

DISCERNING OF GESTURES USING MACHINE

LEARNING

 Under The Supervision of

 Dr. Arvind Kumar
 Associate Professor

 19SCSE1010856-ARPIT JAISWAL

 19SCSE1180039-RISHABH CHAUHAN

SCHOOL OF COMPUTING SCIENCE AND

ENGINEERING

GALGOTIAS UNIVERSITY, GREATER NOIDA

CANDIDATE’S DECLARATION

I/We hereby certify that the work which is being presented in the thesis/project/dissertation, entitled

“DISCERNING OF GESTURES USING MACHINE LEARNING” in partial fulfillment of the

requirements for the award of the degree of Bachelor of Technology in Computer Science and

Engineering submitted in the School of Computing Science and Engineering of Galgotias

University, Greater Noida, is an original work carried out during the period of August, 2021 to

December and 2021, under the supervision of Dr. Arvind Kumar Associate Professor, Department of

Computer Science and Engineering/Computer Application and Information and Science, of School

of Computing Science and Engineering , Galgotias University, Greater Noida

The matter presented in the thesis/project/dissertation has not been submitted by me/us for the

award of any other degree of this or any other places.

Arpit Jaiswal (19SCSE1010856)

Rishabh Chauhan (19SCSE1180039)

This is to certify that the above statement made by the candidates is correct to the best

of my knowledge.

 Dr. Arvind Kumar

 Associate Professor

CERTIFICATE

The Final Thesis/Project/ Dissertation Viva-Voce examination of Arpit Jaiswal(19SCSE1010856)

and Rishabh Chauhan(19SCSE1180039) has been held on Discerning of Gestures using Machine

Learning and his/her work is recommended for the award ofBachelor Of Engineering and

Technology.

Signature of Examiner(s) Signature of Supervisor

Signature of Project Coordinator Signature of Dean

Date: December, 2021

Place: Greater Noida

Abstract

There have been several advancements in technology and a lot of research has been

done to help the people who are deaf and dumb. Aiding the cause, Deep learning, and

computer vision can be used too to make an impact on this cause. This can be very

helpful for the deaf and dumb people in communicating with others as knowing sign

language is not something that is common to all, moreover, this can be extended to

creating automatic editors, where the person can easily write by just their hand

gestures. In this sign language recognition project, we will create a sign detector, which

detects numbers from 1 to 10 that can very easily be extended to cover a vast multitude

of other signs and hand gestures including the alphabets.

We are going to develop this project using OpenCV and Keras modules of python. It
is fairly possible to get the dataset we need on the internet but in this project, we will be

creating the dataset on our own. We will be having a live feed from the video cam and

every frame that detects a hand in the ROI (region of interest) created will be saved in

a directory (gesture directory) that contains two folders train and test.

The prerequisites software & libraries for the sign language project are:

• Python (3.7.4)

• IDE (Jupyter)

• Numpy (version 1.16.5)

• cv2 (openCV) (version 3.4.2)

• Keras (version 2.3.1)

• Tensorflow (as keras uses tensorflow in backend and for image

preprocessing) (version 2.0.0)

Many breakthroughs have been made in the field of artificial intelligence, machine

learning and computer vision. They have immensely contributed in how we perceive

things around us and improve the way in which we apply their techniques in our

everyday lives. Many researches have been conducted on sign gesture recognition

using different techniques like ANN, LSTM and 3D CNN. However, most of them

require extra computing power . On the other hand, our research paper requires low

com- putting power and gives a remarkable accuracy of above 90%. In our research,

we proposed to normalise and rescale our images to 64 pixels in order to extract

features (binary pixels) and make the system more robust. We use CNN to classify

the 10 alphabetical American sign gestures and successfully achieve an accuracy of

98% which is better than other related work stated in this paper.

List of Tables

Table Page
Table Name

 No. Number

1. Table for Student Data 3

2. Table for Faculty Data 4

List of Figures

 Figure Page
Table Name

 No. Number

1. Sample Image From Dataset 12

2. UML Diagram 13

3. Data Flow Diagram 15

4. Functionality Flow Chart 16

Acronyms

B.Tech. Bachelor of Technology

M.Tech. Master of Technology

BCA Bachelor of Computer Applications

MCA Master of Computer Applications

B.Sc. (CS) Bachelor of Science in Computer Science

M.Sc. (CS) Master of Science in Computer Science

SCSE School of Computing Science and Engineering

Table of Contents

 Title Page

No.

Abstract I

List of Table III

List of Figures IV

Chapter 1 Introduction

 1.1 Introduction 2

 1.2 Formulation of Problem 3

 1.2.1 Tool and Technology Used

Chapter 2 Literature Survey/Project Design 5

Chapter 3 Dataset Description 6

Chapter 4 Proposed Methodology 7

 4.1 Hand Segmentation 8

 4.2 Preprocessing 8

Chapter 5 Proposed CNN Method 9

 5.1 Convolution layer 9

 5.2 Pooling Layer 10

 5.3 Fully Connected Layer 11

 5.4 ReLu Activation Function 12

 5.5 Implementation

Chapter 6 Conclusion 13

Chapter 7 References 14

 CHAPTER-1

INTRODUCTION

Poses and gestures are one the basic means of communication between humans while

they may also play a crucial role in human-computer interaction, as they are able to

transfer some kind of meaning. The research area of pose and gesture recognition aims

to recognizing such expressions, which typically involve some posture and/or motion

of the hands, arms, head, or even skeletal joints of the whole body. In certain cases,

meaning may differ, based on a facial expression. Several application areas may

benefit from the recognition of a human’s pose or the gestures she/he performs, such

as sign language recognition, gaming, medical applications involving the assessment

of a human’s condition and even navigation in virtual reality environments. There exist

various approaches and techniques which involve some kind of sensor, either “worn”

by the subject (e.g., accelerometers, gyroscopes etc.), or monitor the subject’s motion

(e.g., cameras). In the latter case, the subject may also wear special “markers” which

are used to assist in the identification of several body parts and/or skeletal joints.

However, during the last few years several approaches rely solely on a typical RGB

camera, enhanced by depth information. One such example is the well-known Kinect

sensor. Therefore, the user only needs to stand in front of the camera without wearing

any kind of sensor. Several parts of her/his body are detected and tracked in the 3D

space. Typically, features are extracted and are used for training models to recognize

poses and/or gestures.

In this, we present a gesture recognition approach that focuses on hand gestures. We

propose a novel deep learning architecture that uses a Convolutional Neural Network

(CNN). More specifically, we use the Kinect sensor and its Software Development Kit

(SDK) in order to detect and track the subject’s skeletal joints in the 3D space. We

then select a subset of these joints, i.e., all that are involved at any of the gestures of

our data set. Then, we create an artificial image based on these 3D coordinates. We

apply the Discrete Fourier Transform on these images and use the resulting ones to

train the CNN. We compare our approach with previous work, where a set of

handcrafted statistical features on joint trajectories had been used. Finally, we

demonstrate that it is possible to efficiently recognize hand gestures without the need

of a feature extraction step. Evaluation takes place using a new dataset of 10 hand

gestures.

CHAPTER-2

Literature Review

The implementation is divided into four main steps:

1. Image Enhancement and Segmentation

2. Orientation Detection

3. Feature Extraction

4 [1]. Classification.

This work was focussed on above four categories but main limitation was change of

color was happening very rapidly by the change in the different lighting condition,

which may cause error or even failures. For example, due to insufficient light condition,

the existence of hand area is not detected but the non-skin regions are mistaken for the

hand area because of same color [2].

Involves three main steps for hand gesture recognition system:

1. Segmentation

2. Feature Representation

3. Recognition Techniques.

The system is based on Hand gesture recognition by modeling of the hand in spatial

domain. The system uses various 2D and 3D geometric and non-geometric models for

modeling. It has used Fuzzy c- Means clustering algorithm which resulted in an

accuracy of 85.83%. The main drawback of the system is it does not consider gesture

recognition of temporal space, i.e. motion of gestures and it is unable to classify images

with complex background i.e. where there are other objects in the scene with the hand

objects [3]. This survey focuses on the hand gesture recognition using different steps

like data acquisition, pre-processing, segmentation and so on. Suitable input device

should be selected for the data acquisition. There are a number of input devices for data

acquisition. Some of them are data gloves, marker, and hand images (from

webcam/Kinect 3D Sensor). But the limitation with this work was change in the

illumination, rotation and orientation, scaling problem and special hardware which is

pretty costlier [4].

The system implementation is divided into three phases:

1. Hand gesture recognition using kinetic camera

2. Algorithms for hand detection recognition

3. Hand gesture recognition.

The limitation here is that the edge detection and segmentation algorithms used here

are not very efficient when compared to neural networks. The dataset being considered

here is very small and can be used to detect very few sign gestures.

The System architecture consists of:

1. Image acquisition

2. Segmentation of hand region.

3. Distance transforms method for gesture recognition [5].

The limitations of this system involve

1. The numbers of gestures that are recognized are less

2. The gestures recognized were not used to control any applications [6].

In this implementation there are three main algorithms that are used:

1. Viola and jones Algorithm.

2. Convex Hull Algorithm.

3. The AdaBoost based learning Algorithm.

The work was accomplished by training a set of feature set which is local contour

sequence. The limitations of this system are that it requires two sets of images for

classification. One is the positive set that contains the required images, the other is the

negative set that contains contradicting images [7].

The system implementation consists of three components:

1. Hand detection

2. Gesture recognition

3. HumanComputer Interaction (HCI).

It has implemented the following methodology:

1. the input image is preprocessed and the hand detector tries to filter out the hand from

the input image

2.A CNN classifier is employed to recognize gestures from the processed image, while

a Kalman Filter is used to estimate the position of the mouse cursor.

3. The recognition and estimation results are submitted to a control Centre which

decides the action to be taken.

One of the limitations of this system is that it recognizes only the static images [8]. This

implementation focuses on detection of hand gestures using java and neural networks.

It is divided into two phases: -

1. Detection module using java where in the hand is detected using background

subtraction and conversion of video feed into HSB video feed thus detecting skin

pixels.

2. The second module is the prediction module; a convolutional neural network is used.

The input feed image is gained from Java.

The input image is fed into the neural network and is analyzed with respect to the

dataset images. One of the limitations of this system is that it requires socket

programming in order to connect java and python modules.

 CHAPTER-3

Dataset Description

A substantial role is played in resolving difficult difficulties in a research dataset. For

outstanding study to achieve more immeasurable certainty, a dataset is especially

important. Deep learning emphasises the value of datasets. It is the most important

factor that allows algorithm training to take place . In deep learning, a huge dataset is

important for improving the classification rate. The Senz3d collection of hand

movements was used to deal with depth pictures.

Fig 1: Sample Images from Dataset

The dataset contains a variety of static movements captured with the Creative

Senz3D camera . There are 1320 photos in the dataset. Four separate individuals

photos make up the dataset. Each person made 11 different gestures 30 times in a

row. Color, depth, and confidence frames are accessible for each sample in the

collection. Figure 1 shows a selection of photos from the dataset for hand gesture

recognition.

CHAPTER-4

Proposed Methodology

In our research, the hand gesture reputation device has been proposed through hand

segmentation and preprocessing operation (resizing all images) observed through CNN

version architecture. However, photo category fashions have turn out to be presently

distinguished for pc imaginative and prescient field. After obtaining the intensity photo,

segmented the hand data. Following a few preprocessing activities, skilled CNN

version for function extraction and gesture reputation. In Fig 2 the block diagram of

proposed technique has been shown.

Fig 2 : Use Case Diagram

4.1 Hand Segmentation

To facilitate our research, we retrieved depth pictures from the dataset. In hand gesture

recognition, the extraction of the hand region is the most crucial stage. As a result,

separating the hand region from the depth map is the first stage in recognising motions.

The segmentation technique starts with depth value thresholding, which filters out

samples with a distance larger than a predefined threshold based on the application .

The hand data was split using the YCbCr colour space after the depth photographs were

taken. In a basic manner, it distinguishes the hand from the frame. The depth image's

YCbCr value was changed. The YCbCr values of each pixel were compared to the

reference values. Each parameter has a predetermined threshold value as follows: The

following are the Y, Cb, and Cr ranges: 0  Y  255 and 135  C 180 and 85  Cb

135 .

4.2 Preprocessing

When training a convolutional neural network, it can be difficult to know how to

appropriately prepare visual data [5]. Because the photos in the training dataset were

of different sizes, they had to be scaled before being fed into the model [5].This

involves both resizing and cropping techniques during both the training and evaluation

of the model [4]. After getting the segmented hand images, the images have been

resized to 256×256.

CHAPTER-5

PROPOSED CNN MODEL

Artificial Intelligence is undergoing a rapid expansion. Volume 174 – No. 16, January

2021 30 of the International Journal of Computer Applications (0975 – 8887) in

bridging the gap between human and machine [5]. Computer Vision and deep learning

have evolved over time, largely because to one algorithm – the Convolutional Neural

Network [5]. Over time, it has been conclusively demonstrated that neural networks

surpass alternative algorithms in terms of accuracy and speed. With the progress of

neural networks, image categorization has become a hot issue among researchers. In

this field, the convolution neural network outperforms traditional machine learning

methods. The whole work flow of CNN to process hand movements is depicted in

Figure 3.

Fig 3: Data Flow Diagram

Each input image will be processed through a series of convolution layers, pooling, and

fully connected layers, as well as the ReLU function, which will identify hand motions

using probabilistic values. Three convolution layers, two maxpooling layers, and two

fully connected layers make up our suggested CNN design. There are 11 nodes in the

output layer. These 11 nodes have proposed that the dataset be used to recognise 11

gestures. The dataset was divided into 816 images for training and the rest for

validation.

Fig 4: Functionality Flowchart Diagram

5.1 Convolution layer

The convolution layer received the normalised pictures. The input photos were scaled

to 256 by 256 pixels. Four convolution layers with a tractable feature map have been

applied to the input image. A kernel is an array of numbers that are commonly referred

to as weights. The kernel size in the convolution layers has been set to 33%. A

mathematical kernel has performed an operation on the image. Edge detection, blur,

and sharpness can all be achieved by convolutioning an image with multiple filters. In

our proposed methodology, three convolution layers were used. The first convolution

layer has 64 filters, while the second and third layers had 128 filters. Filters in

convolutional layers identify features that improve categorization.

5.2 Pooling Layer

Similar to the first layer, the pooling layer lowers the number of parameters and the

spatial dimension of features. Pooling feature maps minimises their dimensionality

while preserving critical features. Pooling is applied to each feature map separately to

produce the same amount of pooled feature maps. In our proposed architecture, we

used two pooling layers.. Choosing a pooling formula is part of the pooling process.

Max-pooling has been chosen among the various pooling types. For computer vision

studies such as image classification, max pooling has been found to perform better than

other pooling operations. Unlike average pooling, the results are pooled feature maps

that highlight the patch's most prominent feature. Maximum pooling is a pooling

procedure that determines the highest value in each feature map area. The kernel's size

is always smaller than the feature map's size. By reducing the dimensionality of images,

the pooling layer minimizes the processing power required to process them.

Furthermore, it is advantageous for extracting powerful rotational and positional

invariant characteristics in order to make the training process more effective.

5.3 Fully Connected Layer

The convolution neural network's final layer is the fully connected layer. These layers

act in the same way as a conventional deep neural network. Every neuron in one layer

connects with every neuron in another layer via the completely linked layer.

Convolution, like the pooling layer, extracts capabilities; however, completely

connected layers classify the data according on the capabilities extracted by the

previous layer. The FC layer holds composite records from all of the convolution and

pooling layers. To categorise the images, the flattened matrix is handed thru an FC

layer. A absolutely linked layer plays the function vector representation (FC). This

function vector consists of all the records approximately the enter this is required. This

feature vector is then used for classification after the network has been trained. This

layer uses non-linear functions to classify photos based on their attributes. A ReLU

activation function is included in this layer, which offers a probability for each of the

categorization labels.

5.4 ReLU Activation Function

In a neural network, the activation function is in charge of modifying the total of

weighted input [8]. The rectified linear activation function (ReLU), on the other hand,

produces direct output. This linear function outputs the input directly if the input is

positive; else, it outputs zero [8]. It has become the default activation function for many

types of neural networks since it is faster to train and generally generates better

performance[8].

5.5 Implementation

5.5.1 Create Gesture Dataset

import cv2

import numpy as np

background = None

accumulated_weight = 0.5

ROI_top = 100

ROI_bottom = 300

ROI_right = 150

ROI_left = 350

def cal_accum_avg(frame, accumulated_weight):

 global background

 if background is None:

 background = frame.copy().astype("float")

 return None

 cv2.accumulateWeighted(frame, background, accumulated_weight)

def segment_hand(frame, threshold=25):

 global background

 diff = cv2.absdiff(background.astype("uint8"), frame)

 _ , thresholded = cv2.threshold(diff, threshold, 255, cv2.THRESH_BINARY)

 # Grab the external contours for the image

 image, contours, hierarchy = cv2.findContours(thresholded.copy(),

cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

 if len(contours) == 0:

 return None

 else:

 hand_segment_max_cont = max(contours, key=cv2.contourArea)

 return (thresholded, hand_segment_max_cont)

cam = cv2.VideoCapture(0)

num_frames = 0

element = 10

num_imgs_taken = 0

while True:

 ret, frame = cam.read()

 # filpping the frame to prevent inverted image of captured frame...

 frame = cv2.flip(frame, 1)

 frame_copy = frame.copy()

 roi = frame[ROI_top:ROI_bottom, ROI_right:ROI_left]

 gray_frame = cv2.cvtColor(roi, cv2.COLOR_BGR2GRAY)

 gray_frame = cv2.GaussianBlur(gray_frame, (9, 9), 0)

 if num_frames < 60:

 cal_accum_avg(gray_frame, accumulated_weight)

 if num_frames <= 59:

 cv2.putText(frame_copy, "FETCHING BACKGROUND...PLEASE WAIT", (80, 400),

cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0,0,255), 2)

 #cv2.imshow("Sign Detection",frame_copy)

 #Time to configure the hand specifically into the ROI...

 elif num_frames <= 300:

 hand = segment_hand(gray_frame)

 cv2.putText(frame_copy, "Adjust hand...Gesture for" + str(element), (200,

400), cv2.FONT_HERSHEY_SIMPLEX, 1, (0,0,255), 2)

 # Checking if hand is actually detected by counting number of contours

detected...

 if hand is not None:

 thresholded, hand_segment = hand

 # Draw contours around hand segment

 cv2.drawContours(frame_copy, [hand_segment + (ROI_right, ROI_top)], -1,

(255, 0, 0),1)

 cv2.putText(frame_copy, str(num_frames)+"For" + str(element), (70, 45),

cv2.FONT_HERSHEY_SIMPLEX, 1, (0,0,255), 2)

 # Also display the thresholded image

 cv2.imshow("Thresholded Hand Image", thresholded)

 else:

 # Segmenting the hand region...

 hand = segment_hand(gray_frame)

 # Checking if we are able to detect the hand...

 if hand is not None:

 # unpack the thresholded img and the max_contour...

 thresholded, hand_segment = hand

 # Drawing contours around hand segment

 cv2.drawContours(frame_copy, [hand_segment + (ROI_right, ROI_top)], -1,

(255, 0, 0),1)

 cv2.putText(frame_copy, str(num_frames), (70, 45),

cv2.FONT_HERSHEY_SIMPLEX, 1, (0,0,255), 2)

 #cv2.putText(frame_copy, str(num_frames)+"For" + str(element), (70,

45), cv2.FONT_HERSHEY_SIMPLEX, 1, (0,0,255), 2)

 cv2.putText(frame_copy, str(num_imgs_taken) + 'images' +"For" +

str(element), (200, 400), cv2.FONT_HERSHEY_SIMPLEX, 1, (0,0,255), 2)

 # Displaying the thresholded image

 cv2.imshow("Thresholded Hand Image", thresholded)

 if num_imgs_taken <= 300:

 #cv2.imwrite(r"D:\\gesture\\train\\"+str(element)+"\\" +

str(num_imgs_taken+300) + '.jpg', thresholded)

 cv2.imwrite(r"D:\\gesture\\x"+"\\" + str(num_imgs_taken) + '.jpg',

thresholded)

 else:

 break

 num_imgs_taken +=1

 else:

 cv2.putText(frame_copy, 'No hand detected...', (200, 400),

cv2.FONT_HERSHEY_SIMPLEX, 1, (0,0,255), 2)

 # Drawing ROI on frame copy

 cv2.rectangle(frame_copy, (ROI_left, ROI_top), (ROI_right, ROI_bottom),

(255,128,0), 3)

 cv2.putText(frame_copy, "DataFlair hand sign recognition_ _ _", (10, 20),

cv2.FONT_ITALIC, 0.5, (51,255,51), 1)

 # increment the number of frames for tracking

 num_frames += 1

 # Display the frame with segmented hand

 cv2.imshow("Sign Detection", frame_copy)

 # Closing windows with Esc key...(any other key with ord can be used too.)

 k = cv2.waitKey(1) & 0xFF

 if k == 27:

 break

Releasing camera & destroying all the windows...

cv2.destroyAllWindows()

cam.release()

5.5.2 Train CNN

import tensorflow as tf

from tensorflow import keras

from keras.models import Sequential

from keras.layers import Activation, Dense, Flatten, BatchNormalization, Conv2D,

MaxPool2D, Dropout

from keras.optimizers import Adam, SGD

from keras.metrics import categorical_crossentropy

from keras.preprocessing.image import ImageDataGenerator

import itertools

import random

import warnings

import numpy as np

import cv2

from keras.callbacks import ReduceLROnPlateau

from keras.callbacks import ModelCheckpoint, EarlyStopping

warnings.simplefilter(action='ignore', category=FutureWarning)

train_path = r'D:\gesture\train'

test_path = r'D:\gesture\test'

train_batches =

ImageDataGenerator(preprocessing_function=tf.keras.applications.vgg16.preprocess_in

put).flow_from_directory(directory=train_path, target_size=(64,64),

class_mode='categorical', batch_size=10,shuffle=True)

test_batches =

ImageDataGenerator(preprocessing_function=tf.keras.applications.vgg16.preprocess_in

put).flow_from_directory(directory=test_path, target_size=(64,64),

class_mode='categorical', batch_size=10, shuffle=True)

imgs, labels = next(train_batches)

#Plotting the images...

def plotImages(images_arr):

 fig, axes = plt.subplots(1, 10, figsize=(30,20))

 axes = axes.flatten()

 for img, ax in zip(images_arr, axes):

 img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

 ax.imshow(img)

 ax.axis('off')

 plt.tight_layout()

 plt.show()

plotImages(imgs)

print(imgs.shape)

print(labels)

model = Sequential()

model.add(Conv2D(filters=32, kernel_size=(3, 3), activation='relu',

input_shape=(64,64,3)))

model.add(MaxPool2D(pool_size=(2, 2), strides=2))

model.add(Conv2D(filters=64, kernel_size=(3, 3), activation='relu', padding =

'same'))

model.add(MaxPool2D(pool_size=(2, 2), strides=2))

model.add(Conv2D(filters=128, kernel_size=(3, 3), activation='relu', padding =

'valid'))

model.add(MaxPool2D(pool_size=(2, 2), strides=2))

model.add(Flatten())

model.add(Dense(64,activation ="relu"))

model.add(Dense(128,activation ="relu"))

#model.add(Dropout(0.2))

model.add(Dense(128,activation ="relu"))

#model.add(Dropout(0.3))

model.add(Dense(10,activation ="softmax"))

In[23]:

model.compile(optimizer=Adam(learning_rate=0.001), loss='categorical_crossentropy',

metrics=['accuracy'])

reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.2, patience=1,

min_lr=0.0001)

early_stop = EarlyStopping(monitor='val_loss', min_delta=0, patience=2, verbose=0,

mode='auto')

model.compile(optimizer=SGD(learning_rate=0.001), loss='categorical_crossentropy',

metrics=['accuracy'])

reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.2, patience=1,

min_lr=0.0005)

early_stop = EarlyStopping(monitor='val_loss', min_delta=0, patience=2, verbose=0,

mode='auto')

history2 = model.fit(train_batches, epochs=10, callbacks=[reduce_lr,

early_stop], validation_data = test_batches)#, checkpoint])

imgs, labels = next(train_batches) # For getting next batch of imgs...

imgs, labels = next(test_batches) # For getting next batch of imgs...

scores = model.evaluate(imgs, labels, verbose=0)

print(f'{model.metrics_names[0]} of {scores[0]}; {model.metrics_names[1]} of

{scores[1]*100}%')

#model.save('best_model_dataflair.h5')

model.save('best_model_dataflair3.h5')

print(history2.history)

imgs, labels = next(test_batches)

model = keras.models.load_model(r"best_model_dataflair3.h5")

scores = model.evaluate(imgs, labels, verbose=0)

print(f'{model.metrics_names[0]} of {scores[0]}; {model.metrics_names[1]} of

{scores[1]*100}%')

model.summary()

scores #[loss, accuracy] on test data...

model.metrics_names

word_dict =

{0:'One',1:'Ten',2:'Two',3:'Three',4:'Four',5:'Five',6:'Six',7:'Seven',8:'Eight',9:

'Nine'}

predictions = model.predict(imgs, verbose=0)

print("predictions on a small set of test data--")

print("")

for ind, i in enumerate(predictions):

 print(word_dict[np.argmax(i)], end=' ')

plotImages(imgs)

print('Actual labels')

for i in labels:

 print(word_dict[np.argmax(i)], end=' ')

print(imgs.shape)

history2.history

5.5.3 Model for Gesture

import numpy as np

import cv2

import keras

from keras.preprocessing.image import ImageDataGenerator

import tensorflow as tf

model = keras.models.load_model(r"C:\Users\abhij\best_model_dataflair3.h5")

background = None

accumulated_weight = 0.5

ROI_top = 100

ROI_bottom = 300

ROI_right = 150

ROI_left = 350

def cal_accum_avg(frame, accumulated_weight):

 global background

 if background is None:

 background = frame.copy().astype("float")

 return None

 cv2.accumulateWeighted(frame, background, accumulated_weight)

def segment_hand(frame, threshold=25):

 global background

 diff = cv2.absdiff(background.astype("uint8"), frame)

 _ , thresholded = cv2.threshold(diff, threshold, 255, cv2.THRESH_BINARY)

 #Fetching contours in the frame (These contours can be of hand or any other

object in foreground) ...

 image, contours, hierarchy = cv2.findContours(thresholded.copy(),

cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

 # If length of contours list = 0, means we didn't get any contours...

 if len(contours) == 0:

 return None

 else:

 # The largest external contour should be the hand

 hand_segment_max_cont = max(contours, key=cv2.contourArea)

 # Returning the hand segment(max contour) and the thresholded image of

hand...

 return (thresholded, hand_segment_max_cont)

cam = cv2.VideoCapture(0)

num_frames =0

while True:

 ret, frame = cam.read()

 # filpping the frame to prevent inverted image of captured frame...

 frame = cv2.flip(frame, 1)

 frame_copy = frame.copy()

 # ROI from the frame

 roi = frame[ROI_top:ROI_bottom, ROI_right:ROI_left]

 gray_frame = cv2.cvtColor(roi, cv2.COLOR_BGR2GRAY)

 gray_frame = cv2.GaussianBlur(gray_frame, (9, 9), 0)

 if num_frames < 70:

 cal_accum_avg(gray_frame, accumulated_weight)

 cv2.putText(frame_copy, "FETCHING BACKGROUND...PLEASE WAIT", (80, 400),

cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0,0,255), 2)

 else:

 # segmenting the hand region

 hand = segment_hand(gray_frame)

 # Checking if we are able to detect the hand...

 if hand is not None:

 thresholded, hand_segment = hand

 # Drawing contours around hand segment

 cv2.drawContours(frame_copy, [hand_segment + (ROI_right, ROI_top)], -1,

(255, 0, 0),1)

 cv2.imshow("Thesholded Hand Image", thresholded)

 thresholded = cv2.resize(thresholded, (64, 64))

 thresholded = cv2.cvtColor(thresholded, cv2.COLOR_GRAY2RGB)

 thresholded = np.reshape(thresholded,

(1,thresholded.shape[0],thresholded.shape[1],3))

 pred = model.predict(thresholded)

 cv2.putText(frame_copy, word_dict[np.argmax(pred)], (170, 45),

cv2.FONT_HERSHEY_SIMPLEX, 1, (0,0,255), 2)

 # Draw ROI on frame_copy

 cv2.rectangle(frame_copy, (ROI_left, ROI_top), (ROI_right, ROI_bottom),

(255,128,0), 3)

 # incrementing the number of frames for tracking

 num_frames += 1

 # Display the frame with segmented hand

 cv2.putText(frame_copy, "DataFlair hand sign recognition_ _ _", (10, 20),

cv2.FONT_ITALIC, 0.5, (51,255,51), 1)

 cv2.imshow("Sign Detection", frame_copy)

 # Close windows with Esc

 k = cv2.waitKey(1) & 0xFF

 if k == 27:

 break

Release the camera and destroy all the windows

cam.release()

cv2.destroyAllWindows()

CHAPTER-6

Result

We have successfully developed sign language detection project. This is an interesting

machine learning python project to gain expertise. This can be further extended for

detecting the English alphabets.

https://data-flair.training/blogs/wp-content/uploads/sites/2/2020/09/sign-language-recognition-output.jpg

CHAPTER-7

CONCLUSION

The activation function in a neural network is in charge of changing the total weighted

input [8]. On the other hand, the rectified linear activation function (ReLU) generates

direct output. If the input is positive, this linear function sends the input directly;

otherwise, it outputs zero [8]. Because a model that employs it is faster to train and

delivers superior results in general, it has become the default activation function for

many types of neural networks [8].

REFERENCES

[1]. M. Panwar and P. Singh Mehra, “Hand gesture recognition for human computer interaction,”

2011 International Conference on Image Information Processing, Shimla, pp. 1-7, 2011.

[2]. Rafiqul Zaman Khan and Noor Adnan Ibraheem. “Comparitive Study of Hand

Gesture Recognition System.” International Conference of Advanced Computer Science &

Information Technology, 2012.

[3]. Arpita Ray Sarkar, G. Sanyal, S. Majumder. “Hand Gesture Recognition Systems: A Survey.”

International Journal of Computer Applications, vol. 71, no.15, pp. 25-37, May 2013.

[4]. Manjunath AE, Vijaya Kumar B P, Rajesh H. “Comparative Study of Hand

Gesture Recognition Algorithms.” International Journal of Research in Computer and

Communication Technology, vol 3, no. 4, April 2014.

[5]. Dnyanada R Jadhav, L. M. R. J Lobo, Navigation of PowerPoint Using Hand Gestures,

International Journal of Science and Research (IJSR) 2015. [6]. Ruchi Manish Gurav,

Premanand K. Kadbe, Real time finger tracking and contour detection for gesture recognition

using OpenCV, IEEE Conference May 2015, Pune India.

[7]. Pei Xu, Department of Electrical and Computer Engineering, University of

Minnesota, A Real-time Hand Gesture Recognition and Human-Computer Interaction System,

Research Paper April 2017.

[8]. P. Suganya, R. Sathya, K. Vijayalakshmi. “Detection and Recognition of

Gestures to Control the System Applications by Neural Networks.” International Journal of Pure and

Applied Mathematics, vol. 118, no. 10, pp. 399-405, January 2018.

