

 BOOK MANAGEMENT API

Submitted in partial fulfillment of the

requirement for the award of the degree of

B.Tech Computer Science Engineering

Under The Supervision of

Dr. Avneesh Kumar

Associate Professor

Submitted By:

Name of Student: PALLAV RAJ

Admission Number: 19SCSE1010442

Application Number: 19021011620

Section: 03

Semester: 05

&

Name of Student: RAVI SHANKAR KUMAR

Admission Number: 19SCSE1010675

Application Number: 19021011826

Section: 03

Semester: 05

SCHOOL OF COMPUTING SCIENCE AND ENGINEERING DEPARTMENT OF

COMPUTER SCIENCE AND ENGINEERING GALGOTIAS UNIVERSITY,

GREATER NOIDA

INDIA MONTH, YEAR

Abstract

There are lots and lots of digital books (e-book) available in the market. If a person

tries to read a book, they have to find their respective books on their official site

and download it. The biggest problem arises when a person wants to find a book by

its genre/category they have to do many research and find the book best fit for

him/her. One more problem is that for a single category there are many books

available and people generally gets confuse, which book they choose.

The solution is Book Management API in this we will available the e-books by

permission of the publishers or a link to the download page of the books official site.

The API solo purpose will be to search for a book and deliver it to you, by this

searching a book will be very easy. In this API we will categories all the books by

their genre and rank them. If a book is read or downloaded by many people then the

rank of the book will be higher, like wise if a book is not so popular the rank will be

lower. This will help people choose their books faster.

There are many tools and method to build an API. We choose nodeJS which is very

popular now a days because it uses javascript to build any web page or API’s.

With nodeJS we have used many tools

• Express: popular framework of nodeJS.

• Html / Css / JavaScript: We need some place where we can show data so we

choose website because it can be accessed by any device.

• Any Database: We will use mongoDB database for this project to store data /

books / username / password etc.

Result: After completing the API and deploying it if a person goes to our website

people can able to search for any book in only one click and download it or read it on

our website.

Conclusion and future scope: As you can see the fastest way to get a book is to use

an API. Which is very popular now and remain popular in future because we can use

List of Figures

Figure

No.

Page

Number
Table Name

1. UML Diagram 6

List of Figures

Figure

No.

Page

Number
Table Name

2. Data Flow Diagram 7

Table of Contents

Title Page

No.

Abstract I

List of Table II

List of Figures III

Chapter 1 Introduction 1
 1.1 Modules 1
 1.2 Purpose / Working of an API 2

Chapter 2 Literature Survey/Project Design
2.1 Modules
 2.1.1 Create Sample Data
2.2 Serialization
 2.2.1 Serialization single resources
 2.2.2 Serializing Multiple Resources
2.3 Views
 2.3.1 REST Request
 2.3.2 Content Negotiation
 2.3.3 REST Response

3
3
3
3
4
4
4
4
6
6

CHAPTER-1

Introduction

1. Introduction

The Books API is a way to search and access that content, as well as to create and

view personalization around that content.

1.1 Modules:

Admin login: Admin is the one who administers the system by adding or removing e-

books into and from the system respectively.

User login: Users have to register themselves into the system to create an account.

After registering successfully, they can then login into the system by entering 10 digit

mobile number and their email id.

Add and Update Books: The admin can add books to the system by entering the

details of the books and can even update the details.

Search option: Admin and User can even search for books by entering the name of

the book.

View Request of a book-The admin can see which book is requested the most.

Charge money- If the book is not free admin can charge money through any payment

gateway.

1.2 Purpose / Working of an API:

• Produce a list of all the books with their authors and genres.

• Give details of each and every book with its author and the genres.

• Provide the support for creating, updating and deleting a book.

• Produce a list of all the authors with their books published.

• Details of each and every author with their published books.

CHAPTER-1

Introduction

• Provide the support for creating, updating and deleting an author.

• Produce a list of all the genres and the respective books in each genre.

• Each genre and the books that fall into this genre.

• Provide the support for creating, updating and deleting a genre.

CHAPTER-2

Literature Survey

2.1 Models

First, we will create the models. There will be 3 models Author, Genre and Book.

Book has a Foreign Key field to an Author, and a Many to Many fields to Genre.

2.1.1 Create Sample data

We completed the model now Migrate the models into the database and create some

demo records in each table to make sure everything’s is working fine.

Created sample records of Book, Genre and Author here. First, we will create

instance of Author and save in data base. Genre instance is created and then book is

added according to genre.

Till now we have made an API which can receive the request sent by clients to the

server and response with all the requested resources to the client. The resources could

be in any format maybe JSON or maybe in XML.

In our case, a user/client will ask for a book by its name, or by genres or by the

author’s name. To send a response to the client, we need to make our response data

into appropriate format. In this I will choose JSON.

2.2 . Serialization

REST Framework provides serializing and deserializing functionalities, which

converts the instances of the model to Primitive Data Types and then to JSON, or

vice-versa.

CHAPTER-2

Literature Survey

The fields option in the Meta class contains all those fields which we want to

serialize. The Model used for serialization is available in the model option in the meta

class. The serializer above can serialize an instance of a Book, its price, its name and

its description.

2.2.1 Serializing single resources

Till now we have defined serializer usage of the book. Structure of the book model is

printed when we call the serializer. Serializing the first Book instance serializes only

the fields mentioned in the fields option in the Meta class of the serializer.

serializer.data gives us the JSON formatted output, the JSON Representation of the

Book Resource.

2.2.2 Serializing Multiple Resources

We will repeat the serialization process on all the Book objects. The input to the

serializer here is a whole queryset, instead of a single record. Converting this to JSON

produces error, as it tries to search the fields in the queryset (It will get the name field

in a single instance, but not on the queryset). So we have to tell the serializer that this

is a queryset with multiple such Book records. That’s when it understands and works

correctly.

2.3. Views

There’s been some changes in writing the views with NodeJS REST framework. We

will see these changes one by one.

2.3.1 REST Request

CHAPTER-2

Literature Survey

The request object in NodeJS REST is a wrapper around HTTP Request object with

some better functionalities.

REST request provides parsing mechanisms which allows to treat each request object

as a JSON media type. It’s similar to HTTPRequest.POST, but also parses data from

PUT and PATCH methods.I will used Postman to demonstrate the working of the

APIs.

Following are the sample views used for the demonstration below. The one at the top

uses the default View provided in NodeJS, which uses HTTP methods for request and

response. The one at the bottom uses the REST framework to create the request and

responses. The request object is debugged using pdb.

HTTP request.body produces the byte string when accessed, whereas to get values as

key-value pairs we use request.POST. With REST request.data produces the values as

key-value pairs just like request.POST. This is fine, but let’s see what we get if the

request is raw JSON data.

With JSON data, HTTP request.body gives the data in byte format again, and with

request.POST doesn’t have access to it. Whereas, with REST request.data, we do see

that the data can be accessed like a key-value pair just like a POST request in HTTP.

This is what differentiates both of them. No use of request.POST is required here if

you are using REST APIs.

With HTTP request, if any parameter is sent over the URL, then it only can be

accessed via request.GET, even though it might be POST request. Addressing this,

REST request gives request.query_params which gets those parameters from the

URL for any type of request.

CHAPTER-2

Literature Survey

request.query_params work with any type of requests. It brings whatever we pass on

the URL.

2.3.2 Content Negotiation

REST Request provides certain properties which allows us to know the content type

finalized during the Content Negotiation process. These properties are

request.accepted_renderer and request.accepted_media_type.

2.3.3 REST Response

REST allows us to return the Response with the content type negotiated during the

content negotiation stage. It keeps the context of the request and its content type and

uses it to create the Response.

This is where we are comparing the HTTP Response to REST Response. With HTTP,

the default Response content type is “text/html; charset=utf-8”. So even if the request

accepts JSON rendering with JSON media type, the response will be rendered in

HTML format. We have to manually change the content type in HttpResponse like

the second case. Whereas, the REST Response keeps the context of the request and

uses it to create the response.

REST allows us to create a Response without any rendered content. We can pass the

data of Python primitive data types to the Response object while creating.

Knowing that we cannot pass any user defined data or a model record to the response,

as it won’t understand the format. To send in the model records, we need to serialize

CHAPTER-2

Literature Survey

them using the Serializers defined above and then use them to create the Response

object.

So here goes the View to fetch the list of Books. And below is a screenshot when we

hit the API on Postman. We can see the name, price and description of a list of Books

that can be retrieved by the GET request.

The response we get is in JSON representation. And these are the books that are

currently available in the database. So this is the current state.

Now, We need to create APIs for Authors and Genres. Also the APIs should support

updating, creating and deleting the respective records.

