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ABSTRACT 
 

 

 

 

We are using deep learning methods for single image super-resolution. In this 

model our system will directly learns an end-to-end mapping between low and 

high resolutions images. And for mapping we are using deep convolution neural 

network (CNN) that will take low - resolution images as an input and gives an 

high resolution output image. We further show that traditional sparse- coding-

based SR methods can also be viewed as a deep convolutional network. But unlike 

traditional methods that handle each component separately, our method jointly 

optimizes all layers. Our deep CNN has a lightweight structure, yet demonstrates 

state- of-the-art restoration quality, and achieves fast speed for practical on-line 

usage. We explore different network structures and parameter settings to achieve 

trade-offs between performance and speed. Moreover, we extend our network to 

cope with three color channels simultaneously, and show better overall 

reconstruction quality. 
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CHAPTER-1 

INTRODUCTION 

1.1 Basic Introduction 

 
 

Image super-resolution is the task of recovering a high-resolution image from a 

lower-resolution image. This problem is notable for its applications in security as well 

as in medical imaging, especially since image reconstruction offers a methodology 

for correcting imaging system imperfections. For our project, we implement SRCNN 

and refine the model in order to improve the quality of the output images, as 

measured by peak signal-to-noise ratio (PSNR). The input to our algorithm is a low-

resolution image, which we feed through a convolutional neural network (CNN) in 

order to produce a high-resolution image. Traditional methods for image up sampling 

rely on low-information, smooth interpolation between known pixels. Such methods 

can be treated as a convolution with a kernel encoding no information about the 

original photograph. Although they increase the resolution of an image, they fail to 

produce the clarity desired in the super-resolution task. Convolutional Neural 

Networks (CNNs) are a generalization of such algorithms, using learned kernels with 

nonlinear activations to encode general characteristics about photographs that can 

add structure lost in the low-resolution input. CNN architectures such as SRCNN 

have been successfully applied to the super-resolution task. 

 

1.2 Image Super-Resolution 

According to the image priors, single-image super resolution algorithms can be 
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categorized into four types – prediction models, edge based methods, image 

statistical methods and patch based (or example-based) methods. These methods 

have been thoroughly investigated and evaluated in Yang et al.’s work . Among 

them, the example-based methods  achieve the state-of-the-art performance. The 

internal example-based methods exploit the selfsimilarity property and generate 

exemplar patches from the input image. It is first proposed in Glasner’s work , and 

several improved variants are  roposed to accelerate the implementation. The 

external example-based methods learn a mapping between low/highresolution 

patches from external datasets. These studies vary on how to learn a compact 

dictionary or manifold space to relate low/high-resolution patches, and on how 

representation schemes can be conducted in such spaces. In the pioneer work of 

Freeman et al. , the dictionaries are directly presented as low/high-resolution patch 

pairs, and the nearest neighbour (NN) of the input patch is found in the low-

resolution space, with its corresponding high-resolution patch used for 

reconstruction. Chang et al.  introduce a manifold embedding technique as an 

alternative to the NN strategy. In Yang et al.’s work , the above NN correspondence 

advances to a more sophisticated sparse coding formulation. Other mapping 

functions such as kernel regression , simple 3 function, random forest  and anchored 

neighborhood regression are proposed to further improve the mapping accuracy and 

speed. The sparsecoding-based method and its several improvements are among the 

state-of-the-art SR methods nowadays. In these methods, the patches are the focus 

of the optimization; the patch extraction and aggregation steps are considered as 
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pre/post-processing and  handled separately. The majority of SR algorithms focus 

on gray-scale or single-channel image super-resolution. For color images, the 

aforementioned methods first transform the problem to a different color space 

(YCbCr or YUV), and SR is applied only on the luminance channel. There are also 

works attempting to super-resolve all channels simultaneously. For example, Kim 

and Kwon  and Dai et al.  apply their model to each RGB channel and combined 

them to produce the final results. However, none of them has analyzed the SR 

performance of different channels, and the necessity of recovering all three 

channels.  

1.3 Convolutional Neural Networks 

Convolutional neural networks (CNN) date back decades  and deep CNNs have 

recently shown an explosive popularity partially due to its success in image 

classification . They have also been successfully applied to other computer vision 

fields, such as object detection , face recognition , and pedestrian detection . Several 

factors are of central importance in this progress: (i) the efficient training 

implementation on modern powerful GPUs , (ii) the proposal of the Rectified 

Linear Unit (ReLU)  which makes convergence much faster while still presents 

good quality , and (iii) the easy access to an abundance of data (like ImageNet ) for 

training larger models. Our method also benefits from these progresses. 
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1.4 Deep Learning for Image Restoration 

There have been a few studies of using deep learning techniques for image 

restoration. The multi-layer perceptron (MLP), whose all layers are fully-connected 

(in contrast to convolutional), is applied for natural image denoising  and post-

deblurring denoising . More closely related to our work, the convolutional neural 

network is applied for natural image denoising  and removing noisy patterns 

(dirt/rain) . These restoration problems are more or less denoising-driven. Cui et al.  

propose to embed auto-encoder networks in their superresolution pipeline under the 

notion internal examplebased approach . The deep model is not specifically 

designed to be an end-to-end solution, since each layer of the cascade requires 

independent optimization of the self-similarity search process and the auto-encoder. 

On the contrary, the proposed SRCNN optimizes an end-toend mapping. Further, 

the SRCNN is faster at speed. It is not only a quantitatively superior method, but 

also a practically useful one. 
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CHAPTER-2 

               FUNCTIONALITY & WORKING 
 

2.1 Formulation 
 

Consider a single low-resolution image, we first upscale it to the desired size using 

bicubic interpolation, which is the only pre-processing we perform3. Let us denote 

the interpolated image as Y. Our goal is to recover from Y an image F(Y) that is as 

similar as possible to the ground truth high-resolution image X. For the ease of 

presentation, we still call Y a “low-resolution” image, although it has the same size 

as X. We wish to learn a mapping F, which conceptually consists of three 

operations:  

1) Patch extraction and representation: this operation extracts (overlapping) 

patches from the lowresolution image Y and represents each patch as a high-

dimensional vector. These vectors comprise a set of feature maps, of which the 

number equals tothe dimensionality of the vectors.  

2) Non-linear mapping: this operation nonlinearly maps each high-dimensional 

vector onto another high-dimensional vector. Each mapped vector is conceptually 

the representation of a high-resolution patch. These vectors comprise another set of 

feature maps.  

3) Reconstruction: this operation aggregates the above high-resolution patch-wise 

representations to generate the final high-resolution image. This image is expected 

to be similar to the ground truth X.  

We will show that all these operations form a convolutional neural network. An 
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overview of the network is depicted in Figure 2. Next we detail our definition of 

each operation.  

 2.1.1 Patch extraction and representation 

A popular strategy in image restoration  is to densely extract patches and then 

represent them by a set of pre-trained bases such as PCA, DCT, Haar, etc. This 

is equivalent to convolving the image by a set of filters, each of which is a basis. In 

our formulation, we involve the optimization of these bases into the optimization of 

the network. Formally, our first layer is expressed as an operation F1:  

F1(Y) = max (0;W1 * Y + B1) ; 

where W1 and B1 represent the filters and biases respectively, and ’*’ denotes the 

convolution operation. Here, W1 corresponds to n1 filters of support  c x f1 x f1, 

where c is the number of channels in the input image, f1 is the spatial size of a 

filter. Intuitively, W1 applies n1 convolutions on the image, and each convolution 

has a kernel size  c * f1 * f1.  The output is composed of n1 feature maps. B1 is an 

n1-dimensional vector, whose each element is associated with a filter. We apply the 

Rectified Linear Unit (ReLU, max(0; x))  on the filter responses. 

2.1.2 Non-linear mapping 

The first layer extracts an n1-dimensional feature for each patch. In the second 

operation, we map each of these n1-dimensional vectors into an n2-dimensional 

one. This is equivalent to applying n2 filters which have a trivial spatial support 

1*1. This interpretation is only valid for 1*1 filters. But it is easy to generalize to 

larger filters like 3*3 or 5*5. In that case, the non-linear mapping is not on a patch 
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of the input image; instead, it is on a 3*3 or 5*5 “patch” of the feature map. The 

operation of the second layer is:  

F2(Y) = max (0;W2 * F1(Y) + B2) . 

Here W2 contains n2 filters of size  n1 x f2 x f2, and B2 is n2-dimensional. Each of 

the output n2-dimensional vectors is conceptually a representation of a high-

resolution patch that will be used for reconstruction. It is possible to add more 

convolutional layers to increase the non-linearity. But this can increase the 

complexity of the model (n2 x f2 x f2 x n2 parameters for one layer), and thus 

demands more training time.  

  2.1.3 Reconstruction 

 In the traditional methods, the predicted overlapping high-resolution patches are 

often averaged to produce the final full image. The averaging can be considered 

as a pre-defined filter on a set of feature maps (where each position is the 

“flattened” vector form of a highresolution patch). Motivated by this, we define a 

convolutional layer to produce the final high-resolution image:  

F(Y) = W3* F2(Y) + B3 

Here W3 corresponds to c filters of a size  n2 x f3 x f3, and B3 is a c-dimensional 

vector. If the representations of the high-resolution patches are in the image domain 

(i.e.,we can simply reshape each representation to form the patch), we expect that 

the filters act like an averaging filter; if the representations of the high-resolution 

patches are in some other domains (e.g.,coefficients in terms of some bases), we 

expect that W3 behaves like first projecting the coefficients onto the image domain 
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and then averaging. In either way, W3 is a set of linear filters. Interestingly, 

although the above three operations are motivated by different intuitions, they all 

lead to thesame form as a convolutional layer. We put all three operations together 

and form a convolutional neural network (Figure 2). In this model, all the filtering 

weights and biases are to be optimized. Despite the succinctness of the overall 

structure, our SRCNN model is carefully developed by drawing extensive 

experience resulted from significant progresses in super-resolution [49], [50]. We 

detail the relationship in the next section.   

2.2 Relationship to Sparse-Coding-Based Methods  

We show that the sparse-coding-based SR methods [49], [50] can be viewed as a 

convolutional neural network. Figure 3 shows an illustration. In the sparse-coding-

based methods, let us consider that an f1 x f1  low-resolution patch is extracted 

from the input image. Then the sparse coding solver, like Feature-Sign [29], will 

first project the patch onto a (lowresolution) dictionary. If the dictionary size is n1, 

this is equivalent to applying n1 linear filters (f1 x f1) on the input image (the mean 

subtraction is also a linear operation so can be absorbed). This is illustrated as the 

left part of Figure 3. The sparse coding solver will then iteratively process the n1 

coefficients. The outputs of this solver are n2 coefficients, and usually n2 = n1 in 

the case of sparse coding. These n2 coefficients are the representation of the high-

resolution patch. In this sense, the sparse coding solver behaves as a special case of 

a non-linear mappingoperator, whose spatial support is 1 x 1. See the middle 

part of Figure 3. However, the sparse coding solver is not feed-forward, i.e.,it is an 
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iterative algorithm. On the contrary, our non-linear operator is fully feed-forward 

and can be computed efficiently. If we set f2 = 1, then our non-linear operator can 

be considered as a pixel-wise ully-connected layer. It is worth noting that “the 

sparse coding solver” in SRCNN refers to the first two layers, but not just the 

second layer or the activation function (ReLU). Thus the nonlinear operation in 

SRCNN is also well optimized through the learning process. The above n2 

coefficients (after sparse coding) are then projected onto another (high-resolution) 

dictionary to produce a high-resolution patch. The overlapping high-resolution 

patches are then averaged. As discussed bove, this is equivalent to linear 

convolutions on the n2 feature maps. If the high-resolution patches used for 

reconstruction are of size f3 x f3, then the linear filters have an equivalent spatial 

support of size f3 x f3. See the right part of  Figure 3. The above discussion shows 

that the sparse-codingbased SR method can be viewed as a kind of convolutional 

neural network (with a different non-linear mapping). But not all operations have 

been considered in the optimization in the sparse-coding-based SR methods. On the 

contrary, in our convolutional neural network, the low-resolution dictionary, high-

resolution dictionary, non-linear mapping, together with mean subtraction and 

averaging, are all involved in the filters to be optimized. So our method optimizes 

an end-to-end mapping that consists of all operations. The above analogy can also 

help us to design hyperparameters. For example, we can set the filter size ofthe last 

layer to be smaller than that of the first layer, and thus we rely more on the central 

part of the highresolution patch (to the extreme, if f3 = 1, we are using the center 
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pixel with no averaging). We can also set n2 < n1 because it is expected to be 

sparser. A typical and basic setting is f1 = 9, f2 = 1, f3 = 5, n1 = 64, and n2 = 32 

(we evaluate more settings in the experiment section). On the whole, the estimation 

of a high resolution pixel utilizes the information of (9 + 5 - 1)2 = 169 pixels. 

Clearly, the information exploited for reconstruction is comparatively larger than 

that used in existing external example-based approaches, e.g., using (5+5-1)2 = 81 

pixels5 [15], [50]. This is one of the reasons why the SRCNN gives superior 

performance.  
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    CHAPTER-3 

REQUIREMENTS 
 

3.1 Requirements 

It should be noted that tensorflow version matters a lot because old versions don't 

include some layers such as depth-to-space, so you should make sure tf version is 

larger than 2.4.0. Another important thing is that only tf-nightly larger than 2.5.0 

can perform arbitrary input shape quantization. I provide two conda environments, 

tf.yaml for training and tfnightly.yaml for Post-Training Quantization(PTQ) and 

Quantization-Aware Training(QAT). You can use the following scripts to create 

two separate conda environments. 

conda env create -f tf.yaml 

conda env create -f tfnightly.yaml 

3.2 Pipeline 

1. Train and validate on DIV2K. We can achieve 30.22dB with 42.54K 

parameters. 

2. Post-Training Quantization: after int8 quantization, PSNR drops to 30.09dB. 

3. Quantization-Aware Training: Insert fake quantization nodes during training. 

PSNR increases to 30.15dB, which means the model size becomes 4x 

smaller with only 0.07dB performance loss. 

3.3 Prepare DIV2K Data 
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Download DIV2K and put DIV2K in data folder. Then the structure should look 

like: 

| DATA 

| | DIV2K 

| | |DIV2K_train_HR 

| | | | 0001.png 

| | | |…… 

| | | | 0900.png 

| | |DIV2K_train_LR_bicubic  

| | | |X2 

| | | | |0001x2.png 

| | | | |… 

| | | | |0900x2.png 

 

 

3.4 Training 
python train.py --opt options/train/base7.yaml --name ase7_D4C28_bs16ps64_lr1e-

3 --scale 3  --bs 16 --ps 64 --lr 1e-3 --gpu_ids 0 

Note: The argument --name specifies the following save path: 

 Log file will be saved in log/{name}.log 

 Checkpoint and current best weights will be saved in 

experiment/{name}/best_status/ 

 Visualization of Train and Validate will be saved in Tensorboard/{name}/ 

You can use tensorboard to monitor the training and validating process by: 

tensorboard --logdir Tensorboard 

3.5 Quantization-Aware Training 

If you haven't worked with Tensorflow Lite and network quantization before, please 

refer to official guideline. This technology inserts fake quantization nodes to make 
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the weights aware that themselves will be quantized. For this model, you can simply 

use the following script to perform QAT: 

python train.py --opt options/train/base7_qat.yaml --name 

base7_D4C28_bs16ps64_lr1e-3_qat --scale 3  --bs 16 --ps 64 --lr 1e-3 --gpu_ids 0 -

-qat --qat_path experiment/base7_D4C28_bs16ps64_lr1e-3/best_status 

Convert to TFLite which can run on mobile device 

python generate_tflite.py 

Then the converted tflite model will be saved in TFMODEL/. 

TFMODEL/{name}.tflite is used for predicting high-resolution image(arbitary low-

resolution input shape is allowed), while TFMODEL/{name}_time.tflite fixes 

model input shape to [1, 360, 640, 3] for getting inference time. 

3.6 Run TFLite Model on your own devices 

Download AI Benchmark from the Google Play / website and run its standard tests. 

After the end of the tests, enter the PRO Model and select the Custom Model tab 

there.Send your tflite model to your device and remember its location, then run the 

model. 

 

Fig : Loading and running custom TensorFlow Lite models with AI Benchmark application   
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CHAPTER-4 

IMPLEMENTATION  

 

Implementation  
  

 

# check package versions 

import sys 

import keras 

import cv2 

import numpy 

import matplotlib 

import skimage 

 

print('Python: {}'.format(sys.version)) 

print('Keras: {}'.format(keras.__version__)) 

print('OpenCV: {}'.format(cv2.__version__)) 

print('NumPy: {}'.format(numpy.__version__)) 

print('Matplotlib: {}'.format(matplotlib.__version__)) 

print('Scikit-Image: {}'.format(skimage.__version__)) 

 

Python: 2.7.13 |Continuum Analytics, Inc.| [MSC v.1500 64 bit (AMD64)] 

Keras: 2.1.4 

OpenCV: 3.3.0 

NumPy: 1.14.1 

Matplotlib: 2.1.0 

Scikit-Image: 0.13.1 

In [4]: 

# import the necessary packages 

from keras.models import Sequential 

from keras.layers import Conv2D 

from keras.optimizers import Adam 

from skimage.measure import compare_ssim as ssim 

from matplotlib import pyplot as plt 

import cv2 

import numpy as np 

import math 

import os 

 

# python magic function, displays pyplot figures in the notebook 

%matplotlib inline 

# define a function for peak signal-to-noise ratio (PSNR) 
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def psnr(target, ref): 

          

    # assume RGB image 

    target_data = target.astype(float) 

    ref_data = ref.astype(float) 

 

    diff = ref_data - target_data 

    diff = diff.flatten('C') 

 

    rmse = math.sqrt(np.mean(diff ** 2.)) 

 

    return 20 * math.log10(255. / rmse) 

 

# define function for mean squared error (MSE) 

def mse(target, ref): 

    # the MSE between the two images is the sum of the squared difference between the two 

images 

    err = np.sum((target.astype('float') - ref.astype('float')) ** 2) 

    err /= float(target.shape[0] * target.shape[1]) 

     

    return err 

 

# define function that combines all three image quality metrics 

def compare_images(target, ref): 

    scores = [] 

    scores.append(psnr(target, ref)) 

    scores.append(mse(target, ref)) 

    scores.append(ssim(target, ref, multichannel =True)) 

     

    return scores 

# prepare degraded images by introducing quality distortions via resizing 

 

def prepare_images(path, factor): 

     

    # loop through the files in the directory 

    for file in os.listdir(path): 

         

        # open the file 

        img = cv2.imread(path + '/' + file) 

         

        # find old and new image dimensions 

        h, w, _ = img.shape 

        new_height = h / factor 

        new_width = w / factor 
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        # resize the image - down 

        img = cv2.resize(img, (new_width, new_height), interpolation = cv2.INTER_LINEAR) 

         

        # resize the image - up 

        img = cv2.resize(img, (w, h), interpolation = cv2.INTER_LINEAR) 

         

        # save the image 

        print('Saving {}'.format(file)) 

        cv2.imwrite('images/{}'.format(file), img) 

prepare_images('source/', 2) 

 

Saving baboon.bmp 

Saving baby_GT.bmp 

Saving barbara.bmp 

Saving bird_GT.bmp 

Saving butterfly_GT.bmp 

Saving coastguard.bmp 

Saving comic.bmp 

Saving face.bmp 

Saving flowers.bmp 

Saving foreman.bmp 

Saving head_GT.bmp 

Saving lenna.bmp 

Saving monarch.bmp 

Saving pepper.bmp 

Saving ppt3.bmp 

Saving woman_GT.bmp 

Saving zebra.bmp 

# test the generated images using the image quality metrics 

 

for file in os.listdir('images/'): 

     

    # open target and reference images 

    target = cv2.imread('images/{}'.format(file)) 

    ref = cv2.imread('source/{}'.format(file)) 

     

    # calculate score 

    scores = compare_images(target, ref) 

 

    # print all three scores with new line characters (\n)  

    print('{}\nPSNR: {}\nMSE: {}\nSSIM: {}\n'.format(file, scores[0], scores[1], scores[2])) 

baboon.bmp 
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PSNR: 22.1570840834 

MSE: 1187.11613333 

SSIM: 0.6292775879 

 

baby_GT.bmp 

PSNR: 34.3718064097 

MSE: 71.2887458801 

SSIM: 0.935698787272 

 

barbara.bmp 

PSNR: 25.9066298376 

MSE: 500.655085359 

SSIM: 0.809863264641 

 

bird_GT.bmp 

PSNR: 32.8966447287 

MSE: 100.123758198 

SSIM: 0.953364486603 

 

butterfly_GT.bmp 

PSNR: 24.7820765603 

MSE: 648.625411987 

SSIM: 0.879134476384 

 

coastguard.bmp 

PSNR: 27.1616006639 

MSE: 375.008877841 

SSIM: 0.756950063355 

 

comic.bmp 

PSNR: 23.7998615022 

MSE: 813.233883657 

SSIM: 0.83473354164 

 

face.bmp 

PSNR: 30.9922065029 

MSE: 155.231897185 

SSIM: 0.800843949229 

 

flowers.bmp 

PSNR: 27.4545048054 

MSE: 350.550939227 

SSIM: 0.869728628697 
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foreman.bmp 

PSNR: 30.1445653266 

MSE: 188.688348327 

SSIM: 0.933268417389 

 

head_GT.bmp 

PSNR: 31.0205028482 

MSE: 154.22377551 

SSIM: 0.801112133073 

 

lenna.bmp 

PSNR: 31.4734929787 

MSE: 138.948005676 

SSIM: 0.846098920052 

 

monarch.bmp 

PSNR: 30.1962423653 

MSE: 186.456436157 

SSIM: 0.943957429343 

 

pepper.bmp 

PSNR: 29.8894716169 

MSE: 200.103393555 

SSIM: 0.835793756846 

 

ppt3.bmp 

PSNR: 24.8492616895 

MSE: 638.668426391 

SSIM: 0.928402394232 

 

woman_GT.bmp 

PSNR: 29.3262362808 

MSE: 227.812729498 

SSIM: 0.933539728047 

 

zebra.bmp 

PSNR: 27.9098406393 

MSE: 315.658545953 

SSIM: 0.891165620933 

 

# define the SRCNN model 

def model(): 

     

    # define model type 
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    SRCNN = Sequential() 

     

    # add model layers 

    SRCNN.add(Conv2D(filters=128, kernel_size = (9, 9), kernel_initializer='glorot_uniform', 

                     activation='relu', padding='valid', use_bias=True, input_shape=(None, None, 1))) 

    SRCNN.add(Conv2D(filters=64, kernel_size = (3, 3), kernel_initializer='glorot_uniform', 

                     activation='relu', padding='same', use_bias=True)) 

    SRCNN.add(Conv2D(filters=1, kernel_size = (5, 5), kernel_initializer='glorot_uniform', 

                     activation='linear', padding='valid', use_bias=True)) 

     

    # define optimizer 

    adam = Adam(lr=0.0003) 

     

    # compile model 

    SRCNN.compile(optimizer=adam, loss='mean_squared_error', 

metrics=['mean_squared_error']) 

     

    return SRCNN 

# define necessary image processing functions 

 

def modcrop(img, scale): 

    tmpsz = img.shape 

    sz = tmpsz[0:2] 

    sz = sz - np.mod(sz, scale) 

    img = img[0:sz[0], 1:sz[1]] 

    return img 

 

 

def shave(image, border): 

    img = image[border: -border, border: -border] 

    return img 

In [11]: 

# define main prediction function 

 

def predict(image_path): 

     

    # load the srcnn model with weights 

    srcnn = model() 

    srcnn.load_weights('3051crop_weight_200.h5') 

     

    # load the degraded and reference images 

    path, file = os.path.split(image_path) 

    degraded = cv2.imread(image_path) 

    ref = cv2.imread('source/{}'.format(file)) 
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    # preprocess the image with modcrop 

    ref = modcrop(ref, 3) 

    degraded = modcrop(degraded, 3) 

     

    # convert the image to YCrCb - (srcnn trained on Y channel) 

    temp = cv2.cvtColor(degraded, cv2.COLOR_BGR2YCrCb) 

     

    # create image slice and normalize   

    Y = numpy.zeros((1, temp.shape[0], temp.shape[1], 1), dtype=float) 

    Y[0, :, :, 0] = temp[:, :, 0].astype(float) / 255 

     

    # perform super-resolution with srcnn 

    pre = srcnn.predict(Y, batch_size=1) 

     

    # post-process output 

    pre *= 255 

    pre[pre[:] > 255] = 255 

    pre[pre[:] < 0] = 0 

    pre = pre.astype(np.uint8) 

     

    # copy Y channel back to image and convert to BGR 

    temp = shave(temp, 6) 

    temp[:, :, 0] = pre[0, :, :, 0] 

    output = cv2.cvtColor(temp, cv2.COLOR_YCrCb2BGR) 

     

    # remove border from reference and degraged image 

    ref = shave(ref.astype(np.uint8), 6) 

    degraded = shave(degraded.astype(np.uint8), 6) 

     

    # image quality calculations 

    scores = [] 

    scores.append(compare_images(degraded, ref)) 

    scores.append(compare_images(output, ref)) 

     

    # return images and scores 

    return ref, degraded, output, scores 

ref, degraded, output, scores = predict('images/flowers.bmp') 

 

# print all scores for all images 

print('Degraded Image: \nPSNR: {}\nMSE: {}\nSSIM: {}\n'.format(scores[0][0], 

scores[0][1], scores[0][2])) 

print('Reconstructed Image: \nPSNR: {}\nMSE: {}\nSSIM: {}\n'.format(scores[1][0], 

scores[1][1], scores[1][2])) 
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# display images as subplots 

fig, axs = plt.subplots(1, 3, figsize=(20, 8)) 

axs[0].imshow(cv2.cvtColor(ref, cv2.COLOR_BGR2RGB)) 

axs[0].set_title('Original') 

axs[1].imshow(cv2.cvtColor(degraded, cv2.COLOR_BGR2RGB)) 

axs[1].set_title('Degraded') 

axs[2].imshow(cv2.cvtColor(output, cv2.COLOR_BGR2RGB)) 

axs[2].set_title('SRCNN') 

 

# remove the x and y ticks 

for ax in axs: 

    ax.set_xticks([]) 

    ax.set_yticks([]) 

Degraded Image:  

 

PSNR: 27.2486864596 

MSE: 367.564000474 

SSIM: 0.86906220246 

 

Reconstructed Image:  

PSNR: 29.6675381755 

MSE: 210.594874985 

SSIM: 0.899043290319 

 

 

for file in os.listdir('images'): 

     

    # perform super-resolution 

    ref, degraded, output, scores = predict('images/{}'.format(file)) 

     

    # display images as subplots 

    fig, axs = plt.subplots(1, 3, figsize=(20, 8)) 

    axs[0].imshow(cv2.cvtColor(ref, cv2.COLOR_BGR2RGB)) 

    axs[0].set_title('Original') 

    axs[1].imshow(cv2.cvtColor(degraded, cv2.COLOR_BGR2RGB)) 

    axs[1].set_title('Degraded') 

    axs[1].set(xlabel = 'PSNR: {}\nMSE: {} \nSSIM: {}'.format(scores[0][0], scores[0][1], 

scores[0][2])) 

    axs[2].imshow(cv2.cvtColor(output, cv2.COLOR_BGR2RGB)) 

    axs[2].set_title('SRCNN') 

    axs[2].set(xlabel = 'PSNR: {} \nMSE: {} \nSSIM: {}'.format(scores[1][0], scores[1][1], 

scores[1][2])) 
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    # remove the x and y ticks 

    for ax in axs: 

        ax.set_xticks([]) 

        ax.set_yticks([]) 

       

    print('Saving {}'.format(file)) 

    fig.savefig('output/{}.png'.format(os.path.splitext(file)[0]))  

    plt.close() 

 

Saving baboon.bmp 

Saving baby_GT.bmp 

Saving barbara.bmp 

Saving bird_GT.bmp 

Saving butterfly_GT.bmp 

Saving coastguard.bmp 

Saving comic.bmp 

Saving face.bmp 

Saving flowers.bmp 

Saving foreman.bmp 

Saving head_GT.bmp 

Saving lenna.bmp 

Saving monarch.bmp 

Saving pepper.bmp 

Saving ppt3.bmp 

Saving woman_GT.bmp 

Saving zebra.bmp 
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CHAPTER-5 

CONCLUSION 
 

We have presented  deep learning approach for single image super-resolution 

(SR). We show that conventional sparse-coding-based SR methods can be 

reformulated into a deep convolutional neural network. The proposed approach, 

SRCNN, learns an end-to-end mapping between low- and high-resolution 

images, with little extra pre/post-processing beyond the optimization. With a 

lightweight structure, the SRCNN has achieved superior performance than the 

state-of-the-art methods. We conjecture that additional performance can be 

further gained by exploring more filters and different training strategies. Besides, 

the proposed structure, with its advantages of simplicity and robustness, could be 

applied to other low-level vision problems, such as image deblurring or 

simultaneous SR+denoising. One could also investigate a network to cope with 

different upscaling factors. 
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