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ABSTRACT 

 

 
In this paper, we propose a solution to transforming pho- tos of real world scenes into cartoon 

style images, which is valuable and challenging in computer vision and computer graphics. 

Our solution belongs to learning based methods, which have recently become popular to 

stylize images in artistic forms such as painting.However, existing methods do not produce 

satisfactory results for cartoonization, due to the fact that (1) cartoon styles have unique 

charac- teristics with high level simplification and abstraction, and(2) cartoon images tend to 

have clear edges, smooth color shading and relatively simple textures, which exhibit signif- 

icant challenges for texture-descriptor-based loss functions used in existing methods. In this 

paper, we propose Car- toonGAN, a generative adversarial network (GAN) frame- work for 

cartoon stylization. Our method takes unpaired photos and cartoon images for training, which 

is easy to use. Two novel losses suitable for cartoonization are pro- posed: (1) a semantic 

content loss, which is formulated as a sparse regularization in the high-level feature maps of 

the VGG network to cope with substantial style variation between photos and cartoons, and 

(2) an edge-promoting adversarial loss for preserving clear edges. We further in- troduce an 

initialization phase, to improve the convergence of the network to the target manifold. Our 

method is also much more efficient to train than existing methods. Exper- imental results 

show that our method is able to generate high-quality cartoon images from real-world photos. 
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1. INTRODUCTION 

 
Cartoons are an artistic form widely used in our daily life. In addition to artistic 

interests, their applications range from publication in printed media to 

storytelling for children’s education. Like other forms of artworks, many 

famous cartoon images were created based on real-world scenes. 
 

 

 

 

Figure1 

Figure1 . shows a real-world scene whose cor-responding cartoon image appeared in 

the animated film “Your Name”. However, manually recreating real- world scenes in 

cartoon styles is very laborious and involves substantial artistic skills. To obtain 

high-quality cartoons, artists have to draw every single line and shade each color 

region of target scenes. Meanwhile, existing image editing software/algorithms with 

standard features cannot produce satisfactory results for cartoonization. Therefore, 

specially designed techniques that can automatically transform real- world photos to 

high-quality cartoon style images are very helpful and for artists, tremendous amount 

of time can be saved so that they can focus on more creative work. Such tools also 

provide a useful addition to photo editing soft- ware such as Instagram and 

Photoshop. Stylizing images in an artistic manner has been widely studied in the 

domain of non-photorealistic rendering . 

Traditional approaches develop dedicated algorithms for specific styles.However, 

substantial efforts are required to produce fine-grained styles that mimic individual 

artists. Recently, learning-based style transfer methods in which an image can be 

stylized based on provided ex- amples, have drawn considerable attention. In 
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particular, the power of Generative Adversarial Networks (GANs) formulated in a 

cyclic manner is explored to achieve high- quality style transfer, with the distinct 

feature that the model is trained using unpaired photos and stylized images. Although 

significant success has been achieved with learning based stylization, state-of-the- 

art methods fail to produce cartoonized images with acceptable quality. There are 

two reasons. First, instead of adding textures such as brush strokes in many other 

styles,cartoon images are highly simplified and abstracted from real- world photos. 

Second, despite variation of styles among artists cartoon images have noticeable 

common appearance — clear edges, smooth color shading and relatively simple 

textures — which is very different from other forms of artworks. In this paper, we 

propose CartoonGAN, a novel GAN- based approach to photo cartoonization. Our 

method takes a set of photos and a set of cartoon images for training. To produce 

high quality results while making the training data easy to obtain, we do not require 

pairing or correspondence between two sets of images. From the perspective of com- 

puter vision algorithms, the goal of cartoon stylization is to map images in the photo 

manifold into the cartoon mani- fold while keeping the content unchanged. To 

achieve this goal, we propose to use a dedicated GAN- based architec- ture together 

with two simple yet effective loss functions. The main contributions of this paper 

are: 

(1) We propose a dedicatedGAN-based approach that effectively learns the mapping 

from real-world photos to car- toon images using unpaired image sets for training. 

Our method is able to generate high-quality stylized cartoons, which are substantially 

better than state-of-the-art methods. When cartoon images from individual artists are 

used for training, our method is able to reproduce their styles. 

(2) We propose two simple yet effective loss functions in GAN-based architecture. 

In the generative network, to cope with substantial style variation between photos 

and car- toons, we introduce a semantic loss defined as an ℓ1 sparse regularization 

in the high-level feature maps of the VGG network . In the discriminator network, 

we propose an edge-promoting adversarial loss for preserving clear edges. 

(3) We further introduce an initialization phase to im- prove the convergence of the 

network to the target manifold. Our method is much more efficient to train than 

existing methods. 

But Machine Learning is constantly evolving thus expanding in almost every field. 

And research work done by Xinrui Wang and Jinze Yu has enabled us to cartoonize 

real high-quality images with just a little training. 

The process of converting real-life high-quality pictures into practical cartoon scenes 

is known as cartoonization. 

Earlier models that proposed the same approach used black-box models, the former 

model achieves great accuracies but downturns the stylization quality causing some 

bad cases. Like, every cartoon workflow considers different features, these variations 

pose a relevant effect on black-box models. 

https://towardsai.net/p/machine-learning/what-is-machine-learning-ml-b58162f97ec7
https://towardsai.net/p/machine-learning/what-is-machine-learning-ml-b58162f97ec7
https://systemerrorwang.github.io/White-box-Cartoonization/paper/06791.pdf
https://systemerrorwang.github.io/White-box-Cartoonization/paper/06791.pdf
https://systemerrorwang.github.io/White-box-Cartoonization/paper/06791.pdf
https://systemerrorwang.github.io/White-box-Cartoonization/paper/06791.pdf
https://systemerrorwang.github.io/White-box-Cartoonization/paper/06791.pdf
https://github.com/SystemErrorWang
https://github.com/SystemErrorWang
https://github.com/SystemErrorWang
https://github.com/SystemErrorWang
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To overcome the drawbacks of the former model, more emphasis was given upon 

human painting behaviors and cartoon images of different styles, and a white-box 

model was developed. 

The model decomposes images into three different cartoon representations, which 

further counsel the network optimization to generate cartoonized images. 

Surface Representation: It helps to extract smooth surfaces of the image that 

contains a weighted low-frequency component where the color composition and 

surface texture are retained along with edges, textures, and details. 

Structure Representation: It helps to derive global structural information and 

sparse color blocks, once done we implement adaptive coloring algorithms like the 

Felzenswalb algorithm to develop structural representation that can help us to 

generate sparse visual effects for celluloid styled cartoon process. 

Textured Representation: It helps us to retain painted details and edges. The three- 

dimensional image is converted to single-channel intensity map that helps to retain 

pixel intensity compromising color and luminance, it follows the approach of manual 

artist that first draw a line sketch with contours and then apply colors to it. The 

extracted outputs are fed to a Generative Neural Networks (GAN) framework, which 

helps to optimize our problem making the solution more flexible and diversified. 

https://towardsai.net/p/machine-learning/machine-learning-algorithms-for-beginners-with-python-code-examples-ml-19c6afd60daa
https://towardsai.net/p/machine-learning/machine-learning-algorithms-for-beginners-with-python-code-examples-ml-19c6afd60daa
https://towardsai.net/p/machine-learning/building-neural-networks-from-scratch-with-python-code-and-math-in-detail-i-536fae5d7bbf
https://towardsai.net/p/machine-learning/building-neural-networks-from-scratch-with-python-code-and-math-in-detail-i-536fae5d7bbf
https://towardsai.net/p/machine-learning/building-neural-networks-from-scratch-with-python-code-and-math-in-detail-i-536fae5d7bbf
https://towardsai.net/p/machine-learning/main-types-of-neural-networks-and-its-applications-tutorial-734480d7ec8e
https://towardsai.net/p/machine-learning/main-types-of-neural-networks-and-its-applications-tutorial-734480d7ec8e
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Figure2 

 

 

2. Proposed Approach 

PREPROCESSING 

Along with the proposed three-step approach, preprocessing is an important part of 

our model. It helps to smoothen the image, filter the features, converting it to 

sketches, and translating the output from a domain to another. After implementing 

these related work we can be sure that the output generated by our model will give 

us the best output that retains the highest quality features. 

• Super-pixel and Structure Extraction: This method is used to divide the 

image into regions and defining a predicate for measuring the boundary 

between two regions. Based on the predicate segmentation, an algorithm is 

https://towardsai.net/p/data-science/arketing-analytics-insights-using-machine-learning-338bb94acc14
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developed whose decision is based on a greedy technique but still helps to 

satisfy global properties. After identification of contours, we implement 

Gradient Ascent to initialize the image with rough clusters and iteratively 

amend the clusters until convergence. Advancing our process, to develop a 

cartoon-like segmentation method we use the Felzenszwalb algorithm that 

helps us to seize global content information and produce practically usable 

results for celluloid style cartoon workflows. 
 

Figure3 

 
• Image Smoothening: To extract smooth and cartoon resembling surfaces 

from images, Guided filters are used. A guided filter is an advanced version 

of Bilateral filters with better near the edge behavior. The goal is simply 

removing/significantly decreasing the noise and obtaining useful image 

structures. The filtering output of the guided filter is an optimal linear 

transform of an input image. Following the approach of Bilateral filters it 

retains smoothing property and in addition, is free from gradient reversal 

artifacts. 
 

Figure 4 

https://towardsai.net/p/data-science/arketing-analytics-insights-using-machine-learning-338bb94acc14
https://sponsors.towardsai.net/
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• Non-photorealisticRendering: It helps to convert images into artistic styles 

such as sketching, painting, and water-coloring. To expand its functionality 

we use it with Neural Style Transfer Methods that helps to sum up the style 

of one image and another. The combined piece of code helps to mark semantic 

edges while segregating image details. But in the “White box cartoonization” 

method a single image is utilized and learns cartoonist features from a set of 

animated visuals allowing our model to produce high-quality output on diverse 

cases. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

. 

Figure5 

 

• Generative Adversarial Network-It is an image synthesizer that helps to 

generate new data using joint probability. To generate new images it uses 

Generator and Discriminator. The generator makes images and 

Discriminator checks images to be real or fake and then sends feedback to 

the generator thus asking him to generate better data. The more both networks 

are trained, the better images we get. 
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Figure6 

 
• Image-to-Image Translation: The drawback with GAN is, it only works for 

given training data, but paired training data isn’t always available. To 

overcome the drawback we employ cycleGAN where the goal is to translate 

an image from a source domain X to a target domain Y even in absence of 

paired training data. 

https://towardsai.net/p/machine-learning/best-datasets-for-machine-learning-and-data-science-d80e9f030279
https://towardsai.net/p/machine-learning/best-datasets-for-machine-learning-and-data-science-d80e9f030279
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Figure7 

 
To continue with the process, we segregate image features which enforces the network to 

learn different features with separate objectives, making the process more robust. 

2. LITERATURE SURVEY Related 

Work 
 

Non-photorealistic rendering (NPR) 

 
Many NPR algorithms have been developed, either au- tomatically or semi- 

automatically, to mimic specific artis- tic styles including cartoons . Some works 

render 3D shapes in simple shading, which creates cartoon-like ef- fect . Such 

techniques called cel shading can save substantial amount of time for artists and have 

been used in the creation of games as well as cartoon videos and movies However, 

turning existing photos or videos into cartoons such as the problem studied in this 

paper is much more challenging. 

A variety of methods have been developed to create im- ages with flat shading, 

mimicking cartoon styles. Such methods use either image filtering or formulations 

in optimization problems . However, it is difficult to cap- ture rich artistic styles 

using simple mathematical formulas. In particular, applying filtering or optimization 

uniformly to the entirely image does not give the high-level abstrac- tion that an artist 

would normally do, such as making object boundaries clear. To improve the results, 

alternative meth- ods rely on segmentation of images/videos , although at the costof 
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requiring someuser interaction. Dedicated meth- ods have also been developed for 

portraits , where semantic segmentation can be derived automatically by de- tecting 

facial components. However, such methods cannot cope with general images. 

 
Stylization with neural networks 

 
Convolutional Neural Networks (CNNs) have received considerable attention for 

solving many computer vision problems. Instead of developing specific NPR al- 

gorithms which require substantial effort for each style, style transfer has been 

actively researched. Unlike tradi- tional style transfer methods which require paired 

style/non-style images, recent studies show that the VGG network trained for object 

recognition has good ability to extract semantic features of objects, which is very 

important in stylization. As a result, more powerful style transfer methods have been 

developed which do not require paired training images. 

 
Given a style image and a content image, Gatys et al. first proposed a neural style 

transfer (NST) method based on CNNs that transfers the style from the style image 

to the content image. They use the feature maps of a pre-trained VGG network to 

represent the content and optimize the re- sult image, such that it retains the content 

from the content image while matching the texture information of the style image, 

where the texture is described using the global Gram matrix . It produces nice results 

for transferring a vari- ety of artistic styles automatically. However, it requires the 

content and style images to be reasonably similar. Further- more, when images 

contain multiple objects, it may transfer styles to semantically different regions. The 

results for car- toon style transfer are more problematic, as they often fail to 

reproduce clear edges or smooth shading. 

Li and Wand obtained style transfer by local match- ing of CNN feature map sand 

using a Markov Random Field for fusion (CNNMRF). However, local matching can 

make mistakes, resulting in semantically incorrect output. Liao et al. proposed a 

Deep Analogy method which keeps se- mantically meaningful dense 

correspondences between the content and style images while transferring the style. 

They also compare and blend patches in the VGG feature space. Chen et al. proposed 

a method to improve comic style transfer by training a dedicated CNN to classify 

comic/non- comic images. All these methods use a single style image for a content 

image, and the result heavily depends on the chosen style image, as there is inevitable 

ambiguity regard- ing the separation of styles and content in the style image. In 

comparison, our method learns a cartoon style using two sets of images (i.e., real- 

world photos and cartoon images). 
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2.3 Image synthesis with GANs 

 
An alternative, promising approach to image synthesis is to use Generative 

Adversarial Networks (GANs) , which produce state-of-the-art results in many 

applications such as text to image translation, image in painting, image super- 

resolution , etc. The key idea of a GAN model is to train two networks (i.e., a 

generator and a dis- criminator) iteratively, whereby the adversarial loss provided by 

the discriminator pushes the generated images to- wards the target manifold . 

Several works have provided GAN solutions to pixel-to-pixel image synthesis 

problems. However, these methods require paired image sets for the training process 

which is impractical for stylization due to the challenge of obtaining such 

corresponding image sets. 

To address this fundamental limitation, CycleGAN was recently proposed, which is 

a framework able to per- form image translation with unpaired training data. To 

achieve this goal, it trains two sets of GAN models at the same time, mapping from 

class A to class B and from class B to class A respectively. The loss is formulated is 

based on the combined mapping that the map images to the same class. However, 

simultaneously training two GAN models often converges slowly, resulting in a time 

– consuming training process. This method also produces poor results for cartoon 

.Stylization due to the characteristics(i.e., high-levelabstrac- tion and clear edges) of 

cartoon images. As a comparison, our method utilizes a GAN model to learn the 

mapping be- tween photo and cartoon manifolds using unpaired training data. 

Thanks to our dedicated loss functions, our method is able to synthesize high quality 

cartoon images, and can be trained much more efficiently. 

 

2.4. Network architectures 

Many works show that although deep neural networks can potentially improve the 

ability to represent complex functions, they can also be difficult to train because of 

the notorious vanishing gradient problem. The re- cently introduced concept of 

residual blocks is a pow- erful choice to simplify the training process. It designs an 

“identity shortcut connection” which relieves the vanishing gradient issue while 

training. Models based on residual blocks have shown impressive performance in 

generative networks . 

Another common way to ease the training of deep CNNs batch normalization , which 

is designed to counteract the internal covariate shift and reduce the oscillations when 

approaching the minimum point. In addition, Leaky ReLu (LReLU) is a widely used 

activation function in deep CNNs for efficient gradient propagation which increases 

the performance of networks by allowing a small, non-zero gra- dient when the unit 

is not active. We integrate these tech- niques in our cartoonization deep architecture. 
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CartoonGAN 
 

We design the generator and discrimina- tor networks to suit the particularity of 

cartoon images; see Figure 2 for an overview. We formulate the process oflearning 

to transform real- world photos into cartoon images as a mapping function which 

maps the photo manifold P to the cartoon mani- fold C. 

A GAN framework consists of two CNNs. One is the generator G which is trained 

to produce output that fools the discriminator. The other is the discriminator D which 

classifies whether the image is from the real target mani- fold or ing data Sdata(p) = 

{pi |i = 1 ...N } P and Sdata(c) = {ci |i = 1 ...M } C, where N and M are the numbers 

of photo and cartoon images in the training set, respectively. Like other GAN 

frameworks, a discriminator function D is trained for pushing G to reach its goal by 

distinguishing images in the cartoon manifold from other images and pro- viding the 

adversarial loss for G. Let L be the loss function, 

 
G* and D* be the weights of the network. Our objective is to solve the min 

max problem: 

 
(G*,D*) = argmin max L(G,D) 

G D 

 
We present the detail of our network architecture in Section 3.1 and propose two loss 

functions for G and D in Sec- tion 3.2. To further improve the network convergence, 

we propose an initialization phase and incorporate it into Car- toonGAN, which is 

summarized in Section 3.3. 

 
CartoonGAN architecture 

Refer to Figure 2. In CartoonGAN, the generator net- work G is used to map input 

images to the cartoon manifold. Cartoon stylization is produced once the model is 

trained. G begins with a flat convolution stage followed by two down- convolution 

blocks to spatially compress and encode the images. Useful local signals are 

extracted in this stage for downstream transformation. Afterwards, eight residual 

blocks with identical layout are used to construct the content and manifold feature. 

We employ the residual block layout proposed in . Finally, the output cartoon style 

images are reconstructed by two up-convolution blocks which 

contain fractionally strided convolutional layer with stride 1/2 and a final 

convolutional layer with 7 × 7 kernels. 
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Figure 8. Architecture of the generator and discriminator networks in the proposed CartoonGAN, in which k is 

the kernel size, n is the number of feature maps and s is the stride in each convolutional layer, ‘norm’ indicates a 

normalization layer and ‘ES’ indicates elementwise sum. 

 
 

Complementary to the generator network, the discrimi- nator network D is used to 

judge whether the input image is a real cartoon image. Since judging whether an 

image is cartoon or not is a less demanding task, instead of a reg- ular full-image 

discriminator, we use a simple patch-level discriminator with fewer parameters in 

D. Different from object classification, cartoon style discrimination relies on local 

features of the image. Accordingly, the network D is designed to be shallow. After 

the stage with flat layers, the network employs two strided convolutional blocks to 

re- duce the resolution and encode essential local features for classification. 

Afterwards, a feature construction block and a 3 × 3 convolutional layer are used to 
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obtain the classifica- tion response. Leaky ReLU (LReLU) with α = 0.2 is used after 

each normalization layer. 

 
Loss function 

The loss function L(G,D) in Eq.(1) consists of two parts: (1) the adversarial loss Ladv 

(G,D) (Section 3.2.1), which drives the generator network to achieve the de- sired 

manifold transformation, and (2) the content loss Lcon(G,D) (Section 3.2.2), which 

preserves the image content during cartoon stylization. We use a simple addi- tive 

form for the loss function: 

 
L(G,D)= Ladv (G,D) + ωLcon(G,D), 

 
where ω is the weight to balance the two given losses. Larger ω leads to more content 

information from the in- put photos to be retained, and therefore, results in stylized 

images with more detailed textures. In all our experiments, we set ω = 10 which 

achieves a good balance of style and content preservation. 

 
Adversarial loss Ladv (G,D) 

The adversarial loss is applied to both networks G and D, which affects the cartoon 

transformation process in the gen- erator network G. Its value indicates to what 

extent the out- put image of the generator G automatically generate a set of images 

Sdata(e) = {ei |i = 1 ...M } ⊂ E by remov- ing clear edges in Sdata(c), where C and 

E are the cartoon manifold and the manifold of cartoon-like images without clear 

edges, respectively. In more detail, for each image ci ∈ Sdata(c), we apply the 

following three steps: (1) detect edge pixels using a standard Canny edge detector 

[2], (2) di- late the edge regions, and (3) apply a Gaussian smoothing in the dilated 

edge regions. 

Figure 3 shows an example of a cartoon image and a modified version with edges 

smoothed out. Recall that for each photo pk in the photo manifold P, the generator 

G out- puts a generated image G(pk ). In CartoonGAN, the goal of training the 

discriminator D is to maximize the probability of assigning the correct label to looks 

like a cartoon image. In previous GAN frameworks , the task of the dis- criminator 

D is to figure out whether the input image is syn- thesized from the generator or from 

the real target manifold. However, we observe that simply training the discriminator 

D to separate generated and true cartoon images is not suf- ficient for transforming 

photos to cartoons. This is because the presentation of clear edges is an important 

characteris- tic of cartoon images, but the proportion of these edges is usually very 

small in the whole image. Therefore, an out- put image without clearly reproduced 

edges but with correct shading is likely to confuse the discriminator trained with a 
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standard loss. To circumvent thisoblem, from the training cartoon images Sdata(c) 

⊂ C, we G(pk ), the cartoon images without clear edges (i.e., ej ∈ Sdata(e)) and the 

real car- toon images (i.e., ci ∈ Sdata(c)), such that the generator G can be guided 

correctly by transforming the input to the correct manifold. Therefore, we define the 

edge-promoting adversarial loss as: 

 
La d v (G, D) = Ec i∼ S data ( c )[ log D (c i)] + E ej ∼ S data( e )[ log(1 − D (ej ))] + E pk ∼ S data (p )[log(1 − D ( G (p k )))]. 
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(a) A cartoon image ci b) The edge-smoothed version ei 

. Figure9 

Figure 9. By removing clear edges in a cartoon image c ∈ Sdata(c), we generate a corresponding image 

ei ∈ Sdata(e). 

 
Content loss Lcon(G,D) 

 
In addition to transformation between correct manifolds, one more important goal in 

cartoon stylization is to ensure the resulting cartoon images retain semantic content 

of the input photos. In CartoonGAN, we adopt the high-level fea- ture maps in the 

VGG network [30] pre-trained by [27], which has been demonstrated to have good 

object preser- vation ability. Accordingly, we define the content loss as: 

 
Lcon(G,D) = Epi∼Sdata(p)[||V GGl(G(pi)) − V GGl(pi)||1] 

 

where l refers to the feature maps of a specific VGG layer.Unlike other image 

generation methods , we de- fine our semantic content loss using the ℓ1 sparse 

regular- ization of VGG feature maps between the input photo and the generated 

cartoon image. This is due to the fact that car- toon images have very different 

characteristics (i.e., clear edges and smooth shading) from photos. We observe that 

even with a suitable VGG layer that intends to capture the image content, the feature 

maps may still be affected by the massive style difference. Such differences often 

concen- trate on local regions where the representation and regional characteristics 

change dramatically. ℓ1 sparse regulariza- tion is able to cope with such changes 

much better than the standard ℓ2 norm. As we will show later, this is crucial to 

reproduce the cartoon style. We use the feature maps in the layer ‘conv4 4’ to 

compute our semantic content loss. 
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(a) Original photo (b) Image after initialization 

 
Figure 10. For an original photo (a), the image (b) is the result after the initialization phase. See the main text 

for details. 

 
Initialization phase 

Since the GAN model is highly nonlinear, with random initialization, the 

optimization can be easily trapped at sub- optimal local minimum. To 

help improve its convergence, we propose a new initialization phase. 

Note that the tar- get of the generator network G is to reconstruct the 

input photo in a cartoon style while keeping the semantic content. We 

start the adversarial learning framework with a generatorwhich only 

reconstructs the content of input images. For this purpose, in the 

initialization phase, we pre- train the generator network G with only the 

semantic content loss loss Lcon(G,D). Figure 4 shows an example of the 

recon- structed image after 10 epochs of this initialization training phase, 

which already produces reasonable reconstruction. Our experimental 

results show that this simple initialization phase helps CartoonGAN fast 

converge to a good configu- ration, without premature convergence. 

Similar observation is made in which uses the content image to initialize 

the result image to improve style transfer quality. 

4. Experiments 

 
We implemented our CartoonGAN in Torch and Lua language. The trained models 

in our experiments are available Able to facilitate evaluation of future methods. All 

experi- ments were performed on an NVIDIA Titan Xp GPU CartoonGAN is able 

to produce high-quality cartoon stylization using the data of individual artists for 
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training, which are easily obtained from cartoon videos, since our method does not 

require paired images. Different artists have their unique cartoon styles, which can 

be effectively learned by CartoonGAN. Some results of different artistic styles 

generated by CartoonGAN are shown in Figure 5. 

To compare CartoonGAN with state of the art, we col- lected the training and test 

data as presented in Section 4.1. In Section 4.2, we present the comparisonbetween 

the pro- posed method and representative stylization methods. In Section 4.3, we 

present a further ablation experiment to an- alyze the effectiveness of each 

component in our Cartoon- GAN model. 
 

 

 

 

 

 

 

Figure 11Some results of different artistic styles generated by Car- toonGAN. (a) Input real-world photos. (b) 

Makoto Shinkai style. (c) Miyazaki Hayao style. 

 
Data 

The training data contains real-world photos and cartoon images, and the test data 

only includes real-world photos. Allthetrainingimagesareresizedandcroppedto 

256×256. 

Photos. 6,153 photos are downloaded from Flickr, in which 5,402 photos are for 

training and others for testing. 
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Cartoon images. 

Different artists have different styles when creating cartoon images of real-world 

scenes. To ob- tain a set of cartoon images with the same style, we use the key frames 

of cartoon films drawn and directed by the same artist as the training data. In our 

experiments, 4,573 and 4,212 cartoon images from several short cartoon videos are 

used for training the Makoto Shinkai and Mamoru Hosoda 

 

 
Figure 12. Details of edge generation. (a) The result of NST [6] using all the images in the training set as 

the style image. (b) CycleGAN with the identity loss. (c) Our result. 

Comparison with state of the art 

 
We first compare Cartoon GAN with two recently pro- posed methods in CNN- 

based stylization, namely NST and Cycle GAN . Note that the original NST takes 

one style image Is and one content image Ic as input, and trans- fers the style from 

Is to Ic. For fair comparison, we apply two adaptations of NST. In the first 

adaptation, we manually choose a style image which has close content to the input 

photo. In the second adaptation, we extend NST to take all the cartoon images for 

training, similar to the comparative experiment in. We also compare two versions of 

Cycle- GAN, i.e., without and with the identity loss Lidentity . The incorporation of 

this loss tends to produce stylized images with better content preservation. 200 

epochs were trained for both Cycle GAN and our Cartoon GAN. 

Qualitative results. , which clearly demonstrate that NST and Cycle GAN cannot 

deal with cartoon styles well. In comparison, by reproducing the necessary clear 

edges and smooth shading while retaining the content of the input photo, our 

Cartoon- GAN model produces hight- quality results . 
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More specifically, NST using only a style image may not be able to fully learn the 

style, especially for areas in the target image whose content is different from the style 

image (Figure 13b). When NST is extended to take more training data, rich styles 

can be better learned. However, the styl- ized images tend to have local regions 

stylized differently, causing inconsistency artifacts (Figure 13c). 
 

 

 

 
Figure13 

 

 

 

 

 
 

The stylization results of CycleGAN do not capture the cartoon styles well. Without 

the identity loss, the output images do not preserve the content of the input photos 

well (Figure 6d). The identity loss is useful to avoid this prob- lem, but the stylization 

results are still far from satisfactory (Figure 6e). In comparison, Cartoon GAN 

produces high- quality cartoonization which well follows individual artist’s style. 

Figure 7 shows close-up views of an example in Figure 6, demonstrating that our 
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Cartoon GAN generates thees- sential edges which are very important for the cartoon 

style. 

Our CartoonGAN has the same property of not requiring paired images for training 

as CycleGAN. However, Car- toonGAN takes much less training time. For each 

epoch, CycleGAN and CycleGAN with Lidentity take 2291.77s and 3020.31s, 

respectively, whereas CartoonGAN only takes 1517.69s, about half compared with 

CycleGAN + Lidentity . This is because CycleGAN needs to train two GAN models 

for bidirectional mappings, which seriously slows down the training process. For 

image cartoonization, mapping back from cartoons to photos is not necessary. By 

using the VGG feature maps rather than a cycle architec- ture to restrain the content, 

CartoonGAN can learn cartoon stylization moreefficiently. 

We also compare our method with CNNMRF and Deep Analogy , with Paprika and 

Mamoru Hosoda 

 

Roles of components in loss function 
 

We perform the ablation experiment to study the role of each part in CartoonGAN. 

Figure 9 shows the examples of ablations of our full loss function, in which all the 

results are trained by Makoto Shinkai style’s data. The follow- ing results show that 

each component plays an important role in CartoonGAN. First, the initialization 

phase helps the generator G quickly converge to a reasonable manifold. As shown in 

Fig. 9b, without initialization, although some key features are shown, the styles are 

far from expectation. Second, even with a suitable VGG layer, large and often local- 

ized differences in feature maps of input and cartoon style images are still needed 

due to massive style differences. Us- ing the ℓ1 sparse regularization (instead of ℓ2) 

of high-level VGG feature maps helps cope with substantial style differ- ences 

between cartoon images and photos. Last, the elabo- rately designed edge loss guides 

the generator G to produce clear edges in results, leading to better cartoon style 

images. 

 
The majority of photo editing websites offer the so-called Cartoon Effect. The main 

advantages of online photo to cartoon effect apps are simplicity and quickness. 

You’ll have to upload a photo from your computer or from the web, find Cartoon 

Effect in the tool set or choose between styles or variants of this funny photo effect 

(like in case of www.picturetopeople.org, Kuso Cartoon ) and press the button Apply 

(or Go). The image processing varies from several seconds up to 1-2 minutes. 

 
However, as all quick online solutions these apps have drawbacks. A lot of photo 

online photo editing tools are rather humdrum because they are deprived of 

enhancement features. In these apps cartoonization is limited to 1-click operation. 

http://www.picturetopeople.org/
http://kusocartoon.com/
http://kusocartoon.com/
http://kusocartoon.com/
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Besides, sometimes colors may become blurred and it leads to an unsatisfactory 

result. Such apps as www.convert to cartoon.com, Photo.to, Any Making and others 

belong to this group. At the same time there are online photo editors with more 

advanced tools. They have a variety of adjustment options. For example, Be Funky 

helps you modify sketch brightness, contrast, smoothness and other details. 
 

 

 

 

 

 

 

 
Figure14 

 

 

 

3. The Workflow 

 
• The input is first passed through Surface representation where Structural and 

Textural features are removed, once we imitate cartoon painting style and 

smooth surfaces, the output is passed through guided filters in order to retain 
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smooth edges. A discriminator Ds is proposed to verify whether result and 

paired cartoon images have similar surfaces, and regulate the generator G to 

learn the information stored in the extracted surface representation. 

• The structural features are then passed through Structural representation that 

clear boundaries in the cellular style framework and then we implement 

Felzenszwalb algorithm to segment the areas. The algorithm assists us in 

coloring each segment with an average pixel value. To impose a spatial 

constraint on global content between outputs and provided paired cartoons we 

use pre-trained VGGNetwork. 

• As discussed earlier the variation of luminance and color information are non- 

trivial issues to the model, therefore, we choose a random color shift algorithm 

to convert three-channel input to single-dimension outputs that cling to high- 

quality features. A discriminator Dt is then proposed to verify textual features 

from the result and paired cartoon image, and regulates generator G to learn 

the information stored in extracted texture representation. 
 

 
 

 

 
Figure15 
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4. SOURCE CODE 

import cv2 #for image processing 

import easygui #to open the filebox 

import numpy as np #to store image 

import imageio #to read image stored at particular path import 

sys 

import matplotlib.pyplot as plt 

import os import tkinter as tk 

from tkinter import filedialog 

from tkinter import * from PIL 

import ImageTk, Image 

""" fileopenbox opens the box to choose file 

and help us store file path as string """ 
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def upload(): 

ImagePath=easygui.fileopenbox() 

cartoonify(ImagePath) #read the 

image 

originalmage = cv2.imread(ImagePath) 

originalmage = cv2.cvtColor(originalmage, cv2.COLOR_BGR2RGB) 

#print(image) # image is stored in form of numbers 

# confirm that image is chosen if originalmage is None: 

print("Can not find any image. Choose appropriate file") 

sys.exit() 

ReSized1 = cv2.resize(originalmage, (960, 540)) 

#plt.imshow(ReSized1, cmap='gray') #converting 

an image to grayscale 

grayScaleImage = cv2.cvtColor(originalmage, cv2.COLOR_BGR2GRAY) 

ReSized2 = cv2.resize(grayScaleImage, (960, 540)) 

#plt.imshow(ReSized2, cmap='gray') #applying median 

blur to smoothen an image smoothGrayScale = 

cv2.medianBlur(grayScaleImage, 5) 

ReSized3 = cv2.resize(smoothGrayScale, (960, 540)) 

#plt.imshow(ReSized3, cmap='gray') 

#retrieving the edges for cartoon effect #by using 

thresholding technique getEdge = 

cv2.adaptiveThreshold(smoothGrayScale, 255, 

cv2.ADAPTIVE_THRESH_MEAN_C, 

cv2.THRESH_BINARY, 9, 9) 

ReSized4 = cv2.resize(getEdge, (960, 540)) 

#plt.imshow(ReSized4, cmap='gray') 

#applying bilateral filter to remove noise #and 

keep edge sharp as required 

colorImage = cv2.bilateralFilter(originalmage, 9, 300, 300) 

ReSized5 = cv2.resize(colorImage, (960, 540)) 

#plt.imshow(ReSized5, cmap='gray') 

#masking edged image with our "BEAUTIFY" image 

cartoonImage = cv2.bitwise_and(colorImage, colorImage, mask=getEdge) 

ReSized6 = cv2.resize(cartoonImage, (960, 540)) 

#plt.imshow(ReSized6, cmap='gray') 

# Plotting the whole transition images=[ReSized1, ReSized2, ReSized3, 

ReSized4, ReSized5, ReSized6] 

fig, axes = plt.subplots(3,2, figsize=(8,8), subplot_kw={'xticks':[], 'yticks':[]}, 
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gridspec_kw=dict(hspace=0.1, wspace=0.1)) for 

i, ax in enumerate(axes.flat): 

ax.imshow(images[i], cmap='gray') 

//save button code plt.show() def save(ReSized6, 

ImagePath): #saving an image using imwrite() 

newName="cartoonified_Image" path1 = 

os.path.dirname(ImagePath) 

extension=os.path.splitext(ImagePath)[1] path = 

os.path.join(path1, newName+extension) 

cv2.imwrite(path, cv2.cvtColor(ReSized6, cv2.COLOR_RGB2BGR)) 

I = "Image saved by name " + newName +" at "+ path 

tk.messagebox.showinfo(title=None, message=I) 

top=tk.Tk() 

top.geometry('400x400') 

top.title('Cartoonify Your Image !') 

top.configure(background='white') 

label=Label(top,background='#CDCDCD', font=('calibri',20,'bold')) 

upload=Button(top,text="Cartoonify  an 

Image",command=upload,padx=10,pady=5) 

upload.configure(background='#364156', 

foreground='white',font=('calibri',10,'bold')) 

upload.pack(side=TOP,pady=50) save1=Button(top,text="Save cartoon 

image",command=lambda: 

save(ImagePath, ReSized6),padx=30,pady=5) 

save1.configure(background='#364156', 

foreground='white',font=('calibri',10,'bold')) 

save1.pack(side=TOP,pady=50) top.mainloop() 

 

RESULT 
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Figure16 

 

 

 

 

 

 

 

 

5. Conclusion and Future Work 

 
In this paper we proposed CartoonGAN, a Generative Adversarial Network to 

transform real-world photos to high-quality cartoon style images. Aiming at 
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recreating faithful characteristics of cartoon images, we propose (1) a novel edge- 

promoting adversarial loss for clear edges, and 

(2) an ℓ1 sparse regularization of high-level feature maps in the VGG network for 

content loss, which provides suf- ficient flexibility for reproducing smooth shading. 

We also propose a simple yet efficient initialization phase to help improve 

convergence. The experiments show that Cartoon- GAN is able to learn a model that 

transforms photos of real- world scenes to cartoon style images with high quality and 

high efficiency, significantly outperforming the state-of-the- art stylization methods. 

 
In the future work, due to the importance of portrait, we would like to investigate 

how to exploit local facial features to improve cartoon stylization for human faces. 

Although we design our loss functions to tackle specific nature of cartoon stylization, 

similar ideas are useful for other image synthesis tasks, which we will investigate 

further. We also plan to add sequential constraints to the training process to extend 

our method to handling videos. 
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