

A Project Report

on

Submitted in partial fulfillment of the

requirement for the award of the degree of

BTECH IN COMPUTER SCIENCE AND ENGINEERING SPECILIZATION IN CLOUD

COMPUTING AND VIRTULIZATION

Under The Supervision of Mr. Mukesh Kumar Jha

Submitted By

JAVED AHMAD

KHAN
(19SCSE1050005 / 19021050098)

SCHOOL OF COMPUTING SCIENCE AND ENGINEERING DEPARTMENT OF

COMPUTER SCIENCE AND ENGINEERING GALGOTIAS UNIVERSITY,

GREATER NOIDA

INDIA

Automatic License Number Plate Recognition using

Deep Learning

SCHOOL OF COMPUTING SCIENCE AND

ENGINEERING
GALGOTIAS UNIVERSITY, GREATER NOIDA

 CANDIDATE’S DECLARATION

I/We hereby certify that the work which is being presented in the thesis/project/dissertation, entitled

“Automatic License Number Plate Recognition using Deep Learning” in partial fulfillment of the

requirements for the award of the B.Tech CS Cloud Computing and Virtualization submitted in the

School of Computing Science and Engineering of Galgotias University, Greater Noida, is an original work

carried out during the period of month, Year to Month and Year, under the supervision of Name…

Designation, Department of Computer Science and Engineering/Computer Application and Information and

Science, of School of Computing Science and Engineering , Galgotias University, Greater Noida

The matter presented in the thesis/project/dissertation has not been submitted by me/us for the award of

any other degree of this or any other places.

 JAVED AHMAD KHAN/ 19SCSE1050005

This is to certify that the above statement made by the candidates is correct to the best of my

knowledge.

 Supervisor Name
 Designation

CERTIFICATE

The Final Thesis/Project/ Dissertation Viva-Voce examination of JAVED AHMAD KHAN

19SCSE1050005 has been held on _________________ and his work is recommended for the award of

B.Tech CS Cloud Computing and Virtualization

Signature of Examiner(s) Signature of Supervisor(s)

Signature of Project Coordinator Signature of Dean

Date: December, 2021

Place: Greater Noida

ABSTRACT

In this era of fast growing technologies, there is a huge demand

among the people for a secure lifestyle and travelling. In the past

decade, the number of vehicles on road has been increased.

Tracking of individual vehicle becomes a very challenging task

with the massive growth in the vehicular sector every day. This

paper suggests an automated vehicle tracking system for the fast

moving vehicles with the help of the surveillance cameras on the

roadside. The process of getting CCTV footage in the real time

background is very tedious process. To cater to this problem, an

efficient deep learning model such as You Only Look Once

(YOLO) is used for object detection. The proposed work consists

of four main steps. In the first step, video footage is converted

into images and the car is detected from each of the frames. In the

next step, license plate is detected from the detected cars. In the

final step, the number plate characters reading are recognized

from the detected number plates. The proposed deep learning

model uses ImageAI library to make the training process easier.

Tamil Nadu license plate images are used to analyse the

performance of the model. The accuracy of 97% is achieved for

car detection, accuracy of 98% is achieved for number plate

localization and accuracy of 90% achieved for character

recognition.

TABLE OF CONTENTS

ABSTRACT .. 2

LIST OF FIGURES.. 3

1. INTRODUCTION .. 5

1.1. Introduction ... 5

1.2. Problem Formulation ... 5

2. Requirements .. 6

2.1. Tools & Requirements ... 6

3. Literature Survey... 8

4. CONCLUSION ..15

References ..15

1. INTRODUCTION

1.1. INTRODUCTION

The drastic increase in the vehicular traffic on the roadways stimulates a

huge demand in the technology for traffic monitoring and management.

In this scenario, manual tracking of vehicles running fast on the road is
practically not feasible. There will be wastage of man power and time.

Even if it is operated manually, that will reflect huge difficulties and

enormous errors. There are already available solutions for tracking the
vehicles and number plates using machine learning algorithms. But in

real time, these algorithms literally fail due to its complexity for

processing in real time background. Hence there is an instantaneous
necessity to develop an automatic system that will help tracking the

vehicles by tracing their number plates in a most efficient way. In this

paper, two CNN models are used. Hence two datasets consisting of car
images and number plate images are required. For training the car

images, Stanford cars dataset from the internet is used. For number plate

images, customized dataset was created with the help of internet source
and by taking pictures of the cars around. Once the data is obtained, it

must be split into train and test images and annotated to the machine

readable form.

 Formulation of Problem

• To avoid the car theft

• To Prevent the uses of fake number plates on cars

• This can also be used to track any car from control center

• To fine a overspeeding or rash driving`

2. REQUIREMENTS

OpenCV is an open-source machine learning library and provides a common

infrastructure for computer vision. Whereas Pytesseract is a Tesseract-OCR Engine to

read image types and extract the information present in the image.

Install OpenCV and Pytesseract pip3 python package:

pip3 install opencv-python

pip3 install pytesseract

In this python project, to identify the number plate in the input image, we will use

following features of openCV:

 Gaussian Blur: Here we use a Gaussian kernel to smoothen the image. This technique

is highly effective to remove Gaussian noise. OpenCV provides a cv2.GaussianBlur()

function for this task.

 Sobel: Here we calculate the derivatives from the image. This feature is important for

many computer vision tasks. Using derivatives we calculate the gradients, and a high

change in gradient indicates a major change in the image. OpenCV provides a

cv2.Sobel() function to calculate Sobel operators.

 Morphological Transformation: These are the operations based on image shapes and

are performed on binary images. The basic morphological operations are Erosion,

Dilation, Opening, Closing. The different functions provided in OpenCV are:

 cv2.erode()

 cv2.dilate()

 cv2.morphologyEx()

 Contours: Contours are the curves containing all the continuous points of same

intensity. These are very useful tools for object recognition. OpenCV provides

cv2.findContours() functions for this feature.

Now, let’s dive into the number plate recognition code. Follow the steps below:

https://docs.opencv.org/trunk/d9/d61/tutorial_py_morphological_ops.html

1. Imports:

For this project we need numpy and pillow python libraries with openCV and pytesseract

import numpy as np

import cv2

from PIL import Image

import pytesseract as tess

2. Now we will define three functions, to find the unnecessary contours that openCV may

identify but it does not have probability of being a number plate.

2.1. The first function to check the area range and width-height ratio:

def ratioCheck(area, width, height):

ratio = float(width) / float(height)

if ratio < 1:

ratio = 1 / ratio

if (area < 1063.62 or area > 73862.5) or (ratio < 3 or ratio > 6):

return False

return True

2.2. The second function to check average of image matrix:

def isMaxWhite(plate):

avg = np.mean(plate)

if(avg>=115):

return True

else:

return False

2.3. The third function to check the rotation of contours:

def ratio_and_rotation(rect):

(x, y), (width, height), rect_angle = rect

if(width>height):

angle = -rect_angle

else:

angle = 90 + rect_angle

if angle>15:

return False

if height == 0 or width == 0:

return False

area = height*width

if not ratioCheck(area,width,height):

return False

else:

return True

3. Now we will write a function to clean the identified number plate for preprocessing

before feeding to pytesseract:

def clean2_plate(plate):

gray_img = cv2.cvtColor(plate, cv2.COLOR_BGR2GRAY)

_, thresh = cv2.threshold(gray_img, 110, 255, cv2.THRESH_BINARY)

if cv2.waitKey(0) & 0xff == ord('q'):

pass

num_contours,hierarchy = cv2.findContours(thresh.copy(),cv2.RETR_EXTERNAL,

cv2.CHAIN_APPROX_NONE)

if num_contours:

contour_area = [cv2.contourArea(c) for c in num_contours]

max_cntr_index = np.argmax(contour_area)

max_cnt = num_contours[max_cntr_index]

max_cntArea = contour_area[max_cntr_index]

x,y,w,h = cv2.boundingRect(max_cnt)

if not ratioCheck(max_cntArea,w,h):

return plate,None

final_img = thresh[y:y+h, x:x+w]

return final_img,[x,y,w,h]

else:

return plate, None

4. In this step, we will take an image input. We will perform Gaussian Blur, Sobel and

morphological operations. After we find contours in the image and loop through each

contour to identify the number plate. We will then clean the image contour and feed it to

pytesseract to recognize the number and characters.

img = cv2.imread("testData/sample15.jpg")

print("Number input image...",)

cv2.imshow("input",img)

if cv2.waitKey(0) & 0xff == ord('q'):

pass

img2 = cv2.GaussianBlur(img, (3,3), 0)

img2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)

img2 = cv2.Sobel(img2,cv2.CV_8U,1,0,ksize=3)

_,img2 = cv2.threshold(img2,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)

element = cv2.getStructuringElement(shape=cv2.MORPH_RECT, ksize=(17, 3))

morph_img_threshold = img2.copy()

cv2.morphologyEx(src=img2, op=cv2.MORPH_CLOSE, kernel=element,

dst=morph_img_threshold)

num_contours, hierarchy=

cv2.findContours(morph_img_threshold,mode=cv2.RETR_EXTERNAL,method=cv2.C

HAIN_APPROX_NONE)

cv2.drawContours(img2, num_contours, -1, (0,255,0), 1)

for i,cnt in enumerate(num_contours):

min_rect = cv2.minAreaRect(cnt)

if ratio_and_rotation(min_rect):

x,y,w,h = cv2.boundingRect(cnt)

plate_img = img[y:y+h,x:x+w]

print("Number identified number plate...")

cv2.imshow("num plate image",plate_img)

if cv2.waitKey(0) & 0xff == ord('q'):

pass

if(isMaxWhite(plate_img)):

clean_plate, rect = clean2_plate(plate_img)

if rect:

fg=0

x1,y1,w1,h1 = rect

x,y,w,h = x+x1,y+y1,w1,h1

cv2.imwrite("clena.png",clean_plate)

plate_im = Image.fromarray(clean_plate)

text = tess.image_to_string(plate_im, lang='eng')

print("Number Detected Plate Text : ",text)

Code for Project GUI

Make a new file gui.py

import tkinter as tk

from tkinter import filedialog

from tkinter import *

from PIL import ImageTk, Image

from tkinter import PhotoImage

import numpy as np

import cv2

import pytesseract as tess

def clean2_plate(plate):

gray_img = cv2.cvtColor(plate, cv2.COLOR_BGR2GRAY)

_, thresh = cv2.threshold(gray_img, 110, 255, cv2.THRESH_BINARY)

num_contours,hierarchy = cv2.findContours(thresh.copy(),cv2.RETR_EXTERNAL,

cv2.CHAIN_APPROX_NONE)

if num_contours:

contour_area = [cv2.contourArea(c) for c in num_contours]

max_cntr_index = np.argmax(contour_area)

max_cnt = num_contours[max_cntr_index]

max_cntArea = contour_area[max_cntr_index]

x,y,w,h = cv2.boundingRect(max_cnt)

if not ratioCheck(max_cntArea,w,h):

return plate,None

final_img = thresh[y:y+h, x:x+w]

return final_img,[x,y,w,h]

else:

return plate,None

def ratioCheck(area, width, height):

ratio = float(width) / float(height)

if ratio < 1:

ratio = 1 / ratio

if (area < 1063.62 or area > 73862.5) or (ratio < 3 or ratio > 6):

return False

return True

def isMaxWhite(plate):

avg = np.mean(plate)

if(avg>=115):

return True

else:

return False

def ratio_and_rotation(rect):

(x, y), (width, height), rect_angle = rect

if(width>height):

angle = -rect_angle

else:

angle = 90 + rect_angle

if angle>15:

return False

if height == 0 or width == 0:

return False

area = height*width

if not ratioCheck(area,width,height):

return False

else:

return True

top=tk.Tk()

top.geometry('900x700')

top.title('Number Plate Recognition')

top.iconphoto(True, PhotoImage(file="/home/shivam/Dataflair/Keras

Projects_CIFAR/GUI/logo.png"))

img = ImageTk.PhotoImage(Image.open("logo.png"))

top.configure(background='#CDCDCD')

label=Label(top,background='#CDCDCD', font=('arial',35,'bold'))

label.grid(row=0,column=1)

sign_image = Label(top,bd=10)

plate_image=Label(top,bd=10)

def classify(file_path):

res_text=[0]

res_img=[0]

img = cv2.imread(file_path)

img2 = cv2.GaussianBlur(img, (3,3), 0)

img2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)

img2 = cv2.Sobel(img2,cv2.CV_8U,1,0,ksize=3)

_,img2 = cv2.threshold(img2,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)

element = cv2.getStructuringElement(shape=cv2.MORPH_RECT, ksize=(17, 3))

morph_img_threshold = img2.copy()

cv2.morphologyEx(src=img2, op=cv2.MORPH_CLOSE, kernel=element,

dst=morph_img_threshold)

num_contours, hierarchy=

cv2.findContours(morph_img_threshold,mode=cv2.RETR_EXTERNAL,method=cv2.C

HAIN_APPROX_NONE)

cv2.drawContours(img2, num_contours, -1, (0,255,0), 1)

for i,cnt in enumerate(num_contours):

min_rect = cv2.minAreaRect(cnt)

if ratio_and_rotation(min_rect):

x,y,w,h = cv2.boundingRect(cnt)

plate_img = img[y:y+h,x:x+w]

print("Number identified number plate...")

res_img[0]=plate_img

cv2.imwrite("result.png",plate_img)

if(isMaxWhite(plate_img)):

clean_plate, rect = clean2_plate(plate_img)

if rect:

fg=0

x1,y1,w1,h1 = rect

x,y,w,h = x+x1,y+y1,w1,h1

plate_im = Image.fromarray(clean_plate)

text = tess.image_to_string(plate_im, lang='eng')

res_text[0]=text

if text:

break

label.configure(foreground='#011638', text=res_text[0])

uploaded=Image.open("result.png")

im=ImageTk.PhotoImage(uploaded)

plate_image.configure(image=im)

plate_image.image=im

plate_image.pack()

plate_image.place(x=560,y=320)

def show_classify_button(file_path):

classify_b=Button(top,text="Classify Image",command=lambda:

classify(file_path),padx=10,pady=5)

classify_b.configure(background='#364156', foreground='white',font=('arial',15,'bold'))

classify_b.place(x=490,y=550)

def upload_image():

try:

file_path=filedialog.askopenfilename()

uploaded=Image.open(file_path)

uploaded.thumbnail(((top.winfo_width()/2.25),(top.winfo_height()/2.25)))

im=ImageTk.PhotoImage(uploaded)

sign_image.configure(image=im)

sign_image.image=im

label.configure(text='')

show_classify_button(file_path)

except:

pass

upload=Button(top,text="Upload an image",command=upload_image,padx=10,pady=5)

upload.configure(background='#364156', foreground='white',font=('arial',15,'bold'))

upload.pack()

upload.place(x=210,y=550)

sign_image.pack()

sign_image.place(x=70,y=200)

label.pack()

label.place(x=500,y=220)

heading = Label(top,image=img)

heading.configure(background='#CDCDCD',foreground='#364156')

heading.pack()

top.mainloop()

2.1. Tool and Technology Used

 Programming Languages

• Python3

• JavaScript

 IDE

• Google colab

• Jupyter Notebook

• Visual Studio Code

 Cloud Services

• Google Cloud Platform

 Version Control

• Git

 Programming Frameworks

• PyTorch

• Django

 SYSTEM REQUIREMENT

 An Nvidia GPU with at least 2 GB of RAM (FakeApp doesn't support AMD

atm)

 An i3 or AMD 9 processor

 8 GB of RAM/12 GB RAM (if we want better performance)

 20 GB of free hard drive space

 SUPPORTED OPERATING SYSTEM

• Windows 10 Windows 7 and 8 might work. Your milage may vary

• Linux Most Ubuntu/Debian or CentOS based Linux distributions will

work.

• MacOS GPU support on macOS is limited due to lack of drivers/libraries

from Nvidia.

 HARDWARE REQUIREMENTS

 A POWERFUL CPU

• Laptop CPUs can often run the software, but will not be fast

enough to train at reasonable speeds

 A POWERFUL GPU

• Currently only Nvidia GPUs are supported. AMD graphics cards

are not supported. This is not something that we have control over.

It is a requirement of the Tensorflow library.

• The GPU needs to support at least CUDA Compute Capability 3.0

or higher.

3. LITERATURE SURVEY

The automatic license plate recognition system proposed in this research has

several limitations. Most major being that the state information position is
assumed to be at top part of license plate. Though most of the plates consists

of state information at the upper part of license plate, the proposed system will

not be able to recognize the state information if the position of state
information is changed. Inclusion of recognizing unwanted symbols improves

the accuracy of the system. Future work includes localization and detection of

state information [43]. It also might locate and detect the license number from
the license plate. Future work also includes implementation of license plate

segmentation using deep learning techniques, expected to have good accuracy

4. Conclusion

In this article, we have developed a deep learning project to recognize license

number plate. We discussed some important features of openCV like
Gaussian blur, Sobel operators, Morphological transformations. The

application detects number plate text from an image. We have identified and

cleaned the number plate using openCV.

	CANDIDATE’S DECLARATION
	2. REQUIREMENTS
	Install OpenCV and Pytesseract pip3 python package:
	Code for Project GUI

