
DEVANAGARI SCRIPT HANDWRITTING RECOGNITION
APPLICATION

PROJECT WORK

Submitted in partial fulfillment of the requirement for the award of the degree of

Bachelors of Technology

In

Computer Science & Engineering

Submitted By

Milind Panwar [20SCSE1010346]

Under The Supervision of

Mr.Bibhas Kumar Rana

SCHOOL OF COMPUTING SCIENCE AND ENGINEERING DEPARTMENT OF

COMPUTER SCIENCE AND ENGINEERING GALGOTIAS UNIVERSITY,

GREATER NOIDA INDIA OCTOBER, 2021

DECLARATION

I hereby declare that this Project Report titled “Devanagari Script

Handwriting Recognition Application” submitted to the “Department of

Bachelor of Engineering in Computer Science & Engineering”.

It is a record of original work done by me under the guidance of Mr.

Bibhas Kumar Rana.

The information and data given in the reports is authentic to the best

ofmy knowledge. This project Report is not submitted to any other

university or institute for the award of any degree, diploma, or published

any time before.

Milind Panwar 20SCSE1010346

 ACKNOWLEDGEMENT

I would like to extend our gratitude to my mentor Mr. Bibhas Kumar

Rana. who gave me suggestions and guided me with his ultimate

knowledge and valuable time throughout the research.

I. ABSTRACT

A system for recognition of handwritten Devanagari characters has been

presented for Indian writing systems. A handwritten character is

represented as a sequence of strokes whose features are extracted and

classified. Devanagari script is widely used in the Indian

subcontinent in several major languages such as Hindi, Sanskrit,

Marathi and Nepali. Recognition of unconstrained (Handwritten)

Devanagari character is more complex due to shape of constituent

strokes. Hence character recognition has been an active area of research

till now and it continues to be a challenging research topic due to its

diverse applicable environment. An android application is created as an

interface to take input and show result, while The recognition of

characters are done by Google Vision API.

We already have many applications that recognizes the English

Handwritten script. As Hindi is Our Mothertongue and Sanskrit is Father

of Many Languages, An application that recognizes the Devnagari Script

and that can further be used for searching and translation purpose must

exist. Devnagari Script is use to write Hindi, Sanskrit, Marathi, Nepali,

Dogri, Sindhi etc. It also plays an important role in the development of

manuscripts and literatures. the increase in usage of handheld devices

which accept handwritten data as input created a demand for

application which analyze and recognize data efficiently. Due to the

popularity of digital device, in this using Smartphone as input device.

Input image is drawn on Smartphone. Feature extraction of input image

is done by android technology. Using that features android with

machine learning recognizes the word.

DIAGRAM

1. LIST OF TABLES

S.NO. PARTICULARS

1 INTRODUCTION

2 DIAGRAM

3 TOOLS AND TECHNOLOGY USED

4 RESULT AND OUTPUT

5 CONCLUSION

6 LITERARY SURVEY

2. TABLE OF CONTENT

TITLE PAGE NO.

ABSTRACT--- I

LIST OF FIGURES :

• CHAPTER 1---II

1. INTRODUCTION

2. TOOLS AND TECHNOLOGY USED

3. RESULT AND OUTPUT

4. CONCLUSION AND FUTURE SCOPE

• CHAPTER 2---III

1. Literary Survey

II. INTRODUCTION

OCR is a technology that allows users to convert various documents

such as scanned documents, a PDF file or images into soft copies that

can be edited, searched, reproduced and easily transported. Previously,

the character recognition method was limited to desktop scanners but

with the advent of technology and portable computer devices like mobile

phones, iPhone etc. New research methods have emerged, in which cell

phones are the most widely used electronic device, eliminating the need

for big machines such as scanners, desktops and laptops. Although OCR

mobile packages are available on the market with a high degree of

accuracy in detecting handwritten text in European and other scripts, but

for Indian texts few applications are available with proper accuracy.

Here, OCR based mobile systems are developed for Devanagari Script

Recognizing using the Vision API. Devanagari is an alphabetic text,

developed into Sanskrit but later adapted to many other languages such

as Nepali, Marathi, Hindi, Konkani etc. Devanagari text has 14 vowels

and 34 simple consonants. A horizontal line is drawn on top of all the

letters called the headline or Shiro Rekha. Almost all Indian scripts are

based on Brahmi script. Brahmi script is a phonographic writing system,

in which symbols are directly related to the phonographs of the written

language. A major challenge in online devanagari script is to create a

system that can distinguish between variations in writing the same stroke

and small variations of the same characters in the script. Many

researchers have worked on a system that detects devanagari

handwriting using Support Vector Machine or Particle Swarm

Optimization but Vision API have high accuracy, cost effective and also

supported on a portable device

III. TOOLS AND TECHNOLOGY USED
i. Kotlin :

Kotlin is a general purpose, free, open source, statically typed

pragmatic programming language initially designed for the Java

Virtual Machine and Android that combines object-oriented and

functional programming features.

ii. Google Cloud Vision API

Google Cloud Vision API Use machine learning to understand

your images with industry-leading prediction accuracy.

1) Data Collection

2) Feature Extraction

1. Data Collection : In the proposed method Android based

Smartphone is used for taking the input image of handwriting.

2. Feature Extraction : Google Cloud Vision OCR is part of the

Google cloud vision API to extract text from images.

iii. Android Studio :

Android Studio is the official Integrated Development

Environment (IDE) for Android app development, based on IntelliJ

IDEA . Using android studio for creating an android app, which

will provide the lnterface for taking input image of handwriting

and displaying the detected character.

https://www.jetbrains.com/idea/
https://www.jetbrains.com/idea/

IV. RESULT AND OUTPUT
• As such there is no simple, easy and cost effective devanagari

script recognition system exists for online recognition of

handwritten characters with higher accuracy. I tried to develop

an application using kotlin programming language and android

studio as IDE with Google Vision API, which recognises the

handwritten script having nearly similar accuracy as the currently

proposed systems but with simple and cost effective way.

• We can use our android mobile’s camera to detect the written text

and that can be further used for translating and copying the text

present in image.

V. CODE

package com.dorvis.textrecognitionandroid;

import android.support.v7.app.AppCompatActivity;

import android.os.Bundle;

import android.Manifest;

import android.content.pm.PackageManager;

import android.support.annotation.NonNull;

import android.support.v4.app.ActivityCompat;

import android.util.Log;

import android.util.SparseArray;

import android.view.SurfaceHolder;

import android.view.SurfaceView;

import android.widget.TextView;

import com.google.android.gms.vision.CameraSource;

import com.google.android.gms.vision.Detector;

import com.google.android.gms.vision.text.TextBlock;

import com.google.android.gms.vision.text.TextRecognizer;

import java.io.IOException;

public class MainActivity extends AppCompatActivity {

 SurfaceView mCameraView;

 TextView mTextView;

 CameraSource mCameraSource;

 private static final String TAG = "MainActivity";

 private static final int requestPermissionID = 101;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 mCameraView = findViewById(R.id.surfaceView);

 mTextView = findViewById(R.id.text_view);

 startCameraSource();

 }

 @Override

 public void onRequestPermissionsResult(int requestCode, @NonNull

String[] permissions, @NonNull int[] grantResults) {

 if (requestCode != requestPermissionID) {

 Log.d(TAG, "Got unexpected permission result: " +

requestCode);

 super.onRequestPermissionsResult(requestCode, permissions,

grantResults);

 return;

 }

 if (grantResults[0] ==

PackageManager.PERMISSION_GRANTED) {

 try {

 if (ActivityCompat.checkSelfPermission(this,

Manifest.permission.CAMERA) !=

PackageManager.PERMISSION_GRANTED) {

 return;

 }

 mCameraSource.start(mCameraView.getHolder());

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

 }

 private void startCameraSource() {

 //Create the TextRecognizer

 final TextRecognizer textRecognizer = new

TextRecognizer.Builder(getApplicationContext()).build();

 if (!textRecognizer.isOperational()) {

 Log.w(TAG, "Detector dependencies not loaded yet");

 } else {

 //Initialize camerasource to use high resolution and set Autofocus

on.

 mCameraSource = new

CameraSource.Builder(getApplicationContext(), textRecognizer)

 .setFacing(CameraSource.CAMERA_FACING_BACK)

 .setRequestedPreviewSize(1280, 1024)

 .setAutoFocusEnabled(true)

 .setRequestedFps(2.0f)

 .build();

 /**

 * Add call back to SurfaceView and check if camera permission

is granted.

 * If permission is granted we can start our cameraSource and

pass it to surfaceView

 */

 mCameraView.getHolder().addCallback(new

SurfaceHolder.Callback() {

 @Override

 public void surfaceCreated(SurfaceHolder holder) {

 try {

 if

(ActivityCompat.checkSelfPermission(getApplicationContext(),

 Manifest.permission.CAMERA) !=

PackageManager.PERMISSION_GRANTED) {

 ActivityCompat.requestPermissions(MainActivity.this,

 new String[]{Manifest.permission.CAMERA},

 requestPermissionID);

 return;

 }

 mCameraSource.start(mCameraView.getHolder());

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

 @Override

 public void surfaceChanged(SurfaceHolder holder, int format,

int width, int height) {

 }

 @Override

 public void surfaceDestroyed(SurfaceHolder holder) {

 mCameraSource.stop();

 }

 });

 //Set the TextRecognizer's Processor.

 textRecognizer.setProcessor(new

Detector.Processor<TextBlock>() {

 @Override

 public void release() {

 }

 /**

 * Detect all the text from camera using TextBlock and the

values into a stringBuilder

 * which will then be set to the textView.

 * */

 @Override

 public void

receiveDetections(Detector.Detections<TextBlock> detections) {

 final SparseArray<TextBlock> items =

detections.getDetectedItems();

 if (items.size() != 0){

 mTextView.post(new Runnable() {

 @Override

 public void run() {

 StringBuilder stringBuilder = new StringBuilder();

 for(int i=0;i<items.size();i++){

 TextBlock item = items.valueAt(i);

 stringBuilder.append(item.getValue());

 stringBuilder.append("\n");

 }

 mTextView.setText(stringBuilder.toString());

 }

 });

 }

 }

 });

 }}}

VI. CONCLUSION AND FUTURE SCOPE

As such there is no simple, easy and cost effective devanagari script

recognition system exists for online recognition of handwritten

characters with higher accuracy. I tried to develop an application using

kotlin programming language and android studio as IDE with Google

Vision API, which recognises the handwritten script having nearly

similar accuracy as the currently proposed systems but with simple and

cost effective way.

VII. LITERARY SURVEY

H. Swethalakshmi, Anitha Jayaraman, V. Srinivasa Chakravarthy, C.

Chandra Sekhar [1] worked on the Devanagari script recognizer and

their Devanagari script detector was trained in stroke data collected from

90 users and tested on data from 10 users . The total number of models

used for training was 21780 and for testing was 2420. The total number

of classes considered in the Devanagari script was 91. They came to the

conclusion that the performance of the character recognition depends on

the accuracy of the side recognition. The results obtained for Devanagari

character recognition indicated that reliable classification was possible

using SVMs. (SVM is for mapping the input data of a higher dimension

feature unrelated to the input area and decides to split a large plane with

a large limit between the two sections in the feature space.) Prashant M.

Kakde, S.M. Gulhane, [2] Tried to create a system that uses a new way

to fine-tune particles. Use PSO and SVM to recognize text from real-

time installations using a combination of Android, PHP and MATLAB

and reach a point where the PSO method provides much better accuracy

compared to SVM. The accuracy of the real-time system generated for

this task is about 90%. (PSO is a human-based search method. PSO is a

collaborative research method, as it makes few or no assumptions about

the problem but will search for the largest gaps in the solution.)

Hanmhunga, Madasu et al. [3] used the modified membership function

to represent unambiguous sets from sample elements and then applied

reinforcement training to structural parameters resulting in a 25-fold

improvement in the mixing speed. In the analysis of documents, when

computer time was a major factor, this study was predicted to be useful.

The total recognition rate in rough classification was found to be

90.65%. M. Yadav, R. Kr Purwar, and A. Jain [4] examined many

concessions and combinations of convolutional layers. They used two

test analytics data that achieved a high accuracy of 97.95% but the

Convolutional neural network has high computational costs and a large

storage space, so they suggested a better approach could be developed to

develop a cost-effective character recognition system..

VIII. REFERENCES

[1] H. Swethalakshmi, Anitha Jayaraman, V. Srinivasa Chakravarthy,

C. Chandra Sekhar. Online Handwritten Character Recognition of

Devanagari and Telugu Characters using Support Vector Machines.

Tenth International Workshop on Frontiers in Handwriting Recognition,

Université de Rennes 1, Oct 2006, La Baule (France). ffinria-00104402f

[2] Prashant M. Kakde, S.M. Gulhane, A Comparative Analysis of

Particle Swarm Optimization and Support Vector Machines for

Devnagri Character Recognition: An Android Application Procedia

Computer Science, Volume 79,2016, Pages 337-343, ISSN 1877-0509,

[3] Hanmandlu, Madasu et al. “Fuzzy Model Based Recognition of

Handwritten Hindi Characters.” 9th Biennial Conference of the

Australian Pattern Recognition Society on Digital Image Computing

Techniques and Applications (DICTA 2007) (2007): 454-461.

[4] M. Yadav, R. Kr Purwar, y A. Jain, Design of CNN architecture for

Hindi Characters, ADCAIJ, vol. 7, n.º 3, pp. 47–62, sep. 2018.

