
A Project Report

On

IMAGE SUPER-RESOLUTION USING DEEP CONVOLUTION

NETWORKS.

Submitted in partial fulfillment of the

requirement for the award of degree of

Bachelor of Technology in Computer Science and

Engineering

Under The Supervision of

Mr. S.PRAKASH
Assistant Professor

Submitted By:

SACHIN CHAUHAN 19SCSE1010107

SAMAR MAHMOOD 19SCSE1010195

SCHOOL OF COMPUTING SCIENCE AND ENGINEERING,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING,

GALGOTIAS UNIVERSITY, GREATER NOIDA,INDIA

December-2021

SCHOOL OF COMPUTING SCIENCE AND
ENGINEERING

GALGOTIAS UNIVERSITY, GREATER NOIDA

CANDIDATE’S DECLARATION

We hereby certify that the work which is being presented in the project, entitled “IMAGE

SUPER-RESOLUTION USING DEEP CONVOLUTION NETWORKS.” in partial

fulfillment of the requirements for the award of the B-Tech CSE submitted in the School of

Computing Science and Engineering of Galgotias University, Greater Noida, is an original

work carried out during the period of July, 2021 to December, 2021, under the supervision of

Mr.S.Prakash, Assistant Professor, Department of Computer Science and Engineering, of

School of Computing Science and Engineering , Galgotias University, Greater Noida, India.

The matter presented in the project has not been submitted by us for the award of any other

degree of this or any other places.

 Sachin Chauhan 19SCSE1010107

 Samar Mahmood 19SCSE1010195

This is to certify that the above statement made by the candidates is correct to the best of

my knowledge.

 Mr. S.Prakash

 Assistant Professor

CERTIFICATE

The Final Project Viva-Voce examination of Sachin Chauhan: 19SCSE1010107 and Samar

Mahmood: 19SCSE1010195 has been held on _____________ and his work is recommended

for the award of B.Tech-CSE.

Signature of Examiner(s) Signature of Supervisor(s)

Signature of Project Coordinator Signature of Dean

Date: 24 December 2021

Place: Greater Noida

ACKNOWLEDGEMENT

I would like to thank my guide Mr S.Prakash who gave me this opportunity to work on

this project. I got to learn a lot from this project about Image super-resolution using

deep convolution networks.

 At last, I would like to extend my heartfelt thanks to my guide because without their

help this project would not have been successfully completed. Finally, I would like to

thank my colleagues who have been with me all the time.

5

ABSTRACT

We are using deep learning methods for single image super-resolution. In this

model our system will directly learns an end-to-end mapping between low and

high resolutions images. And for mapping we are using deep convolution neural

network (CNN) that will take low - resolution images as an input and gives an

high resolution output image. We further show that traditional sparse- coding-

based SR methods can also be viewed as a deep convolutional network. But unlike

traditional methods that handle each component separately, our method jointly

optimizes all layers. Our deep CNN has a lightweight structure, yet demonstrates

state- of-the-art restoration quality, and achieves fast speed for practical on-line

usage. We explore different network structures and parameter settings to achieve

trade-offs between performance and speed. Moreover, we extend our network to

cope with three color channels simultaneously, and show better overall

reconstruction quality.

6

 CONTENTS

Title Page

No.

Candidates Declaration

Acknowledgement I

Abstract II

Contents III

Chapter 1 Introduction

1.1 Basic Introduction

1.2 Image Super-Resolution

1.3 Convolutional Neural Networks

1.4 Deep learning for Image Restoration

 7-10

Chapter 2 Functionality& Working

2.1 Formulation

 2.1.1 Patch Extraction and representation

 2.1.2 Non-linear Mapping

 2.1.3 Reconstruction

2.2 Relationship to Sparse-Coding based methods

11-16

Chapter 3 Requirement

3.1 Requirement

3.2 Pipeline

3.3 Prepare DIV2K Data

3.4 Training

3.5 Quantization-Aware training

3.6 Run TFLite model on your own devices

17-19

Chapter 4 Implementation

4.1 Implementation

20-30

Chapter 5 Conclusion 31

Chapter 6 Reference 32-33

7

CHAPTER-1

INTRODUCTION

1.1 Basic Introduction

Image super-resolution is the task of recovering a high-resolution image from a

lower-resolution image. This problem is notable for its applications in security as well

as in medical imaging, especially since image reconstruction offers a methodology

for correcting imaging system imperfections. For our project, we implement SRCNN

and refine the model in order to improve the quality of the output images, as

measured by peak signal-to-noise ratio (PSNR). The input to our algorithm is a low-

resolution image, which we feed through a convolutional neural network (CNN) in

order to produce a high-resolution image. Traditional methods for image up sampling

rely on low-information, smooth interpolation between known pixels. Such methods

can be treated as a convolution with a kernel encoding no information about the

original photograph. Although they increase the resolution of an image, they fail to

produce the clarity desired in the super-resolution task. Convolutional Neural

Networks (CNNs) are a generalization of such algorithms, using learned kernels with

nonlinear activations to encode general characteristics about photographs that can

add structure lost in the low-resolution input. CNN architectures such as SRCNN

have been successfully applied to the super-resolution task.

1.2 Image Super-Resolution

According to the image priors, single-image super resolution algorithms can be

8

categorized into four types – prediction models, edge based methods, image

statistical methods and patch based (or example-based) methods. These methods

have been thoroughly investigated and evaluated in Yang et al.’s work . Among

them, the example-based methods achieve the state-of-the-art performance. The

internal example-based methods exploit the selfsimilarity property and generate

exemplar patches from the input image. It is first proposed in Glasner’s work , and

several improved variants are roposed to accelerate the implementation. The

external example-based methods learn a mapping between low/highresolution

patches from external datasets. These studies vary on how to learn a compact

dictionary or manifold space to relate low/high-resolution patches, and on how

representation schemes can be conducted in such spaces. In the pioneer work of

Freeman et al. , the dictionaries are directly presented as low/high-resolution patch

pairs, and the nearest neighbour (NN) of the input patch is found in the low-

resolution space, with its corresponding high-resolution patch used for

reconstruction. Chang et al. introduce a manifold embedding technique as an

alternative to the NN strategy. In Yang et al.’s work , the above NN correspondence

advances to a more sophisticated sparse coding formulation. Other mapping

functions such as kernel regression , simple 3 function, random forest and anchored

neighborhood regression are proposed to further improve the mapping accuracy and

speed. The sparsecoding-based method and its several improvements are among the

state-of-the-art SR methods nowadays. In these methods, the patches are the focus

of the optimization; the patch extraction and aggregation steps are considered as

9

pre/post-processing and handled separately. The majority of SR algorithms focus

on gray-scale or single-channel image super-resolution. For color images, the

aforementioned methods first transform the problem to a different color space

(YCbCr or YUV), and SR is applied only on the luminance channel. There are also

works attempting to super-resolve all channels simultaneously. For example, Kim

and Kwon and Dai et al. apply their model to each RGB channel and combined

them to produce the final results. However, none of them has analyzed the SR

performance of different channels, and the necessity of recovering all three

channels.

1.3 Convolutional Neural Networks

Convolutional neural networks (CNN) date back decades and deep CNNs have

recently shown an explosive popularity partially due to its success in image

classification . They have also been successfully applied to other computer vision

fields, such as object detection , face recognition , and pedestrian detection . Several

factors are of central importance in this progress: (i) the efficient training

implementation on modern powerful GPUs , (ii) the proposal of the Rectified

Linear Unit (ReLU) which makes convergence much faster while still presents

good quality , and (iii) the easy access to an abundance of data (like ImageNet) for

training larger models. Our method also benefits from these progresses.

1

0

1.4 Deep Learning for Image Restoration

There have been a few studies of using deep learning techniques for image

restoration. The multi-layer perceptron (MLP), whose all layers are fully-connected

(in contrast to convolutional), is applied for natural image denoising and post-

deblurring denoising . More closely related to our work, the convolutional neural

network is applied for natural image denoising and removing noisy patterns

(dirt/rain) . These restoration problems are more or less denoising-driven. Cui et al.

propose to embed auto-encoder networks in their superresolution pipeline under the

notion internal examplebased approach . The deep model is not specifically

designed to be an end-to-end solution, since each layer of the cascade requires

independent optimization of the self-similarity search process and the auto-encoder.

On the contrary, the proposed SRCNN optimizes an end-toend mapping. Further,

the SRCNN is faster at speed. It is not only a quantitatively superior method, but

also a practically useful one.

1

1

CHAPTER-2

 FUNCTIONALITY & WORKING

2.1 Formulation

Consider a single low-resolution image, we first upscale it to the desired size using

bicubic interpolation, which is the only pre-processing we perform3. Let us denote

the interpolated image as Y. Our goal is to recover from Y an image F(Y) that is as

similar as possible to the ground truth high-resolution image X. For the ease of

presentation, we still call Y a “low-resolution” image, although it has the same size

as X. We wish to learn a mapping F, which conceptually consists of three

operations:

1) Patch extraction and representation: this operation extracts (overlapping)

patches from the lowresolution image Y and represents each patch as a high-

dimensional vector. These vectors comprise a set of feature maps, of which the

number equals tothe dimensionality of the vectors.

2) Non-linear mapping: this operation nonlinearly maps each high-dimensional

vector onto another high-dimensional vector. Each mapped vector is conceptually

the representation of a high-resolution patch. These vectors comprise another set of

feature maps.

3) Reconstruction: this operation aggregates the above high-resolution patch-wise

representations to generate the final high-resolution image. This image is expected

to be similar to the ground truth X.

We will show that all these operations form a convolutional neural network. An

1

2

overview of the network is depicted in Figure 2. Next we detail our definition of

each operation.

 2.1.1 Patch extraction and representation

A popular strategy in image restoration is to densely extract patches and then

represent them by a set of pre-trained bases such as PCA, DCT, Haar, etc. This

is equivalent to convolving the image by a set of filters, each of which is a basis. In

our formulation, we involve the optimization of these bases into the optimization of

the network. Formally, our first layer is expressed as an operation F1:

F1(Y) = max (0;W1 * Y + B1) ;

where W1 and B1 represent the filters and biases respectively, and ’*’ denotes the

convolution operation. Here, W1 corresponds to n1 filters of support c x f1 x f1,

where c is the number of channels in the input image, f1 is the spatial size of a

filter. Intuitively, W1 applies n1 convolutions on the image, and each convolution

has a kernel size c * f1 * f1. The output is composed of n1 feature maps. B1 is an

n1-dimensional vector, whose each element is associated with a filter. We apply the

Rectified Linear Unit (ReLU, max(0; x)) on the filter responses.

2.1.2 Non-linear mapping

The first layer extracts an n1-dimensional feature for each patch. In the second

operation, we map each of these n1-dimensional vectors into an n2-dimensional

one. This is equivalent to applying n2 filters which have a trivial spatial support

1*1. This interpretation is only valid for 1*1 filters. But it is easy to generalize to

larger filters like 3*3 or 5*5. In that case, the non-linear mapping is not on a patch

1

3

of the input image; instead, it is on a 3*3 or 5*5 “patch” of the feature map. The

operation of the second layer is:

F2(Y) = max (0;W2 * F1(Y) + B2) .

Here W2 contains n2 filters of size n1 x f2 x f2, and B2 is n2-dimensional. Each of

the output n2-dimensional vectors is conceptually a representation of a high-

resolution patch that will be used for reconstruction. It is possible to add more

convolutional layers to increase the non-linearity. But this can increase the

complexity of the model (n2 x f2 x f2 x n2 parameters for one layer), and thus

demands more training time.

 2.1.3 Reconstruction

 In the traditional methods, the predicted overlapping high-resolution patches are

often averaged to produce the final full image. The averaging can be considered

as a pre-defined filter on a set of feature maps (where each position is the

“flattened” vector form of a highresolution patch). Motivated by this, we define a

convolutional layer to produce the final high-resolution image:

F(Y) = W3* F2(Y) + B3

Here W3 corresponds to c filters of a size n2 x f3 x f3, and B3 is a c-dimensional

vector. If the representations of the high-resolution patches are in the image domain

(i.e.,we can simply reshape each representation to form the patch), we expect that

the filters act like an averaging filter; if the representations of the high-resolution

patches are in some other domains (e.g.,coefficients in terms of some bases), we

expect that W3 behaves like first projecting the coefficients onto the image domain

1

4

and then averaging. In either way, W3 is a set of linear filters. Interestingly,

although the above three operations are motivated by different intuitions, they all

lead to thesame form as a convolutional layer. We put all three operations together

and form a convolutional neural network (Figure 2). In this model, all the filtering

weights and biases are to be optimized. Despite the succinctness of the overall

structure, our SRCNN model is carefully developed by drawing extensive

experience resulted from significant progresses in super-resolution [49], [50]. We

detail the relationship in the next section.

2.2 Relationship to Sparse-Coding-Based Methods

We show that the sparse-coding-based SR methods [49], [50] can be viewed as a

convolutional neural network. Figure 3 shows an illustration. In the sparse-coding-

based methods, let us consider that an f1 x f1 low-resolution patch is extracted

from the input image. Then the sparse coding solver, like Feature-Sign [29], will

first project the patch onto a (lowresolution) dictionary. If the dictionary size is n1,

this is equivalent to applying n1 linear filters (f1 x f1) on the input image (the mean

subtraction is also a linear operation so can be absorbed). This is illustrated as the

left part of Figure 3. The sparse coding solver will then iteratively process the n1

coefficients. The outputs of this solver are n2 coefficients, and usually n2 = n1 in

the case of sparse coding. These n2 coefficients are the representation of the high-

resolution patch. In this sense, the sparse coding solver behaves as a special case of

a non-linear mappingoperator, whose spatial support is 1 x 1. See the middle

part of Figure 3. However, the sparse coding solver is not feed-forward, i.e.,it is an

1

5

iterative algorithm. On the contrary, our non-linear operator is fully feed-forward

and can be computed efficiently. If we set f2 = 1, then our non-linear operator can

be considered as a pixel-wise ully-connected layer. It is worth noting that “the

sparse coding solver” in SRCNN refers to the first two layers, but not just the

second layer or the activation function (ReLU). Thus the nonlinear operation in

SRCNN is also well optimized through the learning process. The above n2

coefficients (after sparse coding) are then projected onto another (high-resolution)

dictionary to produce a high-resolution patch. The overlapping high-resolution

patches are then averaged. As discussed bove, this is equivalent to linear

convolutions on the n2 feature maps. If the high-resolution patches used for

reconstruction are of size f3 x f3, then the linear filters have an equivalent spatial

support of size f3 x f3. See the right part of Figure 3. The above discussion shows

that the sparse-codingbased SR method can be viewed as a kind of convolutional

neural network (with a different non-linear mapping). But not all operations have

been considered in the optimization in the sparse-coding-based SR methods. On the

contrary, in our convolutional neural network, the low-resolution dictionary, high-

resolution dictionary, non-linear mapping, together with mean subtraction and

averaging, are all involved in the filters to be optimized. So our method optimizes

an end-to-end mapping that consists of all operations. The above analogy can also

help us to design hyperparameters. For example, we can set the filter size ofthe last

layer to be smaller than that of the first layer, and thus we rely more on the central

part of the highresolution patch (to the extreme, if f3 = 1, we are using the center

1

6

pixel with no averaging). We can also set n2 < n1 because it is expected to be

sparser. A typical and basic setting is f1 = 9, f2 = 1, f3 = 5, n1 = 64, and n2 = 32

(we evaluate more settings in the experiment section). On the whole, the estimation

of a high resolution pixel utilizes the information of (9 + 5 - 1)2 = 169 pixels.

Clearly, the information exploited for reconstruction is comparatively larger than

that used in existing external example-based approaches, e.g., using (5+5-1)2 = 81

pixels5 [15], [50]. This is one of the reasons why the SRCNN gives superior

performance.

1

7

 CHAPTER-3

REQUIREMENTS

3.1 Requirements

It should be noted that tensorflow version matters a lot because old versions don't

include some layers such as depth-to-space, so you should make sure tf version is

larger than 2.4.0. Another important thing is that only tf-nightly larger than 2.5.0

can perform arbitrary input shape quantization. I provide two conda environments,

tf.yaml for training and tfnightly.yaml for Post-Training Quantization(PTQ) and

Quantization-Aware Training(QAT). You can use the following scripts to create

two separate conda environments.

conda env create -f tf.yaml

conda env create -f tfnightly.yaml

3.2 Pipeline

1. Train and validate on DIV2K. We can achieve 30.22dB with 42.54K

parameters.

2. Post-Training Quantization: after int8 quantization, PSNR drops to 30.09dB.

3. Quantization-Aware Training: Insert fake quantization nodes during training.

PSNR increases to 30.15dB, which means the model size becomes 4x

smaller with only 0.07dB performance loss.

3.3 Prepare DIV2K Data

1

8

Download DIV2K and put DIV2K in data folder. Then the structure should look

like:

| DATA

| | DIV2K

| | |DIV2K_train_HR

| | | | 0001.png

| | | |……

| | | | 0900.png

| | |DIV2K_train_LR_bicubic

| | | |X2

| | | | |0001x2.png

| | | | |…

| | | | |0900x2.png

3.4 Training
python train.py --opt options/train/base7.yaml --name ase7_D4C28_bs16ps64_lr1e-

3 --scale 3 --bs 16 --ps 64 --lr 1e-3 --gpu_ids 0

Note: The argument --name specifies the following save path:

 Log file will be saved in log/{name}.log

 Checkpoint and current best weights will be saved in

experiment/{name}/best_status/

 Visualization of Train and Validate will be saved in Tensorboard/{name}/

You can use tensorboard to monitor the training and validating process by:

tensorboard --logdir Tensorboard

3.5 Quantization-Aware Training

If you haven't worked with Tensorflow Lite and network quantization before, please

refer to official guideline. This technology inserts fake quantization nodes to make

1

9

the weights aware that themselves will be quantized. For this model, you can simply

use the following script to perform QAT:

python train.py --opt options/train/base7_qat.yaml --name

base7_D4C28_bs16ps64_lr1e-3_qat --scale 3 --bs 16 --ps 64 --lr 1e-3 --gpu_ids 0 -

-qat --qat_path experiment/base7_D4C28_bs16ps64_lr1e-3/best_status

Convert to TFLite which can run on mobile device

python generate_tflite.py

Then the converted tflite model will be saved in TFMODEL/.

TFMODEL/{name}.tflite is used for predicting high-resolution image(arbitary low-

resolution input shape is allowed), while TFMODEL/{name}_time.tflite fixes

model input shape to [1, 360, 640, 3] for getting inference time.

3.6 Run TFLite Model on your own devices

Download AI Benchmark from the Google Play / website and run its standard tests.

After the end of the tests, enter the PRO Model and select the Custom Model tab

there.Send your tflite model to your device and remember its location, then run the

model.

Fig : Loading and running custom TensorFlow Lite models with AI Benchmark application

2

0

CHAPTER-4

IMPLEMENTATION

Implementation

check package versions

import sys

import keras

import cv2

import numpy

import matplotlib

import skimage

print('Python: {}'.format(sys.version))

print('Keras: {}'.format(keras.__version__))

print('OpenCV: {}'.format(cv2.__version__))

print('NumPy: {}'.format(numpy.__version__))

print('Matplotlib: {}'.format(matplotlib.__version__))

print('Scikit-Image: {}'.format(skimage.__version__))

Python: 2.7.13 |Continuum Analytics, Inc.| [MSC v.1500 64 bit (AMD64)]

Keras: 2.1.4

OpenCV: 3.3.0

NumPy: 1.14.1

Matplotlib: 2.1.0

Scikit-Image: 0.13.1

In [4]:

import the necessary packages

from keras.models import Sequential

from keras.layers import Conv2D

from keras.optimizers import Adam

from skimage.measure import compare_ssim as ssim

from matplotlib import pyplot as plt

import cv2

import numpy as np

import math

import os

python magic function, displays pyplot figures in the notebook

%matplotlib inline

define a function for peak signal-to-noise ratio (PSNR)

2

1

def psnr(target, ref):

 # assume RGB image

 target_data = target.astype(float)

 ref_data = ref.astype(float)

 diff = ref_data - target_data

 diff = diff.flatten('C')

 rmse = math.sqrt(np.mean(diff ** 2.))

 return 20 * math.log10(255. / rmse)

define function for mean squared error (MSE)

def mse(target, ref):

 # the MSE between the two images is the sum of the squared difference between the two

images

 err = np.sum((target.astype('float') - ref.astype('float')) ** 2)

 err /= float(target.shape[0] * target.shape[1])

 return err

define function that combines all three image quality metrics

def compare_images(target, ref):

 scores = []

 scores.append(psnr(target, ref))

 scores.append(mse(target, ref))

 scores.append(ssim(target, ref, multichannel =True))

 return scores

prepare degraded images by introducing quality distortions via resizing

def prepare_images(path, factor):

 # loop through the files in the directory

 for file in os.listdir(path):

 # open the file

 img = cv2.imread(path + '/' + file)

 # find old and new image dimensions

 h, w, _ = img.shape

 new_height = h / factor

 new_width = w / factor

2

2

 # resize the image - down

 img = cv2.resize(img, (new_width, new_height), interpolation = cv2.INTER_LINEAR)

 # resize the image - up

 img = cv2.resize(img, (w, h), interpolation = cv2.INTER_LINEAR)

 # save the image

 print('Saving {}'.format(file))

 cv2.imwrite('images/{}'.format(file), img)

prepare_images('source/', 2)

Saving baboon.bmp

Saving baby_GT.bmp

Saving barbara.bmp

Saving bird_GT.bmp

Saving butterfly_GT.bmp

Saving coastguard.bmp

Saving comic.bmp

Saving face.bmp

Saving flowers.bmp

Saving foreman.bmp

Saving head_GT.bmp

Saving lenna.bmp

Saving monarch.bmp

Saving pepper.bmp

Saving ppt3.bmp

Saving woman_GT.bmp

Saving zebra.bmp

test the generated images using the image quality metrics

for file in os.listdir('images/'):

 # open target and reference images

 target = cv2.imread('images/{}'.format(file))

 ref = cv2.imread('source/{}'.format(file))

 # calculate score

 scores = compare_images(target, ref)

 # print all three scores with new line characters (\n)

 print('{}\nPSNR: {}\nMSE: {}\nSSIM: {}\n'.format(file, scores[0], scores[1], scores[2]))

baboon.bmp

2

3

PSNR: 22.1570840834

MSE: 1187.11613333

SSIM: 0.6292775879

baby_GT.bmp

PSNR: 34.3718064097

MSE: 71.2887458801

SSIM: 0.935698787272

barbara.bmp

PSNR: 25.9066298376

MSE: 500.655085359

SSIM: 0.809863264641

bird_GT.bmp

PSNR: 32.8966447287

MSE: 100.123758198

SSIM: 0.953364486603

butterfly_GT.bmp

PSNR: 24.7820765603

MSE: 648.625411987

SSIM: 0.879134476384

coastguard.bmp

PSNR: 27.1616006639

MSE: 375.008877841

SSIM: 0.756950063355

comic.bmp

PSNR: 23.7998615022

MSE: 813.233883657

SSIM: 0.83473354164

face.bmp

PSNR: 30.9922065029

MSE: 155.231897185

SSIM: 0.800843949229

flowers.bmp

PSNR: 27.4545048054

MSE: 350.550939227

SSIM: 0.869728628697

2

4

foreman.bmp

PSNR: 30.1445653266

MSE: 188.688348327

SSIM: 0.933268417389

head_GT.bmp

PSNR: 31.0205028482

MSE: 154.22377551

SSIM: 0.801112133073

lenna.bmp

PSNR: 31.4734929787

MSE: 138.948005676

SSIM: 0.846098920052

monarch.bmp

PSNR: 30.1962423653

MSE: 186.456436157

SSIM: 0.943957429343

pepper.bmp

PSNR: 29.8894716169

MSE: 200.103393555

SSIM: 0.835793756846

ppt3.bmp

PSNR: 24.8492616895

MSE: 638.668426391

SSIM: 0.928402394232

woman_GT.bmp

PSNR: 29.3262362808

MSE: 227.812729498

SSIM: 0.933539728047

zebra.bmp

PSNR: 27.9098406393

MSE: 315.658545953

SSIM: 0.891165620933

define the SRCNN model

def model():

 # define model type

2

5

 SRCNN = Sequential()

 # add model layers

 SRCNN.add(Conv2D(filters=128, kernel_size = (9, 9), kernel_initializer='glorot_uniform',

 activation='relu', padding='valid', use_bias=True, input_shape=(None, None, 1)))

 SRCNN.add(Conv2D(filters=64, kernel_size = (3, 3), kernel_initializer='glorot_uniform',

 activation='relu', padding='same', use_bias=True))

 SRCNN.add(Conv2D(filters=1, kernel_size = (5, 5), kernel_initializer='glorot_uniform',

 activation='linear', padding='valid', use_bias=True))

 # define optimizer

 adam = Adam(lr=0.0003)

 # compile model

 SRCNN.compile(optimizer=adam, loss='mean_squared_error',

metrics=['mean_squared_error'])

 return SRCNN

define necessary image processing functions

def modcrop(img, scale):

 tmpsz = img.shape

 sz = tmpsz[0:2]

 sz = sz - np.mod(sz, scale)

 img = img[0:sz[0], 1:sz[1]]

 return img

def shave(image, border):

 img = image[border: -border, border: -border]

 return img

In [11]:

define main prediction function

def predict(image_path):

 # load the srcnn model with weights

 srcnn = model()

 srcnn.load_weights('3051crop_weight_200.h5')

 # load the degraded and reference images

 path, file = os.path.split(image_path)

 degraded = cv2.imread(image_path)

 ref = cv2.imread('source/{}'.format(file))

2

6

 # preprocess the image with modcrop

 ref = modcrop(ref, 3)

 degraded = modcrop(degraded, 3)

 # convert the image to YCrCb - (srcnn trained on Y channel)

 temp = cv2.cvtColor(degraded, cv2.COLOR_BGR2YCrCb)

 # create image slice and normalize

 Y = numpy.zeros((1, temp.shape[0], temp.shape[1], 1), dtype=float)

 Y[0, :, :, 0] = temp[:, :, 0].astype(float) / 255

 # perform super-resolution with srcnn

 pre = srcnn.predict(Y, batch_size=1)

 # post-process output

 pre *= 255

 pre[pre[:] > 255] = 255

 pre[pre[:] < 0] = 0

 pre = pre.astype(np.uint8)

 # copy Y channel back to image and convert to BGR

 temp = shave(temp, 6)

 temp[:, :, 0] = pre[0, :, :, 0]

 output = cv2.cvtColor(temp, cv2.COLOR_YCrCb2BGR)

 # remove border from reference and degraged image

 ref = shave(ref.astype(np.uint8), 6)

 degraded = shave(degraded.astype(np.uint8), 6)

 # image quality calculations

 scores = []

 scores.append(compare_images(degraded, ref))

 scores.append(compare_images(output, ref))

 # return images and scores

 return ref, degraded, output, scores

ref, degraded, output, scores = predict('images/flowers.bmp')

print all scores for all images

print('Degraded Image: \nPSNR: {}\nMSE: {}\nSSIM: {}\n'.format(scores[0][0],

scores[0][1], scores[0][2]))

print('Reconstructed Image: \nPSNR: {}\nMSE: {}\nSSIM: {}\n'.format(scores[1][0],

scores[1][1], scores[1][2]))

2

7

display images as subplots

fig, axs = plt.subplots(1, 3, figsize=(20, 8))

axs[0].imshow(cv2.cvtColor(ref, cv2.COLOR_BGR2RGB))

axs[0].set_title('Original')

axs[1].imshow(cv2.cvtColor(degraded, cv2.COLOR_BGR2RGB))

axs[1].set_title('Degraded')

axs[2].imshow(cv2.cvtColor(output, cv2.COLOR_BGR2RGB))

axs[2].set_title('SRCNN')

remove the x and y ticks

for ax in axs:

 ax.set_xticks([])

 ax.set_yticks([])

Degraded Image:

PSNR: 27.2486864596

MSE: 367.564000474

SSIM: 0.86906220246

Reconstructed Image:

PSNR: 29.6675381755

MSE: 210.594874985

SSIM: 0.899043290319

for file in os.listdir('images'):

 # perform super-resolution

 ref, degraded, output, scores = predict('images/{}'.format(file))

 # display images as subplots

 fig, axs = plt.subplots(1, 3, figsize=(20, 8))

 axs[0].imshow(cv2.cvtColor(ref, cv2.COLOR_BGR2RGB))

 axs[0].set_title('Original')

 axs[1].imshow(cv2.cvtColor(degraded, cv2.COLOR_BGR2RGB))

 axs[1].set_title('Degraded')

 axs[1].set(xlabel = 'PSNR: {}\nMSE: {} \nSSIM: {}'.format(scores[0][0], scores[0][1],

scores[0][2]))

 axs[2].imshow(cv2.cvtColor(output, cv2.COLOR_BGR2RGB))

 axs[2].set_title('SRCNN')

 axs[2].set(xlabel = 'PSNR: {} \nMSE: {} \nSSIM: {}'.format(scores[1][0], scores[1][1],

scores[1][2]))

2

8

 # remove the x and y ticks

 for ax in axs:

 ax.set_xticks([])

 ax.set_yticks([])

 print('Saving {}'.format(file))

 fig.savefig('output/{}.png'.format(os.path.splitext(file)[0]))

 plt.close()

Saving baboon.bmp

Saving baby_GT.bmp

Saving barbara.bmp

Saving bird_GT.bmp

Saving butterfly_GT.bmp

Saving coastguard.bmp

Saving comic.bmp

Saving face.bmp

Saving flowers.bmp

Saving foreman.bmp

Saving head_GT.bmp

Saving lenna.bmp

Saving monarch.bmp

Saving pepper.bmp

Saving ppt3.bmp

Saving woman_GT.bmp

Saving zebra.bmp

2

9

3

0

3

1

CHAPTER-5

CONCLUSION

We have presented deep learning approach for single image super-resolution

(SR). We show that conventional sparse-coding-based SR methods can be

reformulated into a deep convolutional neural network. The proposed approach,

SRCNN, learns an end-to-end mapping between low- and high-resolution

images, with little extra pre/post-processing beyond the optimization. With a

lightweight structure, the SRCNN has achieved superior performance than the

state-of-the-art methods. We conjecture that additional performance can be

further gained by exploring more filters and different training strategies. Besides,

the proposed structure, with its advantages of simplicity and robustness, could be

applied to other low-level vision problems, such as image deblurring or

simultaneous SR+denoising. One could also investigate a network to cope with

different upscaling factors.

3

2

REFERENCES

[1] Aharon, M., Elad, M., Bruckstein, A.: K-SVD: An algorithm for

designing overcomplete dictionaries for sparse representation.

IEEE Transactions on Signal Processing 54(11), 4311–4322 (2006)

[2] Bevilacqua, M., Roumy, A., Guillemot, C., Morel, M.L.A.: Lowcomplexity

single-image super-resolution based on nonnegative

neighbor embedding. In: British Machine Vision Conference

(2012)

[3] Burger, H.C., Schuler, C.J., Harmeling, S.: Image denoising: Can

plain neural networks compete with BM3D? In: IEEE Conference

on Computer Vision and Pattern Recognition. pp. 2392–2399

(2012)

[4] Chang, H., Yeung, D.Y., Xiong, Y.: Super-resolution through neighbor

embedding. In: IEEE Conference on Computer Vision and

Pattern Recognition (2004)

[5] Cui, Z., Chang, H., Shan, S., Zhong, B., Chen, X.: Deep network

cascade for image super-resolution. In: European Conference on

Computer Vision, pp. 49–64 (2014)

[6] Dai, D., Timofte, R., Van Gool, L.: Jointly optimized regressors for

image super-resolution. In: Eurographics. vol. 7, p. 8 (2015)

[7] Dai, S., Han, M., Xu, W., Wu, Y., Gong, Y., Katsaggelos, A.K.:

Softcuts: a soft edge smoothness prior for color image superresolution.

IEEE Transactions on Image Processing 18(5), 969–981

(2009)

[8] Damera-Venkata, N., Kite, T.D., Geisler, W.S., Evans, B.L., Bovik,

A.C.: Image quality assessment based on a degradation model.

IEEE Transactions on Image Processing 9(4), 636–650 (2000)

[9] Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet:

A large-scale hierarchical image database. In: IEEE Conference on

Computer Vision and Pattern Recognition. pp. 248–255 (2009)

3

3

[10] Denton, E., Zaremba, W., Bruna, J., LeCun, Y., Fergus, R.: Exploiting

linear structure within convolutional networks for efficient

evaluation. In: Advances in Neural Information Processing Systems

(2014)

[11] Dong, C., Loy, C.C., He, K., Tang, X.: Learning a deep convolutional

network for image super-resolution. In: European Conference

on Computer Vision, pp. 184–199 (2014)

[12] Eigen, D., Krishnan, D., Fergus, R.: Restoring an image taken

through a window covered with dirt or rain. In: IEEE International

Conference on Computer Vision. pp. 633–640 (2013)

[13] Freedman, G., Fattal, R.: Image and video upscaling from local

self-examples. ACM Transactions on Graphics 30(2), 12 (2011)

[14] Freeman, W.T., Jones, T.R., Pasztor, E.C.: Example-based superresolution.

Computer Graphics and Applications 22(2), 56–65

(2002)

[15] Freeman, W.T., Pasztor, E.C., Carmichael, O.T.: Learning lowlevel

vision. International Journal of Computer Vision 40(1), 25–47

(2000)

	CANDIDATE’S DECLARATION
	We hereby certify that the work which is being presented in the project, entitled “IMAGE SUPER-RESOLUTION USING DEEP CONVOLUTION NETWORKS.” in partial fulfillment of the requirements for the award of the B-Tech CSE submitted in the School of Computing...
	CONCLUSION

