
A Project Report

On

RAIL HAILING ANDROID APP

Submitted in partial fulfillment of the requirement for the

award of the degree of

Bachelor of Technology

Under The Supervision of

DR. P. Muthusamy

Associate Professor

Department of Computer Science and Engineering

Submitted By

19SCSE1010879- Yash Agarwal

19SCSE1010880- Kartikey Chandra

SCHOOL OF COMPUTING SCIENCE AND ENGINEERING

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

GALGOTIAS UNIVERSITY, GREATER NOIDA, INDIA

DECEMBER - 2021

SCHOOL OF COMPUTING SCIENCE AND

ENGINEERING

GALGOTIAS UNIVERSITY, GREATER NOIDA

CANDIDATE’S DECLARATION

I/We hereby certify that the work which is being presented in the thesis/project/dissertation, entitled “Rail Hailing

Application” in partial fulfillment of the requirements for the award of the Bachelor Of Technology submitted in the School

of Computing Science and Engineering of Galgotias University, Greater Noida, is an original work carried out during the period

of month, Year to Month and Year, under the supervision of “DR. P. Muthusamy, Associate

Professor, Department of Computer Science and Engineering/Computer Application and Information and Science, of School of

Computing Science and Engineering , Galgotias University, Greater Noida

The matter presented in the thesis/project/dissertation has not been submitted by me/us for the award of any other degree of

this or any other places.

Yash Agarwal(19SCSE1010879)

This is to certify that the above statement made by the candidates is correct to the best of my knowledge.

DR. P.Muthusamy

Associate Professor

CERTIFICATE

The Final Thesis/Project/ Dissertation Viva-Voce examination of Yash Agarwal(19SCSE1010879) & Kartikey

Chandra(19SCSE1010880) has been held on _________________ and his work is recommended for the award of

Bachelor Of Technology.

Signature of Examiner(s) Signature of Supervisor(s)

Signature of Project Coordinator Signature of Dean

Date: November, 2013

Place: Greater Noida

S.no Title Page no.

1. Abstract 5

2. Introduction 6

3. Literature Survey 7 & 8

4. Project Design 9

5. Android Ride Hailing Application Project 10

 Prerequisites

6. Description of the Ride Hailing Application project 11-19

7. Source Code:- Login Activity & Starting Activity 20-25

8. Steps to implement the Ride Hailing Project in 26

 Android

9. Android Ride Hailing Application 27&28

10. Flow Chart 29

11. References 30

ABSTRACT

This software aims at automating the process of interaction between cab

drivers and passengers and hence, increasing the efficiency of both. The

application provides quick and accurate results based on the corresponding

input. The application helps keep track of all the data associated with the

 trips a user chooses to proceed with. It also provides reliability and

accountability so that a user can choose exactly which other user he/she

 would like to proceed the interaction with. So in this application we link

 the Arogya Setu Server which helps to detect whether the rider has

COVID-19 symptoms or not. It helps the driver to get away from the

COVID-19 infected passengers.

INTRODUCTION

The application provides the user (rider) with a dashboard display where the user

chooses a pickup location for the trip, the destination for the trip and the desired

ride type. The application finds a user (driver) who matches the input criteria by

the rider and fare is generated and the fare details along with a possible driver’s

details is sent back to the rider. The driver is sent a trip request which sends the

pickup, destination and contact details of the rider to the driver. The application

then asks the driver for a response to the request and a suitable message is

generated for the rider based on the driver’s response. The driver’s approval

provides the driver with the contact details of the rider and vice versa. If the driver

chooses to deny the trip request received, the ride booking process is halted and

restarted to look for more drivers and a suitable message is generated for the rider.

If the rider chooses to cancel the trip mid-process, the request is taken back and

suitable cancellation messages are displayed according to the stage the process has

reached.

LITERATURE SURVEY

Distributed Databases

A distributed database system allows applications to access data

from local and remote databases. Distributed databases use a

client/server architecture to process information requests.

Advantages of using this application:

•Management of distributed data with different levels of
transparency like network transparency, fragmentation transparency,
replication transparency, etc.

• Increase reliability and availability/
• Easier expansion
• Protection of valuable data and information.
• Improved performance.
• Less cost.

•Systems can be modified, added and removed from the

distributed database without affecting other modules.

• Reliable transactions.
• Distributed query processing can improve performance.

LITERATURE SURVEY

Most of the Indian tourists prefer travelling to their preferred destination via

road. It is due to the fact that a road trip allows you to enjoy the scenic beauty at

your own pace. Moreover, the comfort of travelling in a vehicle with your

family and friends is unparalleled. You can opt for online cab booking that will

make your journey hassle-free. In fact, cab booking is something which has

become a part of our everyday life. You can also opt for intercity car rentals in

order to visit other cities. The main problem arises in March 2020. Earlier

everything was normal, no one was worried about coming in contact with

anyone. Then after March 2020, corona started spreading all over the country.

Everyone was afraid to even go near anyone. So after the lockdown, people's

jobs started. In such a situation, those who do not have their own vehicle, they

use online cab booking to reach their destination. So because of this cab drivers

as well as riders are worried about getting infected with COVID-19. So we

made this application so that everyone is safe whether it is a rider or a driver.

Project Design

Flow of Android Ride Hailing app:

Let’s see all the screens that you need to design for your application.

Splash Screen: You need to keep your app title as “Welcome to App” and

then provide a button for the user to get started.

Sign In Screen: You need to build a screen where users can sign in from google.

You need to design a bottom navigation bar with five options: Home,

Search, Add Item, Notification, Profile.

Home: Here, you can find all your lost items and get an option to

send notifications to other users.

Search: You can search here if someone has your lost items with them.

Add Item: You can either add the lost item or the found item—someone

who recognizes your lost item and notifies the owner.

Notification: Here, all the notifications related to the items are seen.

Profile: Here, you can see your profile and log out from the application.

Android Ride Hailing App Project Prerequisites

To build the whole project, you need to have some knowledge
about the concepts in Android. We can list out some of the

important stuff which you need to know before you get started.

1. Android Studio and its tools
2. Android Notifications
3. Android Activities and its lifecycle
4. Android Fragments
5. Android Recycler View or List View
6. XML Layout designing
7. Object-Oriented Programming
8. Java or Kotlin Programming
9. Firebase Authentication(Google sign in) and Realtime Database
10. Libraries like Picasso and Circular Image Library.

Description of the Ride Hailing App project:

Now let’s see what all files you have in our project. Knowing

these files will help you gather more understanding of what we did

to build the project.

1.Manifest: The project’s activities, services, or receivers
declarations are present here. Even the app permissions are
defined in this file.

2.Main Activity: This is the first activity for your Find My
Thing Application.

3. Gradle File: All the libraries you use are declared here.
We mention the dependencies of such libraries here.

4.Firebase: It is used to set up the backend for Find My Thing

Application. You will use it to sign in from google and also to store

your data.

5.Resources: It has several sections like layouts, styles, colors,

and fonts. It helps us to keep images, design layouts and define

colors and styles.

6. Libraries: There are libraries like Picasso and Circular

Image Library, which are used to display images.

MANIFEST

Every app project must have an AndroidManifest.xml file (with precisely that name)
at the root of the project source set. The manifest file describes essential information
about your app to the Android build tools, the Android operating system, and
Google Play.

Among many other things, the manifest file is required to declare the following:

• The app's package name, which usually matches your code's namespace. The
Android build tools use this to determine the location of code entities when building
your project. When packaging the app, the build tools replace this value with the
application ID from the Gradle build files, which is used as the unique app
identifier on the system and on Google Play.

• Syntax:- <?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.example.myapp"

android:versionCode="1"

android:versionName="1.0" >

...

</manifest>

MainActivity

• Most apps contain multiple screens, which means they comprise
multiple activities. Typically, one activity in an app is specified as the
main activity, which is the first screen to appear when the user
launches the app. Each activity can then start another activity in order
to perform different actions. For example, the main activity in a simple
e-mail app may provide the screen that shows an e-mail inbox. From
there, the main activity might launch other activities that provide
screens for tasks like writing e-mails and opening individual e-mails.

• Although activities work together to form a cohesive user experience

in an app, each activity is only loosely bound to the other activities;
there are usually minimal dependencies among the activities in an app.
In fact, activities often start up activities belonging to other apps. For
example, a browser app might launch the Share activity of a social-
media app.

Gradle Files

The Android build system compiles app resources and source code,
and packages them into APKs or Android App Bundles that you can
test, deploy, sign, and distribute. Android Studio uses Gradle, an
advanced build toolkit, to automate and manage the build process, while
allowing you to define flexible custom build configurations. Each build
configuration can define its own set of code and resources, while
reusing the parts common to all versions of your app. The Android
plugin for Gradle works with the build toolkit to provide processes and
configurable settings that are specific to building and testing Android
applications.

Gradle and the Android plugin run independent of Android Studio.
This means that you can build your Android apps from within Android
Studio, the command line on your machine, or on machines where
Android Studio is not installed (such as continuous integration servers).
If you are not using Android Studio, you can learn how to build and run
your app from the command line. The output of the build is the same
whether you are building a project from the command line, on a remote
machine, or using Android Studio.

THE BUILD PROCESS OF GRADLES

The build process for a typical Android app module, as shown in figure 1,
follows these general steps:

1. The compilers convert your source code into DEX (Dalvik Executable) files,
which include the bytecode that runs on Android devices, and everything else
into compiled resources.

2. The packager combines the DEX files and compiled resources into an APK or
AAB, depending on the chosen build target. Before your app can be installed
onto an Android device or distributed to a store, such as Google Play, the APK or
AAB must be signed.

3. The packager signs your APK or AAB using either the debug or release keystore:

• If you are building a debug version of your app, that is, an app you intend only for
testing and profiling, the packager signs your app with the debug keystore.
Android Studio automatically configures new projects with a debug keystore.

• If you are building a release version of your app that you intend to release
externally, the packager signs your app with the release keystore that you need
to configure. To create a release keystore, read about signing your app in
Android Studio.

4. Before generating your final APK, the packager uses the zipalign tool to
optimize your app to use less memory when running on a device.
5. At the end of the build process, you have either a debug or release APK or AAB
of your app that you can use to deploy, test, or release to external users.

Firebase

• Firebase is a Backend-as-a-Service (Baas). It provides developers with
a variety of tools and services to help them develop quality apps, grow
their user base, and earn profit. It is built on Google’s infrastructure.

• Firebase is categorized as a NoSQL database program, which stores
data in JSON-like documents.

Key Features of Firebase

1. Authentication

• It supports authentication using passwords, phone numbers, Google, Facebook, Twitter,
and more. The Firebase Authentication (SDK) can be used to manually integrate one or
more sign-in methods into an app.

2. Realtime database

• Data is synced across all clients in realtime and remains available even when an app
goes offline.

• Firebase Hosting provides fast hosting for a web app; content is cached into content
delivery networks worldwide.

4. Test lab

• The application is tested on virtual and physical devices located in Google’s data centers.

5. Notifications

• Notifications can be sent with firebase with no additional coding.

• Users can get started with firebase for free; more details can be found on the official website.

Resources

• Resources are the additional files and static content that your code uses,
such as bitmaps, layout definitions, user interface strings, animation
instructions, and more.

• You should always externalize app resources such as images and strings
from your code, so that you can maintain them independently. You should
also provide alternative resources for specific device configurations, by
grouping them in specially-named resource directories. At runtime, Android
uses the appropriate resource based on the current configuration. For
example, you might want to provide a different UI layout depending on the
screen size or different strings depending on the language setting.

• Once you externalize your app resources, you can access them using
resource IDs that are generated in your project's R class. This document
shows you how to group your resources in your Android project and provide
alternative resources for specific device configurations, and then access them
from your app code or other XML files.

Library

• An Android library is structurally the same as an Android app module. It can include
everything needed to build an app, including source code, resource files, and an
Android manifest. However, instead of compiling into an APK that runs on a device,
an Android library compiles into an Android Archive (AAR) file that you can use as
a dependency for an Android app module. Unlike JAR files, AAR files offer the
following functionality for Android applications:

• AAR files can contain Android resources and a manifest file, which allows you to

bundle in shared resources like layouts and drawables in addition to Java classes
and methods.

• AAR files can contain C/C++ libraries for use by the app module's C/C++ code.
• A library module is useful in the following situations:

• When you're building multiple apps that use some of the same components, such

as activities, services, or UI layouts.
• When you're building an app that exists in multiple APK variations, such as a

free and paid version and you need the same core components in both.
• In either case, simply move the files you want to reuse into a library module then

add the library as a dependency for each app module. This page teaches you how to
do both.

SOURCE CODES

• LOGIN ACTIVITY

package com.dataflair.foundandlost.Activities;

import androidx.annotation.NonNull;

import androidx.annotation.Nullable;

import androidx.appcompat.app.AppCompatActivity;

import android.app.ProgressDialog;

import android.content.Intent;

import android.os.Bundle;

import android.view.View;

import com.dataflair.foundandlost.MainActivity;

import com.dataflair.foundandlost.R;

import com.google.android.gms.auth.api.signin.GoogleSignIn;

import com.google.android.gms.auth.api.signin.GoogleSignInAccount;

import com.google.android.gms.auth.api.signin.GoogleSignInClient;

import com.google.android.gms.auth.api.signin.GoogleSignInOptions;

import com.google.android.gms.common.SignInButton;

import com.google.android.gms.common.api.ApiException;

import com.google.android.gms.tasks.OnCompleteListener;

import com.google.android.gms.tasks.Task;

import com.google.firebase.auth.AuthCredential;

import com.google.firebase.auth.AuthResult;

import com.google.firebase.auth.FirebaseAuth;

import com.google.firebase.auth.GoogleAuthProvider;

import com.google.firebase.database.DatabaseReference;

import com.google.firebase.database.FirebaseDatabase;

import com.google.firebase.database.annotations.NotNull;

import java.util.HashMap;

public class LoginActivity extends AppCompatActivity {

GoogleSignInClient mSignInClient;

FirebaseAuth firebaseAuth;

ProgressDialog progressBar;

SignInButton signInButton;

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.activity_login);

createRequest();

//Firebase Authentication

firebaseAuth = FirebaseAuth.getInstance();

//Progress bar

progressBar = new ProgressDialog(this);

progressBar.setTitle("Please Wait...");

progressBar.setMessage("We are setting Everything for you...");

progressBar.setProgressStyle(ProgressDialog.STYLE_SPINNER);

signInButton = (SignInButton) findViewById(R.id.GoogleSignInBtn);

//Google signin options to use gmail login

GoogleSignInOptions signInOptions = new GoogleSignInOptions

.Builder(GoogleSignInOptions.DEFAULT_SIGN_IN)

.requestIdToken("284817088166-2jrga6sv4g0sgjna5hcpd1ic7jpju83s.apps.googleusercontent.com")

.requestEmail()

.build();

mSignInClient = GoogleSignIn.getClient(getApplicationContext(), signInOptions);

//implementing onclick listener to accesss all available gmail accounts

signInButton.setOnClickListener(new View.OnClickListener() {

@Override

public void onClick(View view) {

Intent intent = mSignInClient.getSignInIntent();

startActivityForResult(intent, 100);

}

});

}

private void createRequest() {

// Configure Google Sign In

GoogleSignInOptions gso = new GoogleSignInOptions.Builder(GoogleSignInOptions.DEFAULT_SIGN_IN)

.requestIdToken(getString(R.string.default_web_client_id))

.requestEmail()

.build();

GoogleSignInClient mGoogleSignInClient = GoogleSignIn.getClient(this, gso);

}

@Override

protected void onActivityResult(int requestCode, int resultCode, @Nullable Intent data)

{ super.onActivityResult(requestCode, resultCode, data);

if (requestCode == 100) {

Task<GoogleSignInAccount> googleSignInAccountTask = GoogleSignIn

.getSignedInAccountFromIntent(data);

if (googleSignInAccountTask.isSuccessful()) {

progressBar.show();

try {

GoogleSignInAccount googleSignInAccount = googleSignInAccountTask.getResult(ApiException.class);

if (googleSignInAccount != null) {

AuthCredential authCredential = GoogleAuthProvider

.getCredential(googleSignInAccount.getIdToken(), null);

firebaseAuth.signInWithCredential(authCredential).addOnCompleteListener(this, new OnCompleteListener<AuthResult>() {

@Override

public void onComplete(@NonNull Task<AuthResult> task) {

if (task.isSuccessful()) {

FirebaseDatabase database = FirebaseDatabase.getInstance();

DatabaseReference myRef = database.getReference().child("users");

//Hashmap to store the userdetails and setting it to fireabse

HashMap<String, Object> user_details = new HashMap<>();

//Accessing the user details from gmail

String id = googleSignInAccount.getId().toString();

String name = googleSignInAccount.getDisplayName().toString();

String mail = googleSignInAccount.getEmail().toString();

String pic = googleSignInAccount.getPhotoUrl().toString();

user_details.put("id", id);

user_details.put("name", name);

user_details.put("mail", mail);

user_details.put("profilepic", pic);

//updating the user details in firebase

myRef.child(id).updateChildren(user_details).addOnCompleteListener(new OnCompleteListener<Void>() {

@Override

public void onComplete(@NonNull @NotNull Task<Void> task) {

if (task.isSuccessful()) {

progressBar.cancel();

//navigating to the main activity after user successfully registers

Intent intent = new Intent(getApplicationContext(), MainActivity.class);

//Clears older activities and tasks

intent.addFlags(Intent.FLAG_ACTIVITY_NEW_TASK | Intent.FLAG_ACTIVITY_CLEAR_TASK);

startActivity(intent);

}}}}}}}

} catch (ApiException e) {

e.printStackTrace();

}}}}}

• Starting Activity

package com.dataflair.foundandlost.Activities;

import androidx.appcompat.app.AppCompatActivity;

import android.content.Intent;

import android.os.Bundle;

import android.view.View;

import android.widget.Button;

import com.dataflair.foundandlost.R;

public class StartingActivity extends AppCompatActivity {

Button getStartedBtn;

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.activity_starting);

//Button To navigate to next Activity

getStartedBtn = (Button) findViewById(R.id.GetStartedBtn);

//OnClick Implementation to navigate Between activities

getStartedBtn.setOnClickListener(new View.OnClickListener() {

@Override

public void onClick(View view) {

Intent intent = new Intent(getApplicationContext(), LoginActivity.class);

startActivity(intent);

}

});

}

}

 List of Figures

 Data Flow Diagram

LEVEL - 0

 LEVEL - 1

LEVEL - 2

REFERENCES

• Google Firebase Console: https://console.firebase.google.com/?pli=1
• JavaScript: https://www.tutorialspoint.com/java/index.htm
• Wiki: https://en.wikipedia.org/wiki/Main_Page
• Stack Overflow: https://stackoverflow.com/

https://console.firebase.google.com/?pli=1
https://www.tutorialspoint.com/java/index.htm
https://en.wikipedia.org/wiki/Main_Page
https://stackoverflow.com/

THANK YOU

