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Abstract  

  

There have been several advancements in technology and a lot of research has been 

done to help the people who are deaf and dumb. Aiding the cause, Deep learning, and 

computer vision can be used too to make an impact on this cause. This can be very 

helpful for the deaf and dumb people in communicating with others as knowing sign 

language is not something that is common to all, moreover, this can be extended to 

creating automatic editors, where the person can easily write by just their hand 

gestures. In this sign language recognition project, we will create a sign detector, which 

detects numbers from 1 to 10 that can very easily be extended to cover a vast multitude 

of other signs and hand gestures including the alphabets.  

We are going to develop this project using OpenCV and Keras modules of python. It 
is fairly possible to get the dataset we need on the internet but in this project, we will be 

creating the dataset on our own. We will be having a live feed from the video cam and 

every frame that detects a hand in the ROI (region of interest) created will be saved in 

a directory (gesture directory) that contains two folders train and test.  

The prerequisites software & libraries for the sign language project are:  

• Python (3.7.4)  

• IDE (Jupyter)  

• Numpy (version 1.16.5)  

• cv2 (openCV) (version 3.4.2)  

• Keras (version 2.3.1)  

• Tensorflow (as keras uses tensorflow in backend and for image 

preprocessing) (version 2.0.0)  

  

Many breakthroughs have been made in the field of artificial intelligence, machine 

learning and computer vision. They have immensely contributed in how we perceive 

things around us and improve the way in which we apply their techniques in our 

everyday lives. Many researches have been conducted on sign gesture recognition 

using different techniques like ANN, LSTM and 3D CNN. However, most of them 

require extra computing power . On the other hand, our research paper requires low 

com- putting power and gives a remarkable accuracy of above 90%. In our research, 

we proposed to normalise and rescale our images to 64 pixels in order to extract 

features (binary pixels) and make the system more robust. We use CNN to classify 

the 10 alphabetical American sign gestures and successfully achieve an accuracy of 

98% which is better than other related work stated in this paper.  
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 CHAPTER-1 

INTRODUCTION 

 

Poses and gestures are one the basic means of communication between humans while 

they may also play a crucial role in human-computer interaction, as they are able to 

transfer some kind of meaning. The research area of pose and gesture recognition aims 

to recognizing such expressions, which typically involve some posture and/or motion 

of the hands, arms, head, or even skeletal joints of the whole body. In certain cases, 

meaning may differ, based on a facial expression. Several application areas may 

benefit from the recognition of a human’s pose or the gestures she/he performs, such 

as sign language recognition, gaming, medical applications involving the assessment 

of a human’s condition and even navigation in virtual reality environments. There exist 

various approaches and techniques which involve some kind of sensor, either “worn” 

by the subject (e.g., accelerometers, gyroscopes etc.), or monitor the subject’s motion 

(e.g., cameras). In the latter case, the subject may also wear special “markers” which 

are used to assist in the identification of several body parts and/or skeletal joints. 

However, during the last few years several approaches rely solely on a typical RGB 

camera, enhanced by depth information. One such example is the well-known Kinect 

sensor. Therefore, the user only needs to stand in front of the camera without wearing 

any kind of sensor. Several parts of her/his body are detected and tracked in the 3D 

space. Typically, features are extracted and are used for training models to recognize 

poses and/or gestures.   

  

In this, we present a gesture recognition approach that focuses on hand gestures. We 

propose a novel deep learning architecture that uses a Convolutional Neural Network 

(CNN). More specifically, we use the Kinect sensor and its Software Development Kit 

(SDK) in order to detect and track the subject’s skeletal joints in the 3D space. We 

then select a subset of these joints, i.e., all that are involved at any of the gestures of 

our data set. Then, we create an artificial image based on these 3D coordinates. We 

apply the Discrete Fourier Transform on these images and use the resulting ones     to  

train the CNN. We compare our approach with previous work, where a set of 

handcrafted statistical features on joint trajectories had been used. Finally, we 

demonstrate that it is possible to efficiently recognize hand gestures without the need 

of a feature extraction step. Evaluation takes place using a new dataset of 10 hand 

gestures. 



  

  

CHAPTER-2  

Literature Review  

 

The implementation is divided into four main steps: 

1. Image Enhancement and Segmentation  

2. Orientation Detection  

3. Feature Extraction  

4 [1]. Classification.  

 

This work was focussed on above four categories but main limitation was change of 

color was happening very rapidly by the change in the different lighting condition, 

which may cause error or even failures. For example, due to insufficient light condition, 

the existence of hand area is not detected but the non-skin regions are mistaken for the 

hand area because of same color [2].  

 

Involves three main steps for hand gesture recognition system:  

1. Segmentation  

2. Feature Representation  

3. Recognition Techniques.  

 

The system is based on Hand gesture recognition by modeling of the hand in spatial 

domain. The system uses various 2D and 3D geometric and non-geometric models for 

modeling. It has used Fuzzy c- Means clustering algorithm which resulted in an 

accuracy of 85.83%. The main drawback of the system is it does not consider gesture 

recognition of temporal space, i.e. motion of gestures and it is unable to classify images 

with complex background i.e. where there are other objects in the scene with the hand 

objects [3]. This survey focuses on the hand gesture recognition using different steps 

like data acquisition, pre-processing, segmentation and so on. Suitable input device 

should be selected for the data acquisition. There are a number of input devices for data 

acquisition. Some of them are data gloves, marker, and hand images (from 

webcam/Kinect 3D Sensor). But the limitation with this work was change in the 

illumination, rotation and orientation, scaling problem and special hardware which is 

pretty costlier [4].  

 

The system implementation is divided into three phases:  

1. Hand gesture recognition using kinetic camera  

2. Algorithms for hand detection recognition  

3. Hand gesture recognition.  



  

  

The limitation here is that the edge detection and segmentation algorithms used here 

are not very efficient when compared to neural networks. The dataset being considered 

here is very small and can be used to detect very few sign gestures. 

  

The System architecture consists of:  

1. Image acquisition  

2. Segmentation of hand region.  

3. Distance transforms method for gesture recognition [5].  

 

The limitations of this system involve  

1. The numbers of gestures that are recognized are less  

2. The gestures recognized were not used to control any applications [6].  

 

In this implementation there are three main algorithms that are used:  

1. Viola and jones Algorithm.  

2. Convex Hull Algorithm.  

3. The AdaBoost based learning Algorithm.  

 

The work was accomplished by training a set of feature set which is local contour 

sequence. The limitations of this system are that it requires two sets of images for 

classification. One is the positive set that contains the required images, the other is the 

negative set that contains contradicting images [7].  

The system implementation consists of three components:  

1. Hand detection  

2. Gesture recognition  

3. HumanComputer Interaction (HCI).  

 

It has implemented the following methodology:  

1. the input image is preprocessed and the hand detector tries to filter out the hand from 

the input image  

2.A CNN classifier is employed to recognize gestures from the processed image, while 

a Kalman Filter is used to estimate the position of the mouse cursor.  

3. The recognition and estimation results are submitted to a control Centre which 

decides the action to be taken.  

 

One of the limitations of this system is that it recognizes only the static images [8]. This 

implementation focuses on detection of hand gestures using java and neural networks. 

It is divided into two phases: -  



  

  

1. Detection module using java where in the hand is detected using background 

subtraction and conversion of video feed into HSB video feed thus detecting skin 

pixels.  

2. The second module is the prediction module; a convolutional neural network is used. 

The input feed image is gained from Java. 

  

The input image is fed into the neural network and is analyzed with respect to the 

dataset images. One of the limitations of this system is that it requires socket 

programming in order to connect java and python modules.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

  

 CHAPTER-3  

Dataset Description 

 

A substantial role is played in resolving difficult difficulties in a research dataset. For 

outstanding study to achieve more immeasurable certainty, a dataset is especially 

important. Deep learning emphasises the value of datasets. It is the most important 

factor that allows algorithm training to take place . In deep learning, a huge dataset is 

important for improving the classification rate. The Senz3d collection of hand 

movements was used to deal with depth pictures. 

 

 
Fig 1: Sample Images from Dataset 

 

The dataset contains a variety of static movements captured with the Creative 

Senz3D camera . There are 1320 photos in the dataset. Four separate individuals 

photos make up the dataset. Each person made 11 different gestures 30 times in a 

row. Color, depth, and confidence frames are accessible for each sample in the 

collection. Figure 1 shows a selection of photos from the dataset for hand gesture 

recognition. 

 

 

 

 

 

 

 

 



  

  

CHAPTER-4 

Proposed Methodology 

 

In our research, the hand gesture reputation device has been proposed through hand 

segmentation and preprocessing operation (resizing all images) observed through CNN 

version architecture. However, photo category fashions have turn out to be presently 

distinguished for pc imaginative and prescient field. After obtaining the intensity photo, 

segmented the hand data. Following a few preprocessing activities, skilled CNN 

version for function extraction and gesture reputation. In Fig 2 the block diagram of 

proposed technique has been shown. 

 

  

Fig 2 : Use Case Diagram 

  

 



  

  

4.1 Hand Segmentation  

 

To facilitate our research, we retrieved depth pictures from the dataset. In hand gesture 

recognition, the extraction of the hand region is the most crucial stage. As a result, 

separating the hand region from the depth map is the first stage in recognising motions. 

The segmentation technique starts with depth value thresholding, which filters out 

samples with a distance larger than a predefined threshold based on the application . 

The hand data was split using the YCbCr colour space after the depth photographs were 

taken. In a basic manner, it distinguishes the hand from the frame. The depth image's 

YCbCr value was changed. The YCbCr values of each pixel were compared to the 

reference values. Each parameter has a predetermined threshold value as follows: The 

following are the Y, Cb, and Cr ranges: 0  Y  255 and 135  C 180 and 85  Cb 

135 .  

 

4.2 Preprocessing  

 

When training a convolutional neural network, it can be difficult to know how to 

appropriately prepare visual data [5]. Because the photos in the training dataset were 

of different sizes, they had to be scaled before being fed into the model [5].This 

involves both resizing and cropping techniques during both the training and evaluation 

of the model [4]. After getting the segmented hand images, the images have been 

resized to 256×256. 

 

  

  

 

  

  

  

  

 

 

 

 

 



  

  

CHAPTER-5 

PROPOSED CNN MODEL 

 

Artificial Intelligence is undergoing a rapid expansion. Volume 174 – No. 16, January 

2021 30 of the International Journal of Computer Applications (0975 – 8887) in 

bridging the gap between human and machine [5]. Computer Vision and deep learning 

have evolved over time, largely because to one algorithm – the Convolutional Neural 

Network [5]. Over time, it has been conclusively demonstrated that neural networks 

surpass alternative algorithms in terms of accuracy and speed. With the progress of 

neural networks, image categorization has become a hot issue among researchers. In 

this field, the convolution neural network outperforms traditional machine learning 

methods. The whole work flow of CNN to process hand movements is depicted in 

Figure 3. 

 

  

Fig 3: Data Flow Diagram  

 

  

 

Each input image will be processed through a series of convolution layers, pooling, and 

fully connected layers, as well as the ReLU function, which will identify hand motions 

using probabilistic values. Three convolution layers, two maxpooling layers, and two 

fully connected layers make up our suggested CNN design. There are 11 nodes in the 

output layer. These 11 nodes have proposed that the dataset be used to recognise 11 

gestures. The dataset was divided into 816 images for training and the rest for 

validation. 



  

  

  

Fig 4: Functionality Flowchart Diagram  

 

5.1 Convolution layer  

 

The convolution layer received the normalised pictures. The input photos were scaled 

to 256 by 256 pixels. Four convolution layers with a tractable feature map have been 

applied to the input image. A kernel is an array of numbers that are commonly referred 

to as weights. The kernel size in the convolution layers has been set to 33%.  A 

mathematical kernel has performed an operation on the image. Edge detection, blur, 

and sharpness can all be achieved by convolutioning an image with multiple filters. In 

our proposed methodology, three convolution layers were used. The first convolution 

layer has 64 filters, while the second and third layers had 128 filters. Filters in 

convolutional layers identify features that improve categorization. 

 

 

5.2 Pooling Layer 

Similar to the first layer, the pooling layer lowers the number of parameters and the 

spatial dimension of features. Pooling feature maps minimises their dimensionality 

while preserving critical features. Pooling is applied to each feature map separately to 

produce the same amount of pooled feature maps. In our proposed architecture, we 



  

  

used two pooling layers.. Choosing a pooling formula is part of the pooling process. 

Max-pooling has been chosen among the various pooling types. For computer vision 

studies such as image classification, max pooling has been found to perform better than 

other pooling operations. Unlike average pooling, the results are pooled feature maps 

that highlight the patch's most prominent feature. Maximum pooling is a pooling 

procedure that determines the highest value in each feature map area. The kernel's size 

is always smaller than the feature map's size. By reducing the dimensionality of images, 

the pooling layer minimizes the processing power required to process them. 

Furthermore, it is advantageous for extracting powerful rotational and positional 

invariant characteristics in order to make the training process more effective. 

 

 

5.3 Fully Connected Layer  

 

The convolution neural network's final layer is the fully connected layer. These layers 

act in the same way as a conventional deep neural network. Every neuron in one layer 

connects with every neuron in another layer via the completely linked layer. 

Convolution, like the pooling layer, extracts capabilities; however, completely 

connected layers classify the data according on the capabilities extracted by the 

previous layer. The FC layer holds composite records from all of the convolution and 

pooling layers. To categorise the images, the flattened matrix is handed thru an FC 

layer. A absolutely linked layer plays the function vector representation (FC). This 

function vector consists of all the records approximately the enter this is required. This 

feature vector is then used for classification after the network has been trained. This 

layer uses non-linear functions to classify photos based on their attributes. A ReLU 

activation function is included in this layer, which offers a probability for each of the 

categorization labels. 

 

 

5.4 ReLU Activation Function  

 

In a neural network, the activation function is in charge of modifying the total of 

weighted input [8]. The rectified linear activation function (ReLU), on the other hand, 

produces direct output. This linear function outputs the input directly if the input is 

positive; else, it outputs zero [8]. It has become the default activation function for many 

types of neural networks since it is faster to train and generally generates better 

performance[8]. 

 

 



  

  

5.5 Implementation 

 

5.5.1 Create Gesture Dataset 

 

import cv2 

import numpy as np 

 

background = None 

accumulated_weight = 0.5 

 

ROI_top = 100 

ROI_bottom = 300 

ROI_right = 150 

ROI_left = 350 

 

def cal_accum_avg(frame, accumulated_weight): 

 

    global background 

     

    if background is None: 

        background = frame.copy().astype("float") 

        return None 

 

    cv2.accumulateWeighted(frame, background, accumulated_weight) 

 

def segment_hand(frame, threshold=25): 

    global background 

     

    diff = cv2.absdiff(background.astype("uint8"), frame) 

 

    _ , thresholded = cv2.threshold(diff, threshold, 255, cv2.THRESH_BINARY) 

 

    # Grab the external contours for the image 

    image, contours, hierarchy = cv2.findContours(thresholded.copy(), 

cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) 

 

    if len(contours) == 0: 

        return None 

    else: 

         

        hand_segment_max_cont = max(contours, key=cv2.contourArea) 

         

        return (thresholded, hand_segment_max_cont) 



  

  

 

cam = cv2.VideoCapture(0) 

 

num_frames = 0 

element = 10 

num_imgs_taken = 0 

 

while True: 

    ret, frame = cam.read() 

 

    # filpping the frame to prevent inverted image of captured frame... 

    frame = cv2.flip(frame, 1) 

 

    frame_copy = frame.copy() 

 

    roi = frame[ROI_top:ROI_bottom, ROI_right:ROI_left] 

 

    gray_frame = cv2.cvtColor(roi, cv2.COLOR_BGR2GRAY) 

    gray_frame = cv2.GaussianBlur(gray_frame, (9, 9), 0) 

 

    if num_frames < 60: 

        cal_accum_avg(gray_frame, accumulated_weight) 

        if num_frames <= 59: 

             

            cv2.putText(frame_copy, "FETCHING BACKGROUND...PLEASE WAIT", (80, 400), 

cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0,0,255), 2) 

            #cv2.imshow("Sign Detection",frame_copy) 

          

    #Time to configure the hand specifically into the ROI... 

    elif num_frames <= 300:  

 

        hand = segment_hand(gray_frame) 

         

        cv2.putText(frame_copy, "Adjust hand...Gesture for" + str(element), (200, 

400), cv2.FONT_HERSHEY_SIMPLEX, 1, (0,0,255), 2) 

         

        # Checking if hand is actually detected by counting number of contours 

detected... 

        if hand is not None: 

             

            thresholded, hand_segment = hand 

 

            # Draw contours around hand segment 

            cv2.drawContours(frame_copy, [hand_segment + (ROI_right, ROI_top)], -1, 

(255, 0, 0),1) 

             



  

  

            cv2.putText(frame_copy, str(num_frames)+"For" + str(element), (70, 45), 

cv2.FONT_HERSHEY_SIMPLEX, 1, (0,0,255), 2) 

 

            # Also display the thresholded image 

            cv2.imshow("Thresholded Hand Image", thresholded) 

     

    else:  

         

        # Segmenting the hand region... 

        hand = segment_hand(gray_frame) 

         

        # Checking if we are able to detect the hand... 

        if hand is not None: 

             

            # unpack the thresholded img and the max_contour... 

            thresholded, hand_segment = hand 

 

            # Drawing contours around hand segment 

            cv2.drawContours(frame_copy, [hand_segment + (ROI_right, ROI_top)], -1, 

(255, 0, 0),1) 

             

            cv2.putText(frame_copy, str(num_frames), (70, 45), 

cv2.FONT_HERSHEY_SIMPLEX, 1, (0,0,255), 2) 

            #cv2.putText(frame_copy, str(num_frames)+"For" + str(element), (70, 

45), cv2.FONT_HERSHEY_SIMPLEX, 1, (0,0,255), 2) 

            cv2.putText(frame_copy, str(num_imgs_taken) + 'images' +"For" + 

str(element), (200, 400), cv2.FONT_HERSHEY_SIMPLEX, 1, (0,0,255), 2) 

             

            # Displaying the thresholded image 

            cv2.imshow("Thresholded Hand Image", thresholded) 

            if num_imgs_taken <= 300: 

                #cv2.imwrite(r"D:\\gesture\\train\\"+str(element)+"\\" + 

str(num_imgs_taken+300) + '.jpg', thresholded) 

                cv2.imwrite(r"D:\\gesture\\x"+"\\" + str(num_imgs_taken) + '.jpg', 

thresholded) 

            else: 

                break 

            num_imgs_taken +=1 

        else: 

            cv2.putText(frame_copy, 'No hand detected...', (200, 400), 

cv2.FONT_HERSHEY_SIMPLEX, 1, (0,0,255), 2) 

 

    # Drawing ROI on frame copy 

    cv2.rectangle(frame_copy, (ROI_left, ROI_top), (ROI_right, ROI_bottom), 

(255,128,0), 3) 

     



  

  

    cv2.putText(frame_copy, "DataFlair hand sign recognition_ _ _", (10, 20), 

cv2.FONT_ITALIC, 0.5, (51,255,51), 1) 

     

    # increment the number of frames for tracking 

    num_frames += 1 

 

    # Display the frame with segmented hand 

    cv2.imshow("Sign Detection", frame_copy) 

 

    # Closing windows with Esc key...(any other key with ord can be used too.) 

    k = cv2.waitKey(1) & 0xFF 

 

    if k == 27: 

        break 

 

# Releasing camera & destroying all the windows... 

 

cv2.destroyAllWindows() 

cam.release() 

 

 

5.5.2 Train CNN 

 

import tensorflow as tf 

from tensorflow import keras 

from keras.models import Sequential 

from keras.layers import Activation, Dense, Flatten, BatchNormalization, Conv2D, 

MaxPool2D, Dropout 

from keras.optimizers import Adam, SGD 

from keras.metrics import categorical_crossentropy 

from keras.preprocessing.image import ImageDataGenerator 

import itertools 

import random 

import warnings 

import numpy as np 

import cv2 

from keras.callbacks import ReduceLROnPlateau 

from keras.callbacks import ModelCheckpoint, EarlyStopping 

warnings.simplefilter(action='ignore', category=FutureWarning) 

 

train_path = r'D:\gesture\train' 

test_path = r'D:\gesture\test' 

 



  

  

train_batches = 

ImageDataGenerator(preprocessing_function=tf.keras.applications.vgg16.preprocess_in

put).flow_from_directory(directory=train_path, target_size=(64,64), 

class_mode='categorical', batch_size=10,shuffle=True) 

test_batches = 

ImageDataGenerator(preprocessing_function=tf.keras.applications.vgg16.preprocess_in

put).flow_from_directory(directory=test_path, target_size=(64,64), 

class_mode='categorical', batch_size=10, shuffle=True) 

 

imgs, labels = next(train_batches) 

 

#Plotting the images... 

def plotImages(images_arr): 

    fig, axes = plt.subplots(1, 10, figsize=(30,20)) 

    axes = axes.flatten() 

    for img, ax in zip( images_arr, axes): 

        img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) 

        ax.imshow(img) 

        ax.axis('off') 

    plt.tight_layout() 

    plt.show() 

 

plotImages(imgs) 

print(imgs.shape) 

print(labels) 

 

model = Sequential() 

 

model.add(Conv2D(filters=32, kernel_size=(3, 3), activation='relu', 

input_shape=(64,64,3))) 

model.add(MaxPool2D(pool_size=(2, 2), strides=2)) 

 

model.add(Conv2D(filters=64, kernel_size=(3, 3), activation='relu', padding = 

'same')) 

model.add(MaxPool2D(pool_size=(2, 2), strides=2)) 

 

model.add(Conv2D(filters=128, kernel_size=(3, 3), activation='relu', padding = 

'valid')) 

model.add(MaxPool2D(pool_size=(2, 2), strides=2)) 

 

model.add(Flatten()) 

 

model.add(Dense(64,activation ="relu")) 

model.add(Dense(128,activation ="relu")) 

#model.add(Dropout(0.2)) 



  

  

model.add(Dense(128,activation ="relu")) 

#model.add(Dropout(0.3)) 

model.add(Dense(10,activation ="softmax")) 

 

# In[23]: 

 

model.compile(optimizer=Adam(learning_rate=0.001), loss='categorical_crossentropy', 

metrics=['accuracy']) 

reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.2, patience=1, 

min_lr=0.0001) 

early_stop = EarlyStopping(monitor='val_loss', min_delta=0, patience=2, verbose=0, 

mode='auto') 

 

 

model.compile(optimizer=SGD(learning_rate=0.001), loss='categorical_crossentropy', 

metrics=['accuracy']) 

reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.2, patience=1, 

min_lr=0.0005) 

early_stop = EarlyStopping(monitor='val_loss', min_delta=0, patience=2, verbose=0, 

mode='auto') 

 

history2 = model.fit(train_batches, epochs=10, callbacks=[reduce_lr, 

early_stop],  validation_data = test_batches)#, checkpoint]) 

imgs, labels = next(train_batches) # For getting next batch of imgs... 

 

imgs, labels = next(test_batches) # For getting next batch of imgs... 

scores = model.evaluate(imgs, labels, verbose=0) 

print(f'{model.metrics_names[0]} of {scores[0]}; {model.metrics_names[1]} of 

{scores[1]*100}%') 

 

#model.save('best_model_dataflair.h5') 

model.save('best_model_dataflair3.h5') 

 

print(history2.history) 

 

imgs, labels = next(test_batches) 

 

model = keras.models.load_model(r"best_model_dataflair3.h5") 

 

scores = model.evaluate(imgs, labels, verbose=0) 

print(f'{model.metrics_names[0]} of {scores[0]}; {model.metrics_names[1]} of 

{scores[1]*100}%') 



  

  

 

model.summary() 

 

scores #[loss, accuracy] on test data... 

model.metrics_names 

 

word_dict = 

{0:'One',1:'Ten',2:'Two',3:'Three',4:'Four',5:'Five',6:'Six',7:'Seven',8:'Eight',9:

'Nine'} 

 

predictions = model.predict(imgs, verbose=0) 

print("predictions on a small set of test data--") 

print("") 

for ind, i in enumerate(predictions): 

    print(word_dict[np.argmax(i)], end='   ') 

 

plotImages(imgs) 

print('Actual labels') 

for i in labels: 

    print(word_dict[np.argmax(i)], end='   ') 

 

print(imgs.shape) 

 

history2.history 

 

5.5.3 Model for Gesture 

 

import numpy as np 

import cv2 

import keras 

from keras.preprocessing.image import ImageDataGenerator 

import tensorflow as tf 

 

model = keras.models.load_model(r"C:\Users\abhij\best_model_dataflair3.h5") 

 

background = None 

accumulated_weight = 0.5 

 

ROI_top = 100 

ROI_bottom = 300 

ROI_right = 150 

ROI_left = 350 

 

 



  

  

def cal_accum_avg(frame, accumulated_weight): 

 

    global background 

     

    if background is None: 

        background = frame.copy().astype("float") 

        return None 

 

    cv2.accumulateWeighted(frame, background, accumulated_weight) 

 

 

def segment_hand(frame, threshold=25): 

    global background 

     

    diff = cv2.absdiff(background.astype("uint8"), frame) 

 

     

    _ , thresholded = cv2.threshold(diff, threshold, 255, cv2.THRESH_BINARY) 

     

    #Fetching contours in the frame (These contours can be of hand or any other 

object in foreground) ... 

    image, contours, hierarchy = cv2.findContours(thresholded.copy(), 

cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) 

 

    # If length of contours list = 0, means we didn't get any contours... 

    if len(contours) == 0: 

        return None 

    else: 

        # The largest external contour should be the hand  

        hand_segment_max_cont = max(contours, key=cv2.contourArea) 

         

        # Returning the hand segment(max contour) and the thresholded image of 

hand... 

        return (thresholded, hand_segment_max_cont) 

 

cam = cv2.VideoCapture(0) 

num_frames =0 

while True: 

    ret, frame = cam.read() 

 

    # filpping the frame to prevent inverted image of captured frame... 

    frame = cv2.flip(frame, 1) 

 

    frame_copy = frame.copy() 

 

    # ROI from the frame 



  

  

    roi = frame[ROI_top:ROI_bottom, ROI_right:ROI_left] 

 

    gray_frame = cv2.cvtColor(roi, cv2.COLOR_BGR2GRAY) 

    gray_frame = cv2.GaussianBlur(gray_frame, (9, 9), 0) 

 

    if num_frames < 70: 

         

        cal_accum_avg(gray_frame, accumulated_weight) 

         

        cv2.putText(frame_copy, "FETCHING BACKGROUND...PLEASE WAIT", (80, 400), 

cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0,0,255), 2) 

     

    else:  

        # segmenting the hand region 

        hand = segment_hand(gray_frame) 

         

 

        # Checking if we are able to detect the hand... 

        if hand is not None: 

             

            thresholded, hand_segment = hand 

 

            # Drawing contours around hand segment 

            cv2.drawContours(frame_copy, [hand_segment + (ROI_right, ROI_top)], -1, 

(255, 0, 0),1) 

             

            cv2.imshow("Thesholded Hand Image", thresholded) 

             

            thresholded = cv2.resize(thresholded, (64, 64)) 

            thresholded = cv2.cvtColor(thresholded, cv2.COLOR_GRAY2RGB) 

            thresholded = np.reshape(thresholded, 

(1,thresholded.shape[0],thresholded.shape[1],3)) 

             

            pred = model.predict(thresholded) 

            cv2.putText(frame_copy, word_dict[np.argmax(pred)], (170, 45), 

cv2.FONT_HERSHEY_SIMPLEX, 1, (0,0,255), 2) 

             

    # Draw ROI on frame_copy 

    cv2.rectangle(frame_copy, (ROI_left, ROI_top), (ROI_right, ROI_bottom), 

(255,128,0), 3) 

 

    # incrementing the number of frames for tracking 

    num_frames += 1 

 

    # Display the frame with segmented hand 



  

  

    cv2.putText(frame_copy, "DataFlair hand sign recognition_ _ _", (10, 20), 

cv2.FONT_ITALIC, 0.5, (51,255,51), 1) 

    cv2.imshow("Sign Detection", frame_copy) 

 

    # Close windows with Esc 

    k = cv2.waitKey(1) & 0xFF 

 

    if k == 27: 

        break 

 

# Release the camera and destroy all the windows 

cam.release() 

cv2.destroyAllWindows() 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 



  

  

CHAPTER-6 

Result 

 
We have successfully developed sign language detection project. This is an interesting 

machine learning python project to gain expertise. This can be further extended for 

detecting the English alphabets. 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://data-flair.training/blogs/wp-content/uploads/sites/2/2020/09/sign-language-recognition-output.jpg


  

  

 

CHAPTER-7 

CONCLUSION 

 

The activation function in a neural network is in charge of changing the total weighted 

input [8]. On the other hand, the rectified linear activation function (ReLU) generates 

direct output. If the input is positive, this linear function sends the input directly; 

otherwise, it outputs zero [8]. Because a model that employs it is faster to train and 

delivers superior results in general, it has become the default activation function for 

many types of neural networks [8]. 
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