
A Project Report

on

Smart Class Scheduler

Submitted in partial fulfillment of the

requirement for the award of the degree of

Bachelor of Technology in Computer

Science and Engineering

Under the Supervision of
Mr. Arvind Kumar

Associate Professor
Department of Computer Science and Engineering

Submitted By

19SCSE1010667 - Aman Bisht

19SCSE1010914 - Mohit Bajaj

SCHOOL OF COMPUTING SCIENCE AND ENGINEERING

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

GALGOTIAS UNIVERSITY, GREATER NOIDA, INDIA

DECEMBER - 2021

SCHOOL OF COMPUTING SCIENCE AND

ENGINEERING
GALGOTIAS UNIVERSITY, GREATER NOIDA

CANDIDATE’S DECLARATION

I/We hereby certify that the work which is being presented in the project, entitled “Smart

Class Scheduler” in partial fulfillment of the requirements for the award of the

BACHELOR OF TECHNOLOGY IN COMPUTER SCIENCE AND ENGINEERING

submitted in the School of Computing Science and Engineering of Galgotias University,

Greater Noida, is an original work carried out during the period of JULY-2021 to

DECEMBER-2021, under the supervision of Mr. Arvind Kumar, Associate Professor,

Department of Computer Science and Engineering of School of Computing Science and

Engineering , Galgotias University, Greater Noida

The matter presented in the project has not been submitted by me/us for the award of any other

degree of this or any other places.

19SCSE1010667 - Aman Bisht

19SCSE1010914 - Mohit Bajaj

This is to certify that the above statement made by the candidates is correct to the best of my

knowledge.

Supervisor
Mr. Arvind Kumar, Associate
Professor

CERTIFICATE

The Final Thesis/Project/ Dissertation Viva-Voce examination of 19SCSE1010667 - Aman Bisht

,19SCSE1010914 - Mohit Bajaj has been held on _________________ and his/her

work is recommended for the award of BACHELOR OF TECHNOLOGY IN

COMPUTER SCIENCE AND ENGINEERING.

Signature of Examiner(s) Signature of Supervisor(s)

Signature of Project Coordinator Signature of Dean

Date:

Place:

ABSTRACT

Timetabling Problem is Hard problem which is very difficult to solve by using

conventional methods. A lot of complex constraints need to be addressed for

development of an efficient algorithm to solve this timetabling problem. Therefore,

there is a great requirement for an application distributing the course evenly and

without collisions. There are various tools available for generating timetable. This

tool can reduce our manual work of generating timetable but limitations of this tool

is that it requires more time, gives less accuracy and also error rate is high. So, our

aim here is to develop a simple, easily understandable, efficient and portable

application, which could automatically generate good quality timetable within

seconds. In the present scenario, all the college related work such as making the

defaulter list of students and measuring the performance of a teacher according to

feedback given by students is done manually. All these tasks are time consuming

and also require a lot of efforts and resources. To solve these problems our system

uses Sentiment analysis API for generating feedback of teacher. System generates

teacher’s performance graph according to feedback given by student. The system

will also send alert message to students if their attendance is less than 75%. The

main purpose of our system is to reduce the workload of teachers and also be a cost

effective and a quick respondent system.

 This study presents a generic solution to the problem of scheduling. The majority

of the previously presented heuristics address the topic from the perspective of the

students. This solution, on the other hand, is based on the availability of professors

for a certain time slot. While all hard restrictions (such as teacher availability) are

carefully resolved, the scheduling method given in this work is adaptive, with the

primary goal of resolving the issue of lecture and subject clashes involving

teachers.

Introduction

The class timetabling problem is a scheduling method that has received a lot of

attention and has a lot of consequences in the domains of operational research and

artificial intelligence. Gotlieb was the first to investigate the issue, formulating a

class-teacher scheduling problem based on the assumption that each lecture had

one group of students and one teacher, with the combination of teacher and pupils

being freely chosen.[1].Dynamic alterations in the context of scheduling issues has

been researched [17]. you'll find a survey of existing approaches to dynamic

scheduling.[16]. Due to the magnitude of the real-world problem, practically all

effective solutions are heuristic in nature and do not ensure optimality. repo [13],

which deal with various situations of problem settings [14], are among the well-

known outcomes. When creating a schedule, consideration is paid to the efficient

use of resources such as the classroom, the teacher, and so on.' This becomes a

highly time-consuming process.

Timetabling concerns all activities with regard to making a timetable that must be

subjective to different constraints. A critical factor in running a university or

essentially an academic environment is the need for a well-planned and clash-free

timetable. Back in the times when technology was not in wide use, academic

timetables were manually created by the educational center staff. Every year,

Educational institutes face the rigorous task of drawing up timetables that satisfies

the various courses and their respective examinations being offered by the different

department. The difficulty is due to the great complexity of the construction of

timetables for lectures and exams, due to the scheduling size of the lectures and

examinations periods and the high number of constraints and criteria of allocation,

usually circumvented with the use of little strict heuristics, based on solutions from

previous years. A timetable management system is designed and created to handle

as much course data as fed while ensuring the avoidance of redundancy. An

educational timetable must meet a number of requirements and should satisfy the

desires of all entities involved simultaneously as well as possible.

The aim of this work is the generation of course schedules while demonstrating the

possibility of building these schedules automatically through the use of computers

in such a way that they are optimal and complete with little or no redundancy

through the development of a viable lecture timetabling software.

The focus of this report is mainly on tertiary institutes because almost all tertiary

institutes face the problem of timetable scheduling [9]. In any case, the current

method of manual timetable scheduling is considered very inadequate as it is time

consuming and provides very high chances violations on the timetable. Timetable

scheduling is described as the sharing out of resources for factors under predefined

constrictions so that it maximizes the likelihood of allocation or reduces the

violation of restrictions set [Shengxiang and Sadaf (2009)]. In the new approach,

genetic algorithms seem to be a way forward to solving this problem. GAs is a

dominant force in the overall purpose as optimization tools which model principles

of evolution [Davis (2007)], in another aspect they can be said to be adaptive

systems that inspired by the nature of evolution. [6], also mentioned that they are

most often capable of finding globally optimal solutions even in the most complex

of search spaces, thus in this case GAs are used to automate the scheduling of

classes, and in contrast they are known to keep several distinct outcomes in the

form of a population [14]. [18] Continues to say that, the distinct outcomes known

as parents are selected from the total population and mated together to form a new

offspring called a child. [2] Substantiated on this by mentioning that GAs work on

a populated strategy and by combining together to form new optimal solutions. The

new offspring generated is further mutated, adopting the biological concept, in

order to bring about diversity into the total population [7] and [4].

Literature Review

The literature on and implementation of educational timetabling problems is quite

scattered. Different research papers that have been brought out on timetabling may

refer to the same type of institution but they mostly deal with different kinds of

assignments, i.e., decisions like the timing of events, sectioning students into

groups, or assigning events to locations. Moreover, each institution has its own

characteristics which are reflected in the problem definition. Yet, there have been

no leveling grounds for developing a system that can work for most of these

institutions. The primary objective is to be able to optimize the algorithm used in

today’s timetable systems to generate the best of timetabling data with fewer or no

clashes. The secondary objective is to expand the scope of timetable automation

systems by making it generic thereby bringing about uniformity in the creation of

timetables as it applies to different universities or educational institutions i.e. will

be able to generate timetables that fit the requirements of any academic institution.

Trying to develop a software which helps to generate Timetable for an Institution

automatically. By looking at the existing system we can understand that timetable

generation is done manually. Manually adjust the timetable when any of the faculty

is absent, and this is the big challenge for Automatic Timetable Generator that

managing the timetable automatically when any of the faculty is absent. As we

know all institutions/organizations have its own timetable, managing and

maintaining these will not be difficult. Considering workload with this scheduling

will make it more complex. As mentioned, when Timetable generation is being

done, it should consider the maximum and minimum workload that is in a college.

In those cases, timetable generation will become more complex. Also, it is a time-

consuming process.

Timetabling is recognized to be a non-polynomial complete issue, which means

that there is no efficient technique to find a solution. Furthermore, the most striking

feature of NP-complete problems is that no optimum solution to them is known. As

a result, a heuristic technique is used to solve a timetabling problem. This heuristic

approach yields a set of good solutions (but not necessarily the best solution).

 A set of events (e.g., courses and exams) are allotted into a given number of

timeslots (time periods) pursuant to a set of constraints in a generic educational

timetabling problem, which often makes the problem highly difficult to solve in

real-world settings [2]. Indeed, large-scale schedules, such as university timetables,

may necessitate many hours of labor by qualified individuals or teams in order to

develop high-quality timetables with optimal constraint satisfaction [7] and

timetable optimization.

There are two kinds of restrictions. Constraints, both hard and soft. Hard

limitations are those that cannot be violated while a timeline is being calculated.

For example, in order for a teacher to be booked for a time slot, the teacher must be

available at that time. Only when no hard limitation is violated is a solution

acceptable. Soft constraints, on the other hand, are those that should be addressed

as much as possible in the solution. For example, while a teacher's schedule is

important, the emphasis is on creating a legitimate timetable, which can result in a

teacher being available for a time slot. As a result, while addressing the timetabling

problem, hard constraints must be followed while also attempting to satisfy as

many soft requirements as feasible. Because of the problem's intricacy, the

majority of the work has focused on heuristic algorithms

Heuristic optimization approaches are expressly focused at good viable solutions

that may not be optimal in cases when the complexity of the problem or the limited

time available do not allow for an accurate solution. In general, two questions

arise: I How quickly is the solution computed? (ii) How near is the answer to being

optimal? A tradeoff between speed and quality is frequently required, which is

addressed by running simpler algorithms several times, comparing results acquired

with more intricate ones, and comparing the effectiveness of different heuristics.

The empirical evaluation of the heuristic technique is based on the analytical

difficulties involved in the worst-case conclusion of the problem. In its most basic

form, the scheduling task consists of mapping pre-allocated class, instructor, and

room combinations onto time slots.

One possible strategy is as follows: A tuple is defined as a specific combination of

identifiers such as class, teacher, and room that is submitted as an input to the

problem. [20] The issue now becomes one of mapping tuples onto period slots in

such a way that tuples occupying the same period slot are disjoint (have no

identifiers in common). If tuples are arbitrarily assigned to periods, there will be a

number of collisions in all but the most trivial circumstances. The frequency of

collisions in a timetable can be used as an objective assessment of the schedule's

quality. As a result, we consider the number of clashes to be the cost of any

particular timetable. A schedule's cost is easy to calculate. We keep track of the

number of occurrences of each class, instructor, and room identification for each

week period. The total cost of the timetable is the sum of the various costs.

Abramson [21] goes into much detail about this process.

The proposed algorithm facilitates in the solution of the timetabling problem while

emphasizing teacher availability. This program employs a heuristic approach to

provide a generic solution to the problem of school scheduling. It requires the user

to enter a number of subjects, a number of teachers, the subjects that each teacher

teaches, the number of days in a week for which the timetable must be created, the

number of time slots in a day, and the maximum number of lectures a teacher can

give in a week.

It initially creates a temporary time table using a randomly generated subject

sequence. When creating this sequence, effort is taken to avoid subject duplication

throughout the course of a day. Following that, the availability of teachers for each

of the subjects assigned to the relevant slot is checked. When a teacher is available

for the topic during the allotted time slot, the subject and teacher are placed into

the output data structure and designated as final. Before assigning this subject to

the output data structure, a check is made to see how many maximum lectures a

teacher can provide. If the teacher has been assigned more than the maximum

number of lectures, the subject is moved to a Clash data structure. This variable

selection criterion can be randomized to avoid cycling and to improve the search.

There are numerous ways [22] that can be used.

As an example, consider the random walk technique (with the given probability p a

random variable is selected) – not the worst variable, but a random selection of a

variable that is bad enough (e.g., from the top N worst variables), or – a

probability-based selection of a variable based on the aforementioned factors (e.g.,

roulette wheel selection).

However, in planning for timetables, considerations have to be made such that

each lecture period must have at least one lecturer or professor, a time slot and

venue. This is generally considered to be a highly constrained and hard problem to

solve. Another challenge is how to generate an optimal timetable solution. To this

end, approaches based on evolutionary algorithm using problem-specific domains,

heuristics and context-based reasoning have been developed by various

researchers. Parallel frameworks such as the PTMSS and genetic artificial immune

networks have also been developed all in a bid to produce optimal solutions for

timetable generation. The Scheduler implemented in this paper uses tools such as:

XHTML, HTML6, CSS6, PHP, JAVASCRIPTS, JQUERY, MYSQL and Tomcat

Apache. Furthermore, there are quite a number of approaches that have been used

to create various systems with similar features, but not with exact functions as the

SCHEDULER.

Problem Statement

The existing issues with traditional timetable generation includes: difficulty in

execution, time consuming, and is considered an arduous process. When

generating a manual timetable, lots of effort and man power is needed, and such

timetables in most Nigeria Institutions are usually prone to human error.

Furthermore, a major problem that is associated with the manual lecture timetable

system is the high rate of clashes in lecture times and venues. Amending an already

generated timetable requires the scheduler to recreate the schedule manually over

and over again. This certainly creates a series of retracing which is usually difficult

to figure out or resolve as the case maybe. To overcome these problems, concerned

institutions need an efficient automated, feasible and competent timetable

scheduling system. Such a system should be capable of satisfying all the soft and

hard constraints and conditions previously highlighted.

For instance, the same faculty lecturer taking two more courses cannot be assigned

the same room, venue and time slot for the same lectures. Concurrently, two

different courses which are to be delivered to the same students or group of

students should also not be allowed. As such, there is a major requirement for an

application appropriate lecture timetable without variation, such that collision in

the scheduling process is totally eliminated. To this effect, the Scheduler system

overcomes these problems particularly by saving more processing time and also by

eliminating the traditional error-prone manual processes involved.

Background

The Logarithmic algorithm used in implementing the said system is the modified

Quick sort algorithm. The algorithm is based on the Divide-and Conquer approach.

The process is split into 6 parallel processes that are each running simultaneously.

However, since there are 6 parallel processes, the best-case performance is

Θ(6nlogn), which reduces to just Θ(long), while the worst-case performance is

Θ(6n2), which also reduces to Θ(n2).

 Definition: Suppose there are P processes running in n time to generate the

timetable. Then we can model the

problem as follows:

Condition 1: Pi ≠ Pi+1, where I=0,1, 2, n

Condition 2: Pn≠ Ø.

If and only if Condition 1 and Condition 2 are met, then we obtain Equation 1 as

follows:

Pan= {P i-5, Pi-4, Pi-3, Pi-2, Pi-1, Pi} ………………………… (1)

where, I=0,1, 2, n

Each Pi is running independently and is generating specific days of the week

having 8 separate periods between

8am – 4pm. To modify the algorithm, we first generate the timetable for both

single and double lecture periods in

order to eliminate clashes in both courses and venues to be allocated as seen in

Algorithm 1. The algorithm stores

the created slots and merges them together using the carefully designed function

called merge Table (D, S).

 Algorithm 1: Generation of timetable

Create storage arrays D and S.

Create Arrays Dp and Sp for Double and Single periods of

lecture times respectively. Each array is of p periods (am-pm)

begin

a. creates an array of p empty periods, p = Ø.

b. check if Pi = Pi+1and Pi+1 <Pan,

 where =0,1, 2, n.

 then:

 generate Dp and Sp and store in D and S

respectively.

c. Query from D and S to generate the timetable by calling the merge Table (D, S)

function.

end

 Proposed System

This section describes the proposed system structure, starting with the aim as

follows:

Aim of the System

 Developing a paperless timetable system semester courses and examinations,

together with other related

scheduled administrative operations.

 To develop a fast, trendy, unique and easy to use application that is deployable

and efficient.

 To avoid lecture and venue clashes.

 To provide an interface that supports other related activities required but not

necessarily related to timetable

scheduling processes such as: calendar of events, news feed etc.

 To provide an interactive chat forum for the administrators, lecturers and students

alike in real-time.

There are a number of advantages considered while building the Scheduler

scheduling system are

as follows:

Advantages

 The paperless timetable system reduces the human stress attributed to the manual

process of creating

timetables.

 The automation provides Subjects (Course Title), Course Code, Department,

Faculty, Lecturer, School Years,

Semester’s, Room, Venue, Time, and Live Chats (for Administrators, Lecturers

and Students). In addition,

Timetable Alerts for Students and Lecturers is provided by the SCHEDULER.

 The system eliminates all manual paperwork.

 The system also drastically reduces the man power and time consumed while

executing the timetable

scheduling tasks.

 The Scheduler can be used either as a stand-alone or real-time system.

Disadvantages of existing system

 Lack of acceptance and awareness of the scheduling systems such as the

Scheduler at most Nigeria Universities,

Polytechnics, and Colleges is partly attributed to ICT phobia and other related

causes.

 Increased running costs of ICT infrastructure such as bandwidth and power are a

real source of concern.

 The Applications are usually customized and copyrighted, making distribution

and reuse difficult

Components Functionality:

The Scheduler allows for functionalities considered to be appropriate for

implementation especially in cases where the description of the functionality is not

adequate. In such cases, generally appropriate assumptions are made to

the following rules as follows

Student’s Classification Rules:

 Each class may have an interval of a maximum of 2hrs per slot.

 At least a maximum of 7 to 8 hours of lectures is permitted in a day.

 Time for practical work is also inclusive.

 Lecture time slots can be allotted and changed with ease by each course Head of

Departments (HODs) often based on request by either lecturers or students.

 Courses are to be allocated in any of the following categories:

 Core (mandatory) courses.

 Electives (optional) courses.

 Maximum and minimum number of courses to be offered by students should be

specified.

Lecturer Classification Rules:

Lecturer requirements are applied thus:

 Lecturers may reschedule already allotted time slots by agreeing and arranging

with their students.

 A lecturer is restricted to no more than 3 lectures in a day, and no more than 2

hours at a stretch for every taught course the deliver. The extra hour should be

allotted a separate time slot. However, free slots can still be utilized for extra

lectures by a willing lecturer as agreed with their students.

Administrator Classification Rules:

These rules are determined by both HODs and administrators thus:

 A student may produce a copy of the timetable.

 Emails are to be sent to both students and lecturers containing the timetable.

 Break periods are to be properly captured.

 The timetable should not contain clashes

Data Input Process:

This defines the type of data that is inserted, retrieved and updated from a database

as follows:

 Lecturer: define details of information that describe the lecturers involved.

 Course Title: Title that describes the course.

 Course Code: Code that describes the course.

 Department: Is the name of a given department.

 Faculty: Is a specified faculty for each department.

 School Years: The duration of the course of study such as: 4, 5, 6 or 7yrs.

 Semester: The semester in question i.e. first semester and second semester.

 Room: Is the lecture room or hall name or any related description.

 Venue: Describes building or location where the room is situated.

 Time Slot: The time allotted for each lecture.

 Time Interval: It is the time that a lecture is expected to last

System Constraints:

A constraint is a condition that a solution to a problem must satisfy. Two major

constraints are stated in this paper namely: hard and soft constraints.

Hard Constraints:
Hard constraints are those constraints which set conditions for the variables that

are required to be satisfied are as follows:

 Duplicate lectures must be eliminated.

 Experiments must be held in a Laboratory and not in lecture classes.

 Lecture rooms must not be booked twice at the same time.

 Venue of lectures should not be doubly-booked during the same period to avoid

clashes.

 All lecture venues and rooms must be scheduled once not twice.

 A lecture room must be large enough to contain all students before allocation.

Soft Constraints:

Soft constraints are constraints that are easier to adjust as follows:

 Lectures for each given course should be evenly spread within the week.

 Departmental courses borrowed from different departments must be evenly

distributed.

 Break periods must be allocated slots first before other courses.

 Faculty general courses must be allocated slots first before departmental courses.

Violation of Validated Constraints:

These are constraints that are required to be satisfied, so that there will be

assurance of validated timetables.

However, this defines process such as;

 No more than 2 consecutive lectures by the same lecturer in any given period.

 The vital constraint is that both lecturers and their students can not appear in

more than one lecture venue at the

same time.

System Requirement and Specification:

The system requirement and specification (SRS) document is summarized and laid

out in a template as seen in Table 1. Some essential flow requirements are entered

into it to show how to use the template. Care must be taken to ensure that even the

smallest and most trivial requirements are written. Such requirements would help

in validating the system during testing. The following are the specific software and

hardware requirement:

Software Specification Requirements:

User Interface: PHP, XHTML, CSS, JQUERY

Client-side Scripting: JavaScript, PHP Scripting

Programming Language: PHP, ASP

IDE/Workbench/Tools: Adobe Dreamweaver CS6

Database: MySQL (My SQLite, Optional, Oracle 10g)

Server Deployment: Apache/2.2.4, Tomcat Apache.

Hardware Specification Requirements:

Monitor: 17-inch LCD Screen (optional).

Processor: Pentium 3, 4, dual-core, Intel, Core i7.

Hard Disk: 500GB or 1, 2 or 4 Terabyte.

RAM: 4GB or more.

The System Design

The system has a major component that forms the basis for the design. These

components are: admin account panel (i.e. for registration and login

authentication), user login panel, and timetable data entry with full details of

lecturers for the scheduling process. The workflow of the system enables the user

to have easy understanding of the process for creating the timetable. However, the

system provides a user with a robust graphical user interface (GUI). This is a

simple interactive interface for entering the details concerning a course such as:

course title, course code, venue, rooms, department, and faculty, lecturer, school

years, semesters, time slots, and lecturer information. The system administrator

provides the users access to get registered, and have access to the system.

Note that the scheduler is the assigned officer who collates all data for entries,

from various sources and afterwards generate the timetable

Data Flow Diagram

The flow diagram shows the user interface design of the Timetable Scheduling

Process and how the timetable is to be generated.

Data Flow Diagram

Test Plan Description

System Architecture Design

The architecture of the system is structurally designed to constitute three essential

parts which includes: GUI, Front End ((FE) and Back End (BE). A description of

the parts is as follows:

 The GUI defines the structural design regarding how the system will look like

after implementation. This has a unique interactive platform that suite the user

needs.

 The FE comprises of everything including the design and types of languages used

in the design of the system. They include: PHP, PHPMYQL, HTML AND CSS

etc.

 The BE otherwise called the server-side, deals with the system inputs, retrieval,

editing and updates. This refers to everything the user cannot see in the FE such as

the database and servers used.

 Learning Outcome

The learning outcomes as defined indicate what the group is planning to have

achieved at the end of the undertaken project, which is genetic algorithm

implementation in a timetable scheduling system. The learning outcomes are

derived from the outcomes and deliverables stated in the above terms of reference

table.

Having a functional system is not just the aim of this project but the group is aimed

at learning about genetic algorithms, i.e. in general terms to their applications. It is

highly empirical to know about the concept to be applied in order to model a better

system and for future referencing about genetic algorithms. With the application of

genetic algorithms, there are factors that may come into play as any other concept,

so, understanding the time factor of genetic algorithms when implemented in real

time situations is also to be reviewed. Genetic algorithms are also said to work

hand in hand with other algorithms, hence the concept of mutation comes into play.

Mutation is a broad topic, so understanding it when applied on a very specific topic

is also under the group learning scope. In any project undertaken, there are

violations that may occur.

Learning about these violations is also important and understanding these

violations will also help make the project a success.

ER diagram:

Use Case Diagram:

1.

Learning Outcomes:

The learning outcomes as defined indicate what the group is planning to have

achieved at the end of the undertaken project, which is genetic algorithm

implementation in a timetable scheduling system. The learning outcomes are

derived from the outcomes and deliverables stated in the above terms of reference

table.

Having a functional system is not just the aim of this project but the group is aimed

at learning about genetic algorithms, i.e. in general terms to their applications. It is

highly empirical to know about the concept to be applied in order to model a better

system and for future referencing about genetic algorithms. With the application of

genetic algorithms, there are factors that may come into play as any other concept,

so understanding the time factor of genetic algorithms when implemented in real

time situations is also to be reviewed. Genetic algorithms are also said to work

hand in hand with other algorithms, hence the concept of mutation comes into play.

Mutation is a broad topic, so understanding it when applied on a very specific topic

is also under the group learning scope. In any project undertaken, there are

violations that may occur. Learning about these violations is also important and

understanding these violations will also help make the project a success.

Result and Discussion

The test-plan is basically a list of test cases that need to be run on the system.

Some of the test cases can be run independently for some components such as

report generation from the database which is tested independently.

However, some of the test cases require the whole system to be ready before

execution. It is better to test each component as at when it is ready before

integrating the components, which is a unit test before the system test.

It is important to note that the test cases cover all the aspects of the system (i.e. all

the requirements stated in the SRS template in Table 1). Table 2 contains a sample

authentication test plan.

Conclusion

The workflow of this proposed system makes use of collision avoidance technique

and process in scheduling an automated timetable system. This made it easier and

faster to completely eliminate the manual process of generating timetable. This

paper presented a Logarithmic Quicksort algorithm for solving a highly

constrained timetable generation problem. The approach used a problem-specific

domain representation context-based reasoning for obtaining feasible solution ate

reasonable computing time. The future work will entail the use of a

real-time generation of timetables, with content-based analysis and reports to be

generated through an embedded management information system (MIS).

Automatic Timetable Generator is a web-based application for generating

timetable automatically. It is a great difficult task that to manage many Faculty's

and allocating subjects for them at a time manually. So proposed system will help

to overcome this disadvantage. Thus, we can generate timetable for any number of

courses and multiple semesters. This system will help to create dynamic pages so

that for implementing such a system we can make use of the different tools are

widely applicable and free to use also.

References:

[1]. D. Datta, Kalyan Moy Deb, Carlos M. Fonseca, “Solving Class Timetabling Problem of IIT Kanpur using

Multi- Objective Evolutionary Algorithm.” Kangal 2005.

[2]. Edmund K Burke, Barry McCollum, Amnon Meisel’s, Sonja Perovic, Rong Qu, “A Graph-Based Hyper-
Heuristic for Educational Timetabling Problems.” European Journal Operational Research, 176: 177-192,
2007.

[3]. Awed and Cheneck, “Proctor Assignment” at Carleton University (1998).

[4]. Ching B., Li H., Lim A. and Rodrigues B. 2003, “Nurse Rostering Problems: A Bibliographic Survey.”
European Journal of Operational Research, 151(3) 447-460.

[5]. Easton K., Newhouse G. and Trick M. 2004, “Sports Scheduling.” In: Leung J. (ed.) in Handbook of
Scheduling: Algorithms, Models, and Performance Analysis. Chapter 52, CRC Press.

[6]. S. and Burke E.K. 2004. University Timetabling In: Leung J. (ed.) “Handbook of Scheduling: Algorithms”,
“Models, and Performance Analysis.” Chapter 45. CRC Press.

[7]. W. Leviers, “Constraint-based Techniques for the University Course Timetabling Problem”, CPDC, (2005),
pp.59-63.

[8]. S. Abdullah, E. K. Burke and B. McCollum, “A Hybrid Evolutionary Approach to the University Course
Timetabling Problem”, Proceedings of the IEEE Congress Evolutionary Computation, Singapore, (2007).

[9]. J. F. Gonçalves and J. R. De Almeida, “A Hybrid Genetic Algorithm for Assembly Line Balancing”, Journal of
Heuristics, Vol.8, (2002), pp.629-642.

[10]. G. Kendall and N. M. Hussain, “A Taboo Search Hyper Heuristic Approach to the Examination Timetabling
Problem at the MARA University of Technology”, Lecture Notes in Computer Science, Springer Verlag,
vol.3616, (2005), pp.270-293.

[11]. M. A. Saleh and P. Coddington, “A Comparison of Annealing techniques for Academic Course Scheduling”,
Lecture Notes in Computer Science, Springer Verlag, vol. 1408, (1998), pp.92-114.

[12]. Aubin J, Furl and J. A, “A Large-Scale Timetabling Problem”, Compute. & Opry. Res., vol.16, no.1, pp.67-
77, 1989.

[13]. Dempster M. A. H, “Two algorithms for the timetable problem,” Proc, of Conference, Oxford, July 1969,
pp. 63-8.

[14]. Dinkel J. J, Mote J, Venkata Ramanan M. A, “An efficient decision support system for academic course
scheduling,” Operations Research 37(6), 1989, pp. 853-864.

[15]. Goalie C.C, “The construction of class - teacher timetables”, IFIP Congress 62, 1962, pp.73- 77.

[16]. Do Xuan Duong, Pham Hay Dine, “Solving the Lecture Scheduling Problem by the Combination of
Exchange Procedure and Taboo Search Techniques,” Studio Informatica Universalis, Vol.4, Number 2

[17]. Easton, K., Newhouse, G. and Trick, M, “The traveling tournament problem: description and
benchmarks.” In Proc of the 7th. International Conference on Principles and Practice of Constraint
Programming, Pathos, 580–584, 2001

[18]. K. Nurmi, D. Gosens, T. Bartsch, F. Bonomi, D, Brisker, G. Duran, J. Kings, J. Marengo, C.C. Ribeiro, F.
Spokesman, S. Urrutia and R. Wolf, “A Framework for a Highly Constrained Sports Scheduling Problem,” In
Proc of the International Multiconference of Engineers and Computer Science 2010 Vol III, IMECS
2010,Hong Kong

