


An undercomplete autoencoder has no explicit 

regularization term - we simply train our model 

according to the reconstruction loss. Thus, our only 

way to ensure that the model isn't memorizing the 

input data is the ensure that we've sufficiently 

restricted the number of nodes in the hidden layer(s). 

For deep autoencoders, we must also be aware of 

the capacity of our encoder and decoder models. 



Even if the "bottleneck layer" is only one hidden 

node, it's still possible for our model to memorize 

the training data provided that the encoder and 

decoder models have sufficient capability to learn 

some arbitrary function which can map the data to 

an index. 

Given the fact that we'd like our model to discover 

latent attributes within our data, it's important to 

ensure that the autoencoder model is not simply 

learning an efficient way to memorize the training 

data. Similar to supervised learning problems, we 

can employ various forms of regularization to the 

network in order to encourage good generalization 

properties. 

 

 

Sequence Diagram 



 



 

Autoencoder Components: 

Autoencoders consists of 4 main parts: 

1- Encoder: In which the model learns how to 

reduce the input dimensions and compress the input 

data into an encoded representation. 

2- Bottleneck: which is the layer that contains the 

compressed representation of the input data. This is 

the lowest possible dimensions of the input data. 



3- Decoder: In which the model learns how to 

reconstruct the data from the encoded representation 

to be as close to the original input as possible. 

4- Reconstruction Loss: This is the method that 

measures measure how well the decoder is 

performing and how close the output is to the 

original input. 

The training then involves using back propagation in 

order to minimize the network’s reconstruction loss. 



Autoencoder Architecture 

The network architecture for autoencoders can vary 

between a simple Feed Forward network, LSTM 

network or Convolutional Neural Network 

depending on the use case. We will explore some of 

those architectures in the new next few lines. 

1.Autoencoder for Anomaly Detection 

2.Image Denoising 



 

Impact of Deepfakes 

Deepfakes and AI avatars can have varying impacts 

depending on how it’s used. While the negative 

effects of deepfake can be scary and frightening to 

imagine, it also can be useful in other circumstances 

and use cases. 

Pros of Deepfakes- 

• Deepfakes can be used as a form of art to bring 

people from the past back to life. For example, a 

painting of the Mona Lisa can be used for 

generating a synthetic image of talking Mona 

Lisa as a form of art. 



• Deepfake technology can be used to create AI 

avatars in training videos. Startups like London-

based Synthesia have been getting more 

attention from the corporate world during the 

COVID pandemic since lockdowns and health 

concerns have made video shoots involving real 

people much more difficult to pull off. 

• Deepfakes can be used to create personal avatars 

to try on clothes or new hairstyles before trying 

them in real. 

Deepfakes can also be used in identity protection 

and anonymization in various fields like 

investigative news reporting, finance, etc. 

Cons of Deepfakes- 

• Deepfakes can be used to spread fake news with 

morphed videos of celebrities. 

• Deepfakes can also be misused for creating 

misinformation campaigns on social media that 

can shift public opinion and lead to negative 

consequences. 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

Working of Project 
 

Creating Deepfakes 

While deepfakes can be used or misused in multiple 

ways, creating them is becoming easier with more 

advancements in AI with every passing day. 

We can now create a deepfake with just 1 small 

source video of the person. Yes, that is now easily 

possible with the latest advancements in neural 

networks. Read to know more! 



Let’s break down the solution into two parts – 

• Voice Cloning 

• Video Lip Syncing 

Voice Cloning part of Deepfakes 

SV2TTS is a framework for deep learning that can 

be trained to quantify and represent audio as 

numbers and parameters based on only a small few 

second of audio of the voice of a person. This 

numeric depiction of the voice sample can be used to 

guide and train a text-to-speech model to generate 

new audio with the exact same voice with any text 

data as input. Thus, Using the extracted audio from 

the sample source video, a voice clone can be easily 

created with SV2TTS. 



 

Example of Deepfake 

• Deepfake video has also been used in politics. In 

2018, for example, a Belgian political party 

released a video of Donald Trump giving a 

speech calling on Belgium to withdraw from the 

Paris climate agreement. Trump never gave that 

speech, however - it was a deepfake.  

• That was not the first use of a deepfake to create 

misleading videos, and tech-savvy political 



experts are bracing for a future wave of fake 

news that features convincingly realistic 

deepfakes. 

 

 

Flow Diagram of Deepfake in Picture using 

Autoencoder 



 

Technical Diagram 

 



 

Advantages of Deepfake 

• In Art:  

Star Wars fans are likely aware of the use of 

deepfake tech to  bring the actor Peter Cushing back 

to “life” for 2016’s Rogue One. 

• Professional training:  

Deepfake technology can be used to create AI 

avatars for use in training videos. 



• Identity protection:  

AI-generated avatars have been used to protect the 

identity of interviewees in news reports. 

 

Disadvantages of Deepfake 

• Scamming :  

Another area of concern is financial scams. Audio 

deepfakes have already been used to clone voices 

and convince people they are talking to someone 

trusted and defraud them. Earlier this year, 

scammers used a deepfake of a  tech CEOs voice to 



try and convince an employee at the company to 

transfer money to the scammer’s account.  

 And this is not the first time: last year, scammers 

using the exact same trick  managed to defraud a 

company out of $240,000. 

• Damage reputations. 

• Fabricate evidence. 

• Defraud the public. 

• Undermine trust in democratic institutions. 

 



 

 

 

SOURCE CODE AND OUTPUT 

 

import numpy as np 

import pandas as pd 

import os 

import matplotlib.pyplot as plt 

import cv2 

from tensorflow.keras.models import load_model 

from sklearn.model_selection import train_test_split 

import keras 

from keras import layers 



from tensorflow.keras.callbacks import ModelCheckpoint 

import tensorflow as tf 

import time 

from PIL import Image 
 

 
def create_dataset(path): 

images = [] 

for dirname, _, filenames in os.walk(path): 

for filename in filenames: 

image = cv2.imread(os.path.join(dirname, filename)) 

image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) 

image = image.astype('float32') 

image /= 255.0 

images.append(image) 

images = np.array(images) 

return images 

def deepfake(): 

faces_1 = create_dataset('/kaggle/input/presidentsfacesdataset/trump/') 

faces_2 = create_dataset('/kaggle/input/presidentsfacesdataset/biden/') 

X_train_a, X_test_a, y_train_a, y_test_a = train_test_split(faces_1, faces_1, test_size=0.20, 

random_state=0) 

X_train_b, X_test_b, y_train_b, y_test_b = train_test_split(faces_2, faces_2, test_size=0.15, 

random_state=0) 

 

input_img = layers.Input(shape=(120, 120, 3)) 

x = layers.Conv2D(256,kernel_size=5, strides=2, padding='same',activation='relu')(input_img) x 

= layers.MaxPooling2D((2, 2), padding='same')(x) 

x = layers.Conv2D(512,kernel_size=5, strides=2, padding='same',activation='relu')(x) x 

= layers.MaxPooling2D((2, 2), padding='same')(x) 



x = layers.Conv2D(1024,kernel_size=5, strides=2, padding='same',activation='relu')(x) x 

= layers.MaxPooling2D((2, 2), padding='same')(x) 

x = layers.Flatten()(x) 

x = layers.Dense(9216)(x) 

encoded = layers.Reshape((3,3,1024))(x) 

encoder = keras.Model(input_img, encoded,name="encoder") 

decoder_input= layers.Input(shape=((3,3,1024))) 

x = layers.Conv2D(1024,kernel_size=5, strides=2, padding='same',activation='relu')(decoder_input) x 

= layers.UpSampling2D((2, 2))(x) 

x = layers.Conv2D(512,kernel_size=5, strides=2, padding='same',activation='relu')(x) x 

= layers.UpSampling2D((2, 2))(x) 

x = layers.Conv2D(256,kernel_size=5, strides=2, padding='same',activation='relu')(x) x 

= layers.Flatten()(x) 

x = layers.Dense(np.prod((120, 120, 3)))(x) 

decoded = layers.Reshape((120, 120, 3))(x) 

decoder = keras.Model(decoder_input, decoded,name="decoder") 

auto_input = layers.Input(shape=(120,120,3)) 

encoded = encoder(auto_input) 

decoded = decoder(encoded) 

 

autoencoder = keras.Model(auto_input, decoded,name="autoencoder") 

autoencoder.compile(optimizer=keras.optimizers.Adam(lr=5e-5, beta_1=0.5, beta_2=0.999), 

loss='mae') 

autoencoder.summary() 

checkpoint1 = ModelCheckpoint("/kaggle/working/autoencoder_a.hdf5", monitor='val_loss', 

verbose=1,save_best_only=True, mode='auto', period=1) 

 

history1 = autoencoder.fit(X_train_a, X_train_a, epochs=2700, batch_size=512, shuffle=True, 

validation_data=(X_test_a, X_test_a), callbacks=[checkpoint1]) 



# %matplotlib inline 

plt.figure() 

plt.imshow(X_test_a[30]) 

plt.show() 

autoencoder_a = load_model("/kaggle/working/autoencoder_a.hdf5") 

output_image = autoencoder_a.predict(np.array([X_test_a[30]])) 

plt.figure() 

plt.imshow(output_image[0]) 

plt.show() 

checkpoint2 = ModelCheckpoint("/kaggle/working/autoencoder_b.hdf5", monitor='val_loss', 

verbose=1,save_best_only=True, mode='auto', period=1) 

history2 = autoencoder.fit(X_train_b, 

X_train_b,epochs=2700,batch_size=512,shuffle=True,validation_data=(X_test_b, 

X_test_b),callbacks=[checkpoint2]) 

plt.figure() 

plt.imshow(X_test_b[0]) 

plt.show() 

autoencoder_b = load_model("/kaggle/working/autoencoder_b.hdf5") 

output_image = autoencoder_b.predict(np.array([X_test_b[0]])) 

plt.figure() 

plt.imshow(output_image[0]) 

plt.show() 

# TO LOAD ONLY THE ENCODER A 

encoder_a = keras.Model(autoencoder_a.layers[1].input, autoencoder_a.layers[1].output) # 

TO LOAD ONLY THE DECODER A 

decoder_a = keras.Model(autoencoder_a.layers[2].input, autoencoder_a.layers[2].output) # 

TO LOAD ONLY THE ENCODER B 

encoder_b = keras.Model(autoencoder_b.layers[1].input, autoencoder_b.layers[1].output) # 

TO LOAD ONLY THE DECODER B 

decoder_b = keras.Model(autoencoder_b.layers[2].input, autoencoder_b.layers[2].output) 



 
 

# TO TRANSFORM SRC IMAGES 

input_test = encoder_a.predict(np.array([X_test_a[30]])) 

output_test = decoder_b.predict(input_test) 

 

# TO TRANSFORM DST IMAGES 

input_test = encoder_b.predict(np.array([X_test_b[30]])) 

output_test = decoder_a.predict(input_test) 

def convert(input): 

for i in range(1, 101, 2): 

print(input, "->", i, "%") 

time.sleep(1) 

 

showResult(input) 
 

 
def showResult(input): 

cap = cv2.VideoCapture('C:\\Users\\anike\\Downloads\\DeepFakes-main\\deepfakeDFL.mp4') 

while(cap.isOpened()): 

ret, frame = cap.read() if 

ret == True: 

gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) 

cv2.imshow('frame', gray) 

# & 0xFF is required for a 64-bit system if 

cv2.waitKey(20) & 0xFF == ord('q'): 

break 

else: 

break 

cap.release() 



cv2.destroyAllWindows() def 

learningphase(): 

K.set_learning_phase(1) 
 

# Number of CPU cores 

num_cpus = os.cpu_count() 

 

# Input/Output resolution 

RESOLUTION = 64 # 64x64, 128x128, 256x256 

assert (RESOLUTION % 64) == 0, "RESOLUTION should be 64, 128, or 256." 
 

 
# Batch size 

batchSize = 4 

 

# Use motion blurs (data augmentation) 

# set True if training data contains images extracted from videos 

use_da_motion_blur = False 

 

# Use eye-aware training 

# require images generated from prep_binary_masks.ipynb 

use_bm_eyes = True 

 

# Probability of random color matching (data augmentation) 

prob_random_color_match = 0.5 

 

da_config = { 

"prob_random_color_match": prob_random_color_match, 

"use_da_motion_blur": use_da_motion_blur, 

"use_bm_eyes": use_bm_eyes 



} 

 

 
# Path to training images 

img_dirA = './faceA/rgb' 

img_dirB = './faceB/rgb' 

img_dirA_bm_eyes = "./faceA/binary_mask" 

 

img_dirB_bm_eyes = "./faceB/binary_mask" 
 

 
# Path to saved model weights 

models_dir = "./models" 

 

# Architecture configuration 

arch_config = {} 

arch_config['IMAGE_SHAPE'] = (RESOLUTION, RESOLUTION, 3) 

arch_config['use_self_attn'] = True 

arch_config['norm'] = "hybrid" # instancenorm, batchnorm, layernorm, groupnorm, none 

arch_config['model_capacity'] = "lite" # standard, lite 

 

# Loss function weights configuration 

loss_weights = {} 

loss_weights['w_D'] = 0.1 # Discriminator 

loss_weights['w_recon'] = 1. # L1 reconstruction loss 

loss_weights['w_edge'] = 0.1 # edge loss 

loss_weights['w_eyes'] = 30. # reconstruction and edge loss on eyes area 

loss_weights['w_pl'] = (0.01, 0.1, 0.3, 0.1) # perceptual loss (0.003, 0.03, 0.3, 0.3) 

 

# Init. loss config. 

loss_config = {} 



loss_config["gan_training"] = "mixup_LSGAN" 

loss_config['use_PL'] = False 

loss_config["PL_before_activ"] = True 

loss_config['use_mask_hinge_loss'] = False 

loss_config['m_mask'] = 0. 

loss_config['lr_factor'] = 1. 

loss_config['use_cyclic_loss'] = False 

def trainig(): 

train_A = glob.glob(img_dirA+"/*.*") 
 

train_B = glob.glob(img_dirB+"/*.*") 

train_AnB = train_A + train_B 

for config, value in loss_config.items(): 

print(f"{config} = {value}") 

model = FaceswapGANModel(**arch_config) 

model.load_weights(path=save_path) 

#vggface = VGGFace(include_top=False, model='resnet50', input_shape=(224, 224, 3)) vggface 

= RESNET50(include_top=False, weights=None, input_shape=(224, 224, 3)) 

vggface.load_weights("rcmalli_vggface_tf_notop_resnet50.h5") 

model.build_pl_model(vggface_model=vggface, before_activ=loss_config["PL_before_activ"]) 

train_batchA = DataLoader(train_A, train_AnB, batchSize, img_dirA_bm_eyes, 

RESOLUTION, num_cpus, K.get_session(), **da_config) train_batchB 

= DataLoader(train_B, train_AnB, batchSize, img_dirB_bm_eyes, 

RESOLUTION, num_cpus, K.get_session(), **da_config) 

assert len(train_A), "No image found in " + str(img_dirA) 

assert len(train_B), "No image found in " + str(img_dirB) 

print ("Number of images in folder A: " + str(len(train_A))) 

print ("Number of images in folder B: " + str(len(train_B))) 



data_A = train_batchA.get_next_batch() 

data_B = train_batchB.get_next_batch() 

errDA, errDB = model.train_one_batch_D(data_A=data_A, data_B=data_B) 

errDA_sum +=errDA[0] 

errDB_sum +=errDB[0] 

 

 
# Train generators for one batch 

data_A = train_batchA.get_next_batch() 

data_B = train_batchB.get_next_batch() 

errGA, errGB = model.train_one_batch_G(data_A=data_A, data_B=data_B) 

errGA_sum += errGA[0] 

errGB_sum += errGB[0] 

for i, k in enumerate(['ttl', 'adv', 'recon', 'edge', 'pl']): 
 

errGAs[k] += errGA[i] errGBs[k] 

+= errGB[i] 

gen_iterations+=1 
convert("Play Convert video") 

 

 



 

 



 

 

Conclusion and Future Scope 

Deepfake can be used to anonymize voice and faces 

to protect their privacy. Deepfakes may be used to 

create avatar experiences for individuals online for 

self-expression. 

Open-source intelligence, i.e., information collected 

from public sources on the internet, can be used to 

verify the credibility of images, videos, and other 

sources. Using open-source techniques, it’s possible 

to establish the veracity of a piece of information by 



providing a context for it. Because with deepfakes, 

it’s impossible to tell if an image or video is real or 

not simply by looking at it. You have to go deeper. 

Intelligence that indicates whether or not a piece of 

information has been manipulated could include 

information about when an image or video was 

taken, where it was taken, and if it correlates to a 

specific event. Decoding a fake could also involve 

taking a closer look at the file information. If the 

EXIF data has been stripped or changed in any way, 

that is an indication that someone wants to hide 



something and, therefore, that the file might be 

manipulated. 

Even though the growing field of innovation around 

spotting deepfakes is tremendous, we still have a 

long way to go. The problem is that as soon as 

someone creates technology that can spot fakes, 

someone else creates even better fakes. And with 

advances in artificial intelligence, fakes will only 

become more sophisticated and realistic over time. 

For this reason, it becomes even more critical to take 

matters into your own hands and conduct a simple 

search of the information existing behind and around 



an image or video. With that intelligence you can 

create a more comprehensive picture and, ultimately, 

discern what is fake and prove what is real. 

Deepfake technology facilitates numerous 

possibilities in the education domain. Schools and 

teachers have been using media, audio, video in the 

classroom for quite some time. Deepfakes can help 

an educator to deliver innovative lessons that are far 

more engaging than traditional visual and media 

formats. 

 

 

 

 

 

 



 

 

 

 



 



 

 

 

 



 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


