A Project Report

on

PREDICTIVE SYSTEM ON THE CAR MARKET TREND

Submitted in partial fulfillment of the requirement for the award of the degree of

Bachelor of Technology in Computer Science and

Engineering

(Established under Galgotias University Uttar Pradesh Act No. 14 of 2011)

Under The Supervision of Ms. Pushpa Singh Assistant Professor Department of Computer Science and Engineering

Submitted By

20SCSE1180088 – ANSH SHANKAR 20SCSE1180139 – DHRUV VARSHNEY

SCHOOL OF COMPUTING SCIENCE AND ENGINEERING DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING / DEPARTMENT OF COMPUTERAPPLICATION GALGOTIAS UNIVERSITY, GREATER NOIDA INDIA DECEMBER – 2021

SCHOOL OF COMPUTING SCIENCE AND ENGINEERING GALGOTIAS UNIVERSITY, GREATER NOIDA

CANDIDATE'S DECLARATION

We hereby certify that the work which is being presented in the project, entitled "PREDICTIVE SYSTEM ON THE CAR MARKET TREND" in partial fulfillment of the requirements for the award of the BACHELOR OF TECHNOLOGY IN COMPUTER SCIENCE AND ENGINEERING submitted in the School of Computing Science and Engineering of Galgotias University, Greater Noida, is an original work carried out during the period of JULY-2021 to DECEMBER-2021, under the supervision of Ms. Pushpa Singh, Assistant Professor, Department of Computer Science and Engineering of School of Computing Science and Engineering, Galgotias University, Greater Noida

The matter presented in the project has not been submitted by me/us for the award of any other degree of this or any other places.

20SCSE1180088 – ANSH SHANKAR

20SCSE1180139 – DHRUV VARSHNEY

This is to certify that the above statement made by the candidates is correct to the best of my knowledge.

Supervisor

(Ms. Pushpa Singh, Assistant Professor)

CERTIFICATE

The Final Thesis/Project/ Dissertation Viva-Voce examination of 20SCSE1180088 – ANSH SHANKAR, 20SCSE1180139 – DHRUV VARSHNEY has been held on _______ and his/her work is recommended for the award of BACHELOR OF TECHNOLOGY IN COMPUTER SCIENCE AND ENGINEERING

Signature of Examiner(s)

Signature of Supervisor(s)

Signature of Project Coordinator

Signature of Dean

Date: December, 2021

Place: Greater Noida

Abstract

Automobile Manufacturing is one of the most sophisticated sets of processes in the World. And for the automobile to be Successful in the market, it requires an extensive amount of work to be done in the field of Market Analysis. This is an area of major concern for companies.

So, we decided to use a Machine Learning model that would predict based on the history of the Cars Manufactured in India. We analyzed the trend of Market demand and build a predictive model that would predict that whether a car would be successful in the market or not. Many other factors could be predicted using the analysis such as which car colour and type of car should the manufacturer build to maximize sales. There is also a "User Section", wherein the customer can check if the car is value for money, or wait for a more suitable car to be available in the market, which can also predict the price of a new car based on the brand name and other features.

Here we have used a Linear Regression technique to build a Machine Learning model. This model is trained on multiple datasets collected from different sources which are then analyzed and processed to obtain desired results. Thus this project is a very handy tool for both manufacturers and customers.

Since this business of car manufacturing is unceasing, hence the process of data generation is also never-ending. This project's accuracy will get better with time as more data is available.

List of Figures

Figure No.	Figure Name	Page Number
1	Figure1: Source datasets 1	10
2	Figure2: Source datasets 2	10
3	Figure3: Source datasets 3	
4	Figure4: Source datasets 4	
5	Figure5: Source datasets 5	
6	Figure6: Source datasets 6	
7	Figure7: Model Diagram	12
8	Figure 8: Libraries Used in the Project	13
9	Figure 9: Training the Model with Lasso Regression	14
10	Figure 10: Training the Model with Linear Regression	14
11	Figure 11: Importing the Datasets	15
12	Figure 12: Exploring datasets from different sources	16
13	Figure 13: Exploring datasets from different sources	16
14	Figure 14: Selected Attributes for our model	17
15	Figure 15: Splitting the Year columns	18
16	Figure 16: Splitting the Car Name column	18
17	Figure 17: Deleting the columns which are not required	18
18	Figure 18: Deleting the columns which are not required	19
19	Figure 19: Sample Final Dataset made	19
20	Figure 20: Renaming the df7 column	19
21	Figure 21: Renaming the df6 column	19
22	Figure 22: Operations on df4	20
23	Figure 23: Encoding Categorical value by Manual Method	21
24	Figure 24: Encoding Categorical value by LabelEncoder() function.	21
25	Figure 25: Train- Test Split.	22
26	Figure 26: Result of Linear Regression on Training Data	23

27	Figure 27: Result of Linear Regression on Testing Data	24
28	Figure 28: Result of Lasso Regression on Training Data	25
29	Figure 29: Result of Lasso Regression on Testing Data	25

Acronyms

B.Tech.	Bachelor of Technology
SCSE	School of Computing Science and Engineering
MPC	Model Predictive Control
FV	Follower Vehicle

Table of Contents

Title		Page No.
Abstract		4
List of Figures		5
Table of Contents		7
Chapter 1	Introduction	9
	1.1 Introduction	9
	1.2 Formulation of Problem	9
	1.3 Tool and Technology Used	9
Chapter 2	Literature Survey	10
Chapter 3	Dataset	13
Chapter 4	Linear Regression	17
Chapter 5	Project/Model Design	18
Chapter 6	Module Description	19
Chapter 7	Results	30 p
Chapter 8	Conclusion	33
References		34
Research Paper		35
About the Conference		42
Acceptance		43

CHAPTER-1 Introduction

Automobile Manufacturing is one of the most painful process for the car Manufactures in terms of both labour and financial. But if automobile is not well received in the market, the pain and the treasure is lost. For example, for production of new car the company has to setup whole production unit along with its lifeline i.e. Workers. But what if its sales are low or what if the car doesn't match the standards of the population for which the car is manufactured, the whole ecosystem and the hard work goes to vain.

So we decided to come up with a model that would be a boon to this type situation. We have collected automobiles dataset of different companies from different sources, analyzed and processed it to obtain the information, upon which our machine learning model is trained. The model is based on Linear Regression technique. The manufacturer could extract from it which type of car to be manufactured, what would be the most prominent colour, what would be transmission type, fuel type, etc.

Apart this there is a "Customer Section", wherein customer can check if the car present in the market is value for money or not. Weather he/she is buying the car at the perfect price or not, or weather if he should wait for some more exciting deal.

The Whole Project is divided into the 5 parts :-

- Data Collection
- Data understanding and exploration
- Data cleaning
- Data preparation
- Model building and evaluation

CHAPTER-2 Literature survey

[1] discussed that a predictive system for car fuel consumption using a back-propagation neural network is proposed in this paper. The suggested system has three components: an information gathering system, a fuel consumption forecasting algorithm, and a performance assessment system. Although there are many factors that influence a car's fuel consumption in a practical drive procedure, the impact factors for fuel consumption in the current system are simply determined as the make of the car, engine style, vehicle type, weight of the car, and transmission system type. An artificial neural network with back-propagation neural network has a learning capability for automobile fuel consumption prediction to test the effect of the proposed predictive system in the fuel consumption forecasting. The results of the prediction showed that the proposed neural network system is successful in predicting fuel consumption and that its performance is adequate..

[2] discussed that A high-interest study topic has been automobile price prediction, as it necessitates significant effort and expertise on the part of the field expert. For a trustworthy and accurate forecast, a large number of unique attributes are considered. They utilised three machine learning approaches to create a model for forecasting the price of secondhand automobiles in Bosnia and Herzegovina (Artificial Neural Network, Support Vector Machine and Random Forest). However, the approaches suggested were used in a group setting.

[3] discussed that Their study looks at how sentiment analysis and Google trends data may be used to anticipate automobile sales. Previous study has proven the utility of both approaches for sales forecasting, but the findings of current research for forecasting the sales of high-involvement items such as vehicles are more equivocal. In this study, linear regression models are used to evaluate over 500,000 social media postings for eleven automobile models on the Dutch market. In addition, the results of this study are compared to the prediction capacity of Google Trends. The findings reveal that while social media emotions have limited predictive value when it comes to automobile sales, Google Trends data and social mention volume show substantial results and may be combined into a useful prediction model. The automotive industry may utilise decision tree regression to build a prediction model with temporal delays that can be employed in addition to standard forecasting approaches.

[4] discussed that because of its safety and operational efficiency, automobile following control is critical. This study uses a linear and continuous model of automobile following for this goal, as well as a Model Predictive Control (MPC) controller. This form of control has the capacity to cope with control limitations, which is a significant benefit. We hired this sort of controller in this study to deal with these restrictions since safety and operational efficiency are constraints for automobile following. The MPC predicts the future behaviour of the leader vehicle (LV) based on the relative distance and relative

acceleration of each instant, and the acceleration of the follower vehicle (FV) is regulated based on this behaviour. The MPC aims to keep the relative distance within a safe range by controlling the acceleration. The outcome of the system is compared to the behaviour of real drivers with comparable beginning conditions to evaluate the performance of the developed controller. The simulation findings demonstrate that the MPC controller behaves considerably more safely than real drivers and can give passengers with a pleasant ride.

[5] discussed that Because in order to stay successful in a competitive market, a leasing firm must provide a competitive lease price. It is important to forecast the future price of a used automobile in order to establish the correct pricing. The lease price might be set to meet the car's value degradation if the depreciation is known. Multiple linear regression analysis is a frequently used method for price prediction. However, there are several elements that influence the pricing, making this critical duty difficult. For high-dimensional data, the conventional regression technique may not be appropriate. Support Vector Regression, a contemporary data mining approach that is independent of input dimension, will be used to solve this possible problem. The accuracy of the predictions will next be compared to the statistical regression model. In specifically, using principles from the field of evolutionary search, a fully automated technique for adjusting and implementing SVR is created. The entire machine learning experiment is based on real-world data from a major German automobile manufacturer.

[6] discussed that for long-term forecasting of automobile ownership, an econometric technique is developed. It is compared to other well-known techniques. It is based on estimates of the percentage of family income spent on automobile purchases, as well as an analysis of car pricing and stock. The technique provides a reasonable approximation of previous levels of automobile ownership in the United Kingdom, as well as a prediction that is comparable to Tanner's for the next 15 years. However, Mogridge forecasts a higher saturation level and, as a result, a larger eventual automobile population in the future.

[7] discussed that a design support system is developed in this work that can be integrated into the car side silhouette design tools and can estimate the drag coefficient of a given silhouette. This task is typically performed via two manners: namely wind tunnel testing and computational fluid dynamics (CFD) simulations. Due to the high computational cost for these two approaches, it is impractical to employ them during the silhouette conceptual design stage in a real time. Therefore, a mathematical model is obtained in this study for the drag coefficient estimation of a given silhouette. First, the desired number of silhouettes are generated via a generative design (silhouette sampling) technique so that the silhouettes are evenly distributed in the silhouette design space. Each silhouette is then tested via computational fluid dynamics simulations, and their corresponding drag coefficients (CDs) are obtained. A training dataset is formed with the silhouette geometries and CDs of the silhouettes, and a mathematical model that can estimate the drag coefficient (CD) of a silhouette is finally obtained via principal component analysis (PCA) followed by regression/neural network methods. These three steps are repeated until a desired level of reliable mathematical model is obtained. Finally, three generative design test cases are illustrated based on the mathematical model obtained to predict CD of a given silhouette.

CHAPTER-3 Data Set

A data set (or data set) is a collection of interrelated data, usually presented in tabular form. Each variable's details are stored in columns and each row represents the corresponding record. The dataset can contain data for one or more items, depending on the number of rows. Each entity is called DATUM.

For example, in our dataset we had Manufacturer name, Model, Vehicle type, Sale number, Fuel type as our columns, which basically represents our variable's detail. and each record/data is accommodated in the single row.

For this project, we had employed datasets from many different sources and many different authors, analyzed it, processed it into a single dataset upon which our model is trained.

Manufact	Model	Sales_in_t	_year_re	Vehicle_t	Price_in_t	Engine_si	z Horsepow	Wheelbas	Width	Length	Curb_weig Fu	el_capa	Fuel_effic	Latest_La	Power_perf_factor
Acura	Integra	16.919	16.36	Passenger	21.5	1.8	3 140	101.2	67.3	172.4	2.639	13.2	28	******	58.28015
Acura	TL	39.384	19.875	Passenger	28.4	3.2	2 225	108.1	70.3	192.9	3.517	17.2	25	******	91.37078
Acura	CL	14.114	18.225	Passenger		3.2	2 225	106.9	70.6	192	3.47	17.2	26	******	
Acura	RL	8.588	29.725	Passenger	42	3.5	5 210	114.6	71.4	196.6	3.85	18	22	*******	91.38978
Audi	A4	20.397	22.255	Passenger	23.99	1.8	3 150	102.6	68.2	178	2.998	16.4	27	******	62.77764
Audi	A6	18.78	23.555	Passenger	33.95	2.8	3 200	108.7	76.1	192	3.561	18.5	22	******	84.56511
Audi	A8	1.38	39	Passenger	62	4.2	310	113	74	198.2	3.902	23.7	21	2/27/2012	134.6569
BMW	323i	19.747		Passenger	26.99	2.5	5 170	107.3	68.4	176	3.179	16.6	26	6/28/2011	71.19121
BMW	328i	9.231	28.675	Passenger	33.4	2.8	3 193	107.3	68.5	176	3.197	16.6	24	1/29/2012	81.87707
BMW	528i	17.527	36.125	Passenger	38.9	2.8	3 193	111.4	70.9	188	3.472	18.5	25	******	83.99872
Buick	Century	91.561	12.475	Passenger	21.975	3.1	175	109	72.7	194.6	3.368	17.5	25	*******	71.18145
Buick	Regal	39.35	13.74	Passenger	25.3	3.8	3 240	109	72.7	196.2	3.543	17.5	23	******	95.6367
Buick	Park Aven	27.851	20.19	Passenger	31.965	3.8	3 205	113.8	74.7	206.8	3.778	18.5	24	3/23/2012	85.82841
Buick	LeSabre	83.257	13.36	Passenger	27.885	3.8	3 205	112.2	73.5	200	3.591	17.5	25	7/23/2011	84.25453
Cadillac	DeVille	63.729	22.525	Passenger	39.895	4.6	5 275	115.3	74.5	207.2	3.978	18.5	22	2/23/2012	113.8546
Cadillac	Seville	15.943	27.1	Passenger	44.475	4.6	5 275	112.2	75	201		18.5	22	4/29/2011	115.6214
Cadillac	Eldorado	6.536	25.725	Passenger	39.665	4.6	5 275	108	75.5	200.6	3.843	19	22	11/27/201	113.7659
Cadillac	Catera	11.185	18.225	Passenger	31.01	3	3 200	107.4	70.3	194.8	3.77	18	22	9/28/2011	83.48309
Cadillac	Escalade	14.785		Car	46.225	5.7	255	117.5	77	201.2	5.572	30	15	4/17/2012	109.5091

Figure 1: Source datasets 1

Make	Model	Variant	Ex-Showro	Displacem	Cylinders	Valves_P	e Drivetrain	Cylinder_	(Emission	Engine	o Fuel_Sy	ste Fuel_Tan	k Fuel_Type	e Height	Length	Width	Body_Type	Doors	City_Milea Highway_
0 Tata	Nano Gen	Xt	Rs. 2,92,6	624 cc	2		2 RWD (Rea	In-line	BSIV	Rear, Tr	an Injectio	n 24litres	Petrol	1652 mm	3164 mm	1750 mm	Hatchback	(5 ?23.6 km/litre
1 Tata	Nano Gen	Xe	Rs. 2,36,4	624 cc	2		2 RWD (Rea	In-line	BSIV	Rear, Tr	an Injectio	n 24litres	Petrol	1652 mm	3164 mm	1750 mm	Hatchback	(5 ?23.6 km/litre
2 Tata	Nano Gen	Emax Xm	Rs. 2,96,6	624 cc	2		2 RWD (Rea	In-line	BSIV	Rear, Tr	an Injectio	n 15 litres	CNG	1652 mm	3164 mm	1750 mm	Hatchback	(
3 Tata	Nano Gen	Xta	Rs. 3,34,7	624 cc	2		2 RWD (Rea	In∙line	BSIV	Rear, Tr	an Injectio	n 24litres	Petrol	1652 mm	3164 mm	1750 mm	Hatchback	(5 ?23.6 km/litre
4 Tata	Nano Gen	Xm	Rs. 2,72,2	624 cc	2		2 RWD (Rea	In-line	BSIV	Rear, Tr	an Injectio	n 24litres	Petrol	1652 mm	3164 mm	1750 mm	Hatchback	(5 ?23.6 km/litre
5 Tata	Nano Gen	Xma	Rs. 3,14,8	1624 cc	2		2 RWD (Rea	In∙line	BSIV	Rear, Tr	an Injectio	n 24litres	Petrol	1652 mm	3164 mm	1750 mm	Hatchback	(5 ?23.6 km/litre
6 Datsun	Redi-Go	D	Rs. 2,79,6	799 cc	3		4 FWD (From	In-line	BSIV	Front, Ti	ar Injectio	n 28 litres	Petrol	1541 mm	3429 mm	1560 mm	Hatchback	(5 21.38 km/ ¹ 24 km/litr
7 Datsun	Redi-Go	Ī	Rs. 3,51,8	799 cc	3		4 FWD (From	In-line	BSIV	Front, Ti	ar Injectio	n 28 litres	Petrol	1541 mm	3429 mm	1560 mm	Hatchback	(5 21.38 km/ ¹ 24 km/litr
O atom	0.10.	1	0. 111/		1			le l'as	0011	foot I	dine.	. 10 l'a	Datas]	1011	1/10	100	البللبيا		11 10 Jul 10 Jul

Figure 2: Source datasets 2

	Car_Name	Year	Selling_Price	Present_Price	Kms_Driven	Fuel_Type	Seller_Type	Transmission	Owner
0	ritz	2014	3.35	5.59	27000	Petrol	Dealer	Manual	0
1	sx4	2013	4.75	9.54	43000	Diesel	Dealer	Manual	0
2	ciaz	2017	7.25	9.85	6900	Petrol	Dealer	Manual	0
3	wagon r	2011	2.85	4.15	5200	Petrol	Dealer	Manual	0
4	swift	2014	4.60	6.87	42450	Diesel	Dealer	Manual	0

Figure 3: Source datasets 3

0	0	Tata	Nano Genx	Xt	Rs. 2,92,667	624 cc	2.0	2.0	RWD (Rear Wheel Drive)	In-line
1	1	Tata	Nano Genx	Xe	Rs. 2,36,447	624 cc	2.0	2.0	RWD (Rear Wheel Drive)	In-line
2	2	Tata	Nano Genx	Emax Xm	Rs. 2,96,661	624 cc	2.0	2.0	RWD (Rear Wheel Drive)	In-line
3	3	Tata	Nano Genx	Xta	Rs. 3,34,768	624 cc	2.0	2.0	RWD (Rear Wheel Drive)	In-line
4	4	Tata	Nano Genx	Xm	Rs. 2,72,223	624 cc	2.0	2.0	RWD (Rear Wheel Drive)	In-line

Figure 4: Source datasets 4

	Distance(km)	Fuel Type	Location	Manufacturing Year	Price in INR	Make	Model
0	48200.0	Diesel	NaN	2016.0	3200000.0	Audi	Q3 35 TDI Technology
1	55310.0	Diesel	Mumbai	2013.0	245000.0	Audi	Q3 2.0 TDI quattro
2	30120.0	Diesel	Nadia	2013.0	255000.0	Audi	Q3 2.0 TDI quattro
3	98000.0	Diesel	New Delhi	2011.0	249900.0	Audi	A8 L- 2013 3.0 TDI quattro
4	42000.0	Diesel	New Delhi	2009.0	220000.0	Audi	A8 (2003 - 2010) 3.0 TDi

Figure 5: Source datasets 5

0	0	Maruti Wagon R LXI CNG	Maruti	Mumbai	2010	72000	CNG	Manual	First	998	58.16	5	26.60	1.75
1	1	Hyundai Creta 1.6 CRDi SX Option	Hyundai	Pune	2015	41000	Diesel	Manual	First	1582	126.20	5	19.67	12.50
2	2	Honda Jazz V	Honda	Chennai	2011	46000	Petrol	Manual	First	1199	88.70	5	18.20	4.50
3	3	Maruti Ertiga VDI	Maruti	Chennai	2012	87000	Diesel	Manual	First	1248	88.76	7	20.77	6.00
4	4	Audi A4 New 2.0 TDI Multitronic	Audi	Coimbatore	2013	40670	Diesel	Automatic	Second	1968	140.80	5	15.20	17.74

Figure 6: Source datasets 6

CHAPTER-4 Linear Regression

Linear Regression, a field of Statistics, is a Linear Approach for modeling the relationship between the Input and Output Variables. This is a widely used Concept of Machine Learning yet simple and effective. In this the relationship are modeled using a linear predictor function and Line of Best Fit is then generated. This line is then used to predict the output/unknown parameter.

There are two types of Linear Regression Technique:-

- 1. Simple Linear Regression
- 2. Multiple Linear Regression

In **Simple Linear Regression**, we find the relationship between a single independent variable (input) and a corresponding dependent variable (output). This can be expressed in the form of a straight line, also called line of Best Fit.

The Equation of Simple Linear regression is :

Y represents the Output/Dependent Variable.

B0 & B1 represents the intercept and slope coefficient respectively

C represents the Error term.

In **Multiple Linear Regression**, we find the relationship between 2 or more independent variables (inputs) and the corresponding dependent variable (output) as per the best fit. The independent variables can be continuous or categorical depending on the user's need.

The Equation of Mutiple Linear regression is :

 $Y = B0 + B1X1 + B2X2 + B3X3 + \dots + C$

Y represents the Output/Dependent Variable. B0, B1 represents slope coefficient respectively X1,X2 represents Predictor Variable C represents the Error term.

CHAPTER-5 Model Design

Figure 7: Model Design

CHAPTER-6 Module Description

In the Project, to train my model I am using two Regression Models, the Linear Regression model and the Lasso Regression Model, which are part of the linear model of the sklearn library. The other libraries used in the project are pandas, NumPy, Matplotlib, Seaborn, and metrics and preprocessing from sklearn. Now let's see each of these libraries one by one:-

NumPy is a Python library used for operating with multi-dimensional arrays. It additionally has capabilities for operating in the area of linear algebra, Fourier transform, and matrices.

Pandas is a software program library written for the Python programming language for statistics manipulation and analysis. In particular, it gives statistics systems and operations for manipulating numerical tables and time series.

Seaborn is a remarkable visualization library for statistical picture plotting in Python. It gives stunning default patterns and color palettes to make statistical plots more attractive. It is constructed at the pinnacle of the Matplotlib library and additionally intently included in the data structures from pandas. Seaborn targets to make visualization the principal component of exploring and know-how statistics.

```
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.linear_model import Lasso
from sklearn import metrics
from sklearn import preprocessing
```

Figure 8 : Libraries Used in the Project

Matplotlib is a popular visualization library in Python for 2D plots of arrays. Matplotlib is a multi-platform statistics visualization library constructed on NumPy arrays.

Lasso stands for Least Absolute Shrinkage and Selection Operator. It is a type of Linear Regression Model that shrinks the data value towards a central point like mean.

2. Lasso Regression

```
lasso_reg_model=Lasso()
```

```
lasso_reg_model.fit(X_train,Y_train)
```

Lasso()

Model Training

```
# Prediction of Training Data
training_data_prediction=lasso_reg_model.predict(X_train)
```

```
# R square Error
error_score= metrics.r2_score(Y_train, training_data_prediction)
print("R square error ", error_score)
```

```
R square error 0.17130651180690104
```

Figure 9 : Training the Model with Lasso Regression

1. Linear Regression

```
lin_reg_model=LinearRegression()
```

lin_reg_model.fit(X_train,Y_train)

```
LinearRegression()
```

Model Evaluation

```
# Prediction of Training Data
training_data_prediction=lin_reg_model.predict(X_train)
```

```
# R square Error
error_score= metrics.r2_score(Y_train, training_data_prediction)
print("R square error ", error_score)
```

R square error 0.17130651180824064

Figure 10 : Training the Model with Linear Regression

Here in the above pictures of code, we first initialized the model into the respective variable which is named lasso_reg_model and lin_reg_model. We then fit the training input and output into the data. After the model is trained (i.e fitted) with the training data, it's time to evaluate the model. First, we evaluate the model with the training data and then with the test data. To assess our model for accuracy, we find the R² error of the model. In a regression model, the R2 score also called the coefficient of determination is the statistical measure of the accuracy of the model that shows how much variance in a dependent variable is explained by the independent variable(s).

Exploratory Analysis

Now coming to the data preprocessing step of our Project, as earlier mentioned that in our project we had taken datasets from multiple sources so integrating them into a single entity was one of the most painful and time-consuming steps of the project. Here, we analyzed all the different aspects that could be considered so that our model could predict with greater accuracy.

Importing all datasets

```
df1=pd.read_csv("Datasets/Car_sales.csv")
```

```
df2=pd.read_csv("Datasets/car data.csv")
```

```
df3=pd.read_csv("Datasets/CAR DETAILS FROM CAR DEKHO.csv")
```

```
df4=pd.read_csv("Datasets/Car details v3.csv")
```

```
df5=pd.read_csv("Datasets/cars_ds_final.csv")
```

```
df6=pd.read_csv("Datasets/cars_ds_final_2021.csv")
```

```
df7=pd.read_csv("Datasets/datasets3.csv")
```

```
df8=pd.read_csv("Datasets/indian-auto-mpg.csv")
```

Figure 11 : Importing the Datasets

Now Exploring each dataset

```
In [10]: df1.head(10)
```

	Manufacture	r Mode	Sales_in_	thousands	year_resale_valu	ie Vehicle	type Price	In thousands	Engine_size	Horsepower	Wheelbase	Width	Length	CL
0	Acur	a Integra		16.919	16.36	0 Pass	enger	21.50	1.8	140.0	101.2	67.3	172.4	
1	Acur	a Tl		39.384	19.87	5 Pass	enger	28.40	3.2	225.0	108.1	70.3	192.9	
2	Acur	a Cl		14.114	18.22	5 Pass	enger	NaN	3.2	225.0	106.9	70.6	192.0	
3	Acur	a RL		8.588	29.72	5 Pass	enger	42.00	3.5	210.0	114.6	71.4	196.6	
4	Au	i M		20.397	22.25	6 Pass	enger	23.99	1.8	150.0	102.6	68.2	178.0	
5	Au	ii Aê		18.780	23.55	6 Pass	enger	33.95	2.8	200.0	108.7	76.1	192.0	
6	Au	ii Al		1.380	39.00	0 Pass	enger	62.00	4.2	310.0	113.0	74.0	198.2	
7	BM	V 323		19.747	Na	N Pass	enger	26.99	2.5	170.0	107.3	68.4	176.0	
8	BM	V 328		9.231	28.67	5 Pass	enger	33.40	2.8	193.0	107.3	68.5	176.0	
9	BM	V 528	1	17.527	36.12	5 Pass	enger	38.90	2.8	193.0	111.4	70.9	188.0	
4														
1]: df: 1]: (1	1.shape 57, 16)													
2]: df:	2.head()													
	A	Year Se	lling Orice	Present Price	Kma Driven	Fuel Type	Seller Type	Transmission	Owner					
2]:	Car_Name		and cure		Nine Cirren	iner iller	- //							
2]:	car_name riz	2014	3.35	5.59	27000	Petrol	Dealer	Manual	0					
2]: 0 1	car_name ritz sx4	2014 2013	3.35 4.75	5.59	27000 43000	Petrol Diesel	Dealer	Manual Manual	0					
2]: 0 1 2	car_wame niz sx4 ciaz	2014 2013 2017	3.35 4.75 7.25	5.59 9.54 9.85	27000 43000 6900	Petrol Diesel Petrol	Dealer Dealer Dealer	Manual Manual Manual	0					
2]: 0 1 2 3	car_wame niz sx4 ciaz wagon r	2014 2013 2017 2011	3.35 4.75 7.25 2.85	5.59 9.54 9.85 4.15	27000 43000 6900 5200	Petrol Diesel Petrol Petrol	Dealer Dealer Dealer Dealer	Manual Manual Manual Manual	0 0 0 0					

Figure 12 :Exploring datasets from different sources

UUT[12]:		Car_Name	Year	Selling	Price	Present	Price	Kma	Driver	n Fu	el_Type	Seller_T	ype	Trana	mission	Owner				
	0	ritz	2014		3.35		5.59		2700	0	Petrol	De	aler		Manua	0				
	1	sx4	2013		4.75		9.54		4300	0	Diesel	De	aler		Manua	0				
	2	ciaz	2017		7.25		9.85		690	0	Petrol	De	aler		Manua	0				
	3	wagon r	2011		2.85		4.15		520	0	Petrol	De	aler		Manua	0				
	4	swift	2014		4.60		6.87		4245	0	Diesel	De	aler		Manua	0				
In [13]:	df	2.shape																		
Out[13]:	(36	01, 9)																		
In [14]:	df3	3.head()																		
Out[14]:				name	year	selling_p	orice k	km_driv	/en	fuel	seller_t	ype tra	elmen	alon		owner				
	0		Maruti 8	00 AC	2007	60	0000	700	000	Petrol	Individ	dual	Ma	nual	First	Owner				
	1	Maruti Wago	on R LXI	Minor	2007	13	5000	500	000	Petrol	Individ	dual	Ма	nual	First	Owner				
	2	Hyunda	ai Verna '	1.6 SX	2012	600	0000	1000	000 0	Diesel	Individ	dual	Ma	nual	First	Owner				
	3	Datsun Re	diGO T	Option	2017	250	0000	460	000	Petrol	Individ	dual	Ma	nual	First	Owner				
	4	Honda Ama	aze VX i	OTEC	2014	450	0000	1410	000 0	Diesel	Individ	dual	Ma	nual	Second	Owner				
In [15]:	df3	3.shape																		
Out[15]:	(43	340, 8)																		
In [16]:	df4	4.head()																		
Out[16]:			name	e year	sellir	ng_price	km_dr	riven	fuel	selle	er_type	tranemie	elon		owner	mileage	engine	max_power	torque	seats
	0	Maruti S	wift Dzire VD	2014		450000	14	5500	Diesel	In	dividual	M	nual	First	Owner	23.4 kmpl	1248 CC	74 bhp	190Nm@ 2000rpm	5.0
	1	Skoda P TDI	Rapid 1.8 Ambition	2014		370000	120	0000	Diesel	In	dividual	M	inual	S	Second Owner	21.14 kmpl	1498 CC	103.52 bhp	250Nm@ 1500- 2500rpm	5.0
	2	Honda C	City 2017 2020 EX	2006		158000	14	0000	Petrol	In	dividual	M	snual		Third Owner	17.7 kmpl	1497 CC	78 bhp	12.7@ 2,700(kgm@ rpm)	5.0
	3	Hyundai 2	20 Sport Diese	2010		225000	12	7000	Diesel	In	dividual	M	inual	First	Owner	23.0 kmpl	1396 CC	90 bhp	22.4 kgm at 1750- 2750rpm	5.0
	4	Maruti	Swift VX BSII	2007		130000	120	0000	Petrol	In	dividual	M	inual	First	Owner	16.1 kmpl	1298 CC	88.2 bhp	11.5@ 4,500(kgm@ rpm)	5.0

Figure 13 : Exploring datasets from different sources

After a great deal of time, we concluded that on these parameters, we could train our model so that our model could generate the expected results. These attributes are the name of the car, year of manufacturing, Fuel type it uses such as petrol, diesel, etc, what is the Market Price of the car, who is Manufacturer of the car, what is the average mileage of the car, and what is the transmission mode- automatic or manual.

Attributes selected for the project are:-
Car_name
Year of Manufacture
Fuel Type
Price
Manufacturer
Mileage
Transmission

Figure 14 : Selected Attributes for our model

So, after jotting down the parameters around which our model would be built, we moved forward with the preprocessing of the data.

Dataset Preprocessing

Dataset preprocessing is the process of cleaning up the data so that it can be given to our model and the model trains on it without any hindrance. In this step, we adapted many different techniques to get the desired data. Among them, was to segregate the year of manufacture from the date and month of manufacture as shown below. We did this by splitting the column using the str. split() function and splitting it whenever we found the '/' symbol. Similarly, we split many different columns to extract the meaningful data from it.

df1split = df1["Latest	_Launch"].str.split("/",	n	= 2,	expand	=	True)	1
------------------------	--------------------------	---	------	--------	---	-------	---

df1split.head()

	0	1	2
0	2	2	2012
1	6	3	2011
2	1	4	2012
3	3	10	2011
4	10	8	2011

Figure 15 : Splitting the Year columns

Figure 16 : Splitting the Car Name column

Another analysis part was to drop the columns which was not an essential part of our prediction so that we get what is required by the model.

df1.drop(columns =["Latest_Launch", "Vehicle_type", "Engine_size", "Horsepower", "Wheelbase", "Width", "Length", "Curb_weight", "Fuel_cap

Figure 17: Deleting the columns which are not required

df2.drop(columns =["Selling_Price", "Kms_Driven", "Seller_Type", "Owner"], axis=1, inplace = True)

Figure 18 : Deleting the columns which are not required

Next, we renamed the columns to a common name so that there might not be any mismatch of columns during concatenating all the data frames into a single data frame. The common names of all the columns are – Name, Manufacturer, Price, Mileage, Year, Fuel, Transmission.

	Manufacturer	Name	Price	Mileage	Year	Fuel	Transmission
0	Acura	Integra	215000.0	28.0	2012	NaN	NaN
1	Acura	TL	284000.0	25.0	2011	NaN	NaN
3	Acura	RL	420000.0	22.0	2011	NaN	NaN
4	Audi	A4	239900.0	27.0	2011	NaN	NaN
5	Audi	A6	339500.0	22.0	2011	NaN	NaN

Figure 19 : Sample Final Dataset made

df7.rename(columns= {'Make':'Manufacturer','Manufacturing Year':'Year','Price in INR':'Price','Fuel Type':'Fuel'},inplace=True)

Figure 20 : Renaming the df7 column

df6.rename(columns= {'Make':'Manufacturer','Fuel_Type':'Fuel','Ex-Showroom_Price':'Price','Model':'Name'},inplace=True)

Figure 21 : Renaming the df6 column

df4.drop(columns =["name","selling_price","km_driven","seller_type","owner","engine","max_power","torque","seats"],inplace = True

df4.rename(columns= {'year': 'Year', 'fuel': 'Fuel', 'transmission': 'Transmission', 'mileage': 'Mileage'}, inplace=True)

df4.head(1000)

Figure 22 : Operations on df4

Now inline is one of the most important steps to solve for the categorical value, which is called Encoding the Categorical values. In this step, we convert all the categorical values to the corresponding numerical values. For example in the code snippet below, I have encoded the Fuel categorical values, according to different values, such as petrol is coded as 0, diesel is encoded as 1, so this value is substituted wherever these names are present. There are two methods to perform this operation, first by the manual method as seen in figure 19, other is my using LabelEncoder() function of preprocessing from sklearn as in figure 20.

Encoding the Categorical Data

```
# Encoding the Fuel Column
```

df.replace({'Fuel':{'petrol':0, 'diesel':1,'cng':2,'hybrid':3,'electric':4}},inplace=True)

df.head()

	Manufacturer	Name	Fuel	Price	Year
0	Audi	Q3	1	3200000	2016
1	Audi	Q3	1	2450000	2013
2	Audi	Q3	1	2550000	2013
3	Audi	A8	1	2499000	2011
4	Audi	A8	1	2200000	2009

label_encoder = preprocessing.LabelEncoder()
df['Manufacturer']= label_encoder.fit_transform(df['Manufacturer'])

```
label_encoder = preprocessing.LabelEncoder()
df['Manufacturer']= label_encoder.fit_transform(df['Manufacturer'])
```

df['Manufacturer'].unique()

array([1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 22, 24, 25, 26, 27, 29, 30, 32, 33, 34, 35, 36, 23, 28, 31, 0, 12, 3, 16])

Figure 24 : Encoding Categorical value by LabelEncoder() function.

Data Set Split

This is the last step before the model is trained, it is called so because in this step we split the dataset into two halves- the training and testing dataset. We have kept the testing data 20% of the original dataset which is 23237 rows. This Train dataset is used to train the model and the test part is used to check the accuracy of the model.

Splitting data into Train and test data

```
X=df.drop(['Price'],axis=1)
Y=df["Price"]
```

X_train,X_test,Y_train,Y_test= train_test_split(X,Y,test_size=0.2, random_state=2)

Figure 25 : Train- Test Split.

CHAPTER-7 Results

The model predicted quite well in the case of Linear Regression the training data with an R^2 -score 0.17130651180824064 while in the case of test data it was 0.17836986214106343. The Graph of the prediction and the Z-Score is as follows:


```
R square error 0.17130651180824064
```

Visualising the actual price and predicted prices

```
plt.scatter(Y_train, training_data_prediction)
plt.xlabel("Actual Price")
plt.ylabel("Predicted Price")
plt.title("Actual Price vs Predicted Prices")
plt.show()
```


Figure 26 : Result of Linear Regression on Training Data

```
error_score= metrics.r2_score(Y_test, testing_data_prediction)
print("R square error ", error_score)
```

```
R square error 0.17836986214106343
```

```
plt.scatter(Y_test, testing_data_prediction)
plt.xlabel("Actual Price")
plt.ylabel("Predicted Price")
plt.title("Actual Price vs Predicted Prices")
plt.show()
```


Figure 27: Result of Linear Regression on Testing Data

In the case of Lasso Regression, the R^2 -score is 0.17130651180690104 on training data and 0.17836978200409426 on the test data which is quite good.

```
# R square Error
error_score= metrics.r2_score(Y_train, training_data_prediction)
print("R square error ", error_score)
```

```
R square error 0.17130651180690104
```

```
plt.scatter(Y_train, training_data_prediction)
plt.xlabel("Actual Price")
plt.ylabel("Predicted Price")
plt.title("Actual Price vs Predicted Prices")
plt.show()
```


Figure 28 : Result of Lasso Regression on Training Data

Figure 29: Result of Lasso Regression on Testing Data

CHAPTER-8 Conclusion

It was an exciting Project to work on, through this project I was able to understand what it takes for a data scientist of a car manufacturing firm to be able to analysis the market for a good car to be released as per the demands. Although poor dataset availability in this field, I was able to extract the present dataset of second hand cars and use it to predict the market value of the new car.

Though it was all from my side, but there are many scope of improvements in this project. If in future a more reliable and variety of dataset is available to us, we would also analyze different aspects like colour of car, state of sale of car, type of car, top speed of car, total sales of car and many more.

Also this project can be integrated to front end section to create a user friendly interface, where users can find the right car for themselves or for the firm owners where they can see if the car which they are planning to release would be a boom or crash in the market. The model in future will become more accurate as more datasets will be provided to it. The model can also be used to learn itself from the queries of the customer as well as can conduct the important analysis of the market demand which would a major boost for the manufacturing firm.

Through this Project, I was able to learn many new concepts which is commonly used in the field of Data Analysis. I was able to implement all of the features on my own and it is first major success in my career as a Data Scientist.

References

- 1) Jian-DaWuJun-ChingLiu published title "Development of a predictive system for car fuel consumption using an artificial neural network"
- 2) Enis Gegic, Becir Isakovic, Dino Kečo, Zerina Mašetić, Jasmin Kevrić published in TEM Journal with title "Car Price Prediction using Machine Learning Techniques"
- 3) Fons Wijnhoven, Olivia Plant published in ICIS 2017 Proceeding with title "Sentiment Analysis and Google Trends Data for Predicting Car Sales"
- 4) A. Khodayari; A. Ghaffari; M. Nouri; S. Salehinia; F. Alimardani published in IEEE with title "Model Predictive Control system design for car-following behavior in real traffic flow"
- 5) Mariana Listiani in Master Thesis Proceeding with title "Support Vector Regression Analysis for Price Prediction in a Car Leasing Application"
- 6) M. J. H. Mogridge published in Journal of Transport Economics and Policy Proceeding with title "The Prediction of Car Ownership"
- 7) ErkanGunpinara,Umut CanCoskuna, MustafaOzsipahia, SerkanGunpinarb published their article tiltled " A Generative Design and Drag Coefficient Prediction System for Sedan Car Side Silhouettes based on Computational Fluid Dynamics"

PREDICTIVE SYSTEM ON THE CAR MARKET TREND USING AI & ML

Ansh Shankar¹, Vishal Kaushik², Pushpa Singh³, Amit Shukla⁴, Dhruv Varshney⁵

anshshankar@gmail.com¹, vkaushik@ddn.upes.ac.in²,

pushpa.singh@galgotiasuniversity.edu.in³, amitshukla@galgotiasuniversity.edu.in⁴, <u>dhruvvarshney999@gmail.com</u>⁵ ^{1,3,4,5} School of Computing Science and Engineering, Galgotias University, India

² University of Petroleum and Energy Studies, India

Abstract:

Automobile Manufacturing is one of the most sophisticated sets of processes in the World. And for the automobile to be Successful in the market, it requires an extensive amount of work to be done in the field of Market Analysis. This is an area of major concern for companies. So, we decided to use a Machine Learning model that would predict based on the history of the Cars Manufactured in India. We analyzed the trend of Market demand and build a predictive model that would predict that whether a car would be successful in the market or not. Many other factors could be predicted using the analysis such as which car colour and type of car should the manufacturer build to maximize sales. There is also a "User Section", wherein the customer can check if the car is value for money, or wait for a more suitable car to be available in the market, which can also predict the price of a new car based on the brand name and other features.

Here we have used a Linear Regression technique to build a Machine Learning model. This model is trained on multiple datasets collected from different sources which are then analyzed and processed to obtain desired results. Thus this paper is a very handy tool for both manufacturers and customers. Since this business of car manufacturing is unceasing, hence the process of data generation is also neverending. This paper's accuracy will get better with time as more data is available.

Keywords— PREDICTIVE SYSTEM, CAR MARKET, Machine Learning,

1. Introduction

Automobile Manufacturing is one of the most painful process for the car Manufactures in terms of both labour and financial. But if automobile is not well received in the market, the pain and the treasure is lost. For example, for production of new car the company has to setup whole production unit along with its lifeline i.e. Workers. But what if its sales are low or what if the car doesn't match the standards of the population for which the car is manufactured, the whole ecosystem and the hard work goes to vain.

So we decided to come up with a model that would be a boon to this type situation. We have collected automobiles dataset of different companies from different sources, analysed and processed it to obtain the information, upon which our machine learning model is trained. The model is based on Linear Regression technique. The manufacturer could extract from it which type of car to be manufactured, what would be the most prominent colour, what would be transmission type, fuel type, etc.

Apart this there is a "Customer Section", wherein customer can check if the car present in the market is value for money or not. or if any other car is due in the market as per the history of the automobiles manufactured.

The Whole Paper is divided into the 5 parts :-

- Data Collection
- Data understanding and exploration
- Data cleaning
- Data preparation
- Model building and evaluation

2. Literature survey

A predictive system for car fuel consumption using a backpropagation neural network has three components: an information gathering system, a fuel consumption forecasting algorithm, and a performance assessment system. Although there are many factors that influence a car's fuel consumption in a practical drive procedure, the impact factors for fuel consumption in the current system are simply determined as the make of the car, engine style, vehicle type, weight of the car, and transmission system type. An artificial neural network with back-propagation neural network has a learning capability for automobile fuel consumption prediction to test the effect of the proposed predictive system in the fuel consumption forecasting. The results of the prediction showed that the proposed neural network system is successful in predicting fuel consumption and that its performance is adequate [1].

A high-interest study topic has been automobile price prediction, as it necessitates significant effort and expertise on the part of the field expert. For a trustworthy and accurate forecast, a large number of unique attributes are considered. They utilised three machine learning approaches to create a model for forecasting the price of secondhand automobiles in Bosnia and Herzegovina (Artificial Neural Network, Support Vector Machine and Random Forest). However, the approaches suggested were used in a group setting [2]. Their study looks at how sentiment analysis and Google trends data may be used to anticipate automobile sales. Previous study has proven the utility of both approaches for sales forecasting, but the findings of current research for forecasting the sales of high-involvement items such as vehicles are more equivocal. In this study, linear regression models are used to evaluate over 500,000 social media postings for eleven automobile models on the Dutch market. In addition, the results of this study are compared to the prediction capacity of Google Trends. The findings reveal that while social media emotions have limited predictive value when it comes to automobile sales, Google Trends data and social mention volume show substantial results and may be combined into a useful prediction model. The automotive industry may utilise decision tree regression to build a prediction model with temporal delays that can be employed in addition to standard forecasting approaches [3].

The MPC predicts the future behaviour of the leader vehicle (LV) based on the relative distance and relative acceleration of each instant, and the acceleration of the follower vehicle (FV) is regulated based on this behaviour. The MPC aims to keep the relative distance within a safe range by controlling the acceleration. The outcome of the system is compared to the behaviour of real drivers with comparable beginning conditions to evaluate the performance of the developed controller. The simulation findings demonstrate that the MPC controller behaves considerably more safely than real drivers and can give passengers with a pleasant ride [4].

Because in order to stay successful in a competitive market, a leasing firm must provide a competitive lease price. It is important to forecast the future price of a used automobile in order to establish the correct pricing. The lease price might be set to meet the car's value degradation if the depreciation is known. Multiple linear regression analysis is a frequently used method for price prediction. However, there are several elements that influence the pricing, making this critical duty difficult. For high-dimensional data, the conventional regression technique may not be appropriate. Support Vector Regression, a contemporary data mining approach that is independent of input dimension, will be used to solve this possible problem. The accuracy of the predictions will next be compared to the statistical regression model. In specifically, using principles from the field of evolutionary search, a fully automated technique for adjusting and implementing SVR is created. The entire machine learning experiment is based on real-world data from a major German automobile manufacturer [5].

The Prediction of Car Ownership" discussed that for longterm forecasting of automobile ownership, an econometric technique is developed. It is compared to other well-known techniques. It is based on estimates of the percentage of family income spent on automobile purchases, as well as an analysis of car pricing and stock. The technique provides a reasonable approximation of previous levels of automobile ownership in the United Kingdom, as well as a prediction that is comparable to Tanner's for the next 15 years. However, Mogridge forecasts a higher saturation level and, as a result, a larger eventual automobile population in the future [6].

3. Design & Implementation

3.1 Data Set

 Δ data set (or data set) is a collection of data usually presented

and each row represents the corresponding record. The dataset can contain data for one or more items, depending on the number of rows. Each entity is called DATUM.

For example, in our dataset we had Manufacturer name, Model, Vehicle type, Sale number, Fuel type as our columns, which basically represents our variable's detail. and each record/data is accommodated in the single row.

For this paper, we had employed datasets from many different sources and many different authors, analyzed it, processed it into a single dataset upon which our model is trained.

Manufact	, Model	Sales in t	_year_re_Vehicle_t	Price_in_tlEr	gine_siz Ho	orsepow	Wheelbask W	dh	Length	Curb_weig	Fuel_capa Fue	effici Latest_Lat	Power_perf_factor
Acura	Integra	16.919	16.36 Passenger	21.5	1.8	140	101.2	67.3	172.4	2.639	13.2	28 #########	58.28015
Acura	TL .	39.384	19.875 Passenger	28.4	3.2	225	108.1	70.3	192.9	3.517	17.2	25 EEEEEEE	91.37078
Acura	CL.	14.114	18.225 Passenger	r	3.2	225	106.9	70.6	192	3.47	17.2	26 sessesse	
Acura	RL	8.588	29.725 Passenger	42	3.5	210	114.6	71.4	196.6	3.85	18	22 88888888	91.38978
Audi	A4	20.397	22.255 Passenger	23.99	1.8	150	102.6	68.2	178	2.998	16.4	27 88888888	62.77764
Audi	A6	18.78	23.555 Passenger	33.95	2.8	200	108.7	76.1	197	3.561	18.5	22 00000000	84.56511
Audi	AS	1.38	39 Passenger	62	4.2	310	113	74	198.2	3.902	23.7	21 2/27/2012	134.6569
BMW	323i	19.747	Passenger	25.99	2.5	170	107.3	68.4	175	3.179	16.6	26 6/28/2011	71.19121
BMW	328i	9.231	28.675 Passenger	33.4	2.8	193	107.3	68.5	176	3.197	16.6	24 1/29/2012	81.87707
BMW	528i	17.527	36.125 Passenger	38.9	2.8	193	111.4	70.9	188	3.472	18.5	25 #########	83.99872
Buick	Century	91.561	12.475 Passenger	21.975	3.1	175	109	72.7	194.6	3.368	17.5	25 #########	71.18145
Buick	Regal	39.35	13.74 Passenger	25.3	3.8	240	109	72.7	196.2	3.543	17.5	23 #########	95.6367
Buick	Park Aven	27.851	20.19 Passenger	31.965	3.8	205	113.8	74.7	206.8	3.778	18.5	24 3/23/2012	85.82841
Buick	LeSabre	83.257	13.36 Passenger	27.885	3.8	205	112.2	73.5	200	3.591	17.5	25 7/23/2011	84.25453
Cadillac	DeVille	63.729	22.525 Passenger	39.895	4.6	275	115.3	74.5	207.2	3.978	18.5	22 2/23/2012	113.8546
Cadillac	Seville	15.943	27.1 Passenger	44.475	4.6	275	112.2	75	200		18.5	22 4/29/2011	115.6214
Cadilac	Eldorado	6.536	25.725 Passenger	39.665	4.6	275	108	75.5	200.6	3.843	19	22 11/27/201	113.7659
Cadillac	Catera	11.185	18.225 Passenger	31.01	3	200	107.4	70.3	194.8	3.77	18	22 9/28/2011	83.48309
Cadilar	Escalada	14,785	Car	46.225	5.7	255	117.5	77	201.2	5.572	30	15 4/17/2012	109 5091

Figure 1: Source datasets 1

Nake	Nodel Variant	Ex-Showrt Displacem Cylinds	es Valies,	Pe Drivetrain Cylinder	(Enision	Engine Lo Fuel Syst	eke lai	fiel Type	Heijt	legh	With	Body TypeDoors	Chy Mies Highway
(Tata	Naro Gen It	R. 192,864 oc	2	2 RVO (Realin-line	BSW	Rear, Tran Injection	Nibs	Retol	15Q m	3154 mm	1750 mm	Ratificado	5 228.6 km/litre
118	NaroGentle	Rs 2,35,44624 oc	2	2 RVO (Real In-line	65 W	Rear, Tran Injection	Albs	Retol	160 m	364 m	1750 m	Ratifiank	5 ?28.6km/litre
2188	Naro Gen Enax Xm	Rs 2,96,96 624 cc	2	2 RVO (Realin-line	BSN	Rear, Tran Injection	Sibs	OIG	150 m	364 m	1750 mm	Rattback	4
3188	Naro Gen Ita	R: 3,34,7664 cc	2	2 RVO (Realin-line	85 W	Rear, Tran Injection	Albs	Retol	150 m	3154 mm	1750 mm	Ratificati	5 ?28.6 km/litre
4188	Naro Get Xn	Rs. 2,72,2684 oc	1	2 RVO (Realtr-line	65 W	Rear, Tran Injection	Albs	Retal	160 m	304 mm	1750 mm	Ratiliack	5 729.6 km/litre
5188	Naro Gen Xina	Rs 3,14,81624 cc	2	2 RVO (Realin-line	BSW	Rear, Tran Injection	Albs	Retol	150 m	3154 mm	1750 mm	Ratiliack	5 729.6 km/litre
6 Datsur	Redi-Go D	Rs 2,79;8799 cc	3	4 RID Front-Time	85 W	Fort, Traihjection	Nites	Retol	154 m	39m	156) m	Ratificada	5 21.38 km/ 24 km/ lib
7 Datsın	Redi-Go T	Rs 151,82799 cc	3	4 RID Fronty-Free	85 W	Fort, Trachjection	Nites	Retal	150 m	39m	156) m	Rattitack	5 21.38 km/ 24 km/ lib
1244	MA I	5.111 HTM		(nntruis for	Mai	Carl Carl	M have	AL.	10	100-0	+110	Rella	rank lateb

Figure 2: Source datasets 2

3.2 Linear Regression

Linear Regression, a field of Statistics, is a Linear Approach for modeling the relationship between the Input and Output Variables. This is a widely used Concept of Machine Learning yet simple and effective. In this the relationship are modeled using a linear predictor function and Line of Best Fit is then generated. This line is then used to predict the output/unknown parameter.

There are two types of Linear Regression Technique:-

- 1. Simple Linear Regression
- 2. Multiple Linear Regression

In Simple Linear Regression, we find the relationship between a single independent variable (input) and a corresponding dependent variable (output). This can be expressed in the form of a straight line, also called line of Best Fit.

Y=B0+B1X+C

Y represents the Output/Dependent Variable. B0 & B1 represents the intercept and slope coefficient respectively

C represents the Error term.

In Multiple Linear Regression, we find the relationship between 2 or more independent variables (inputs) and the corresponding dependent variable (output) as per the best fit. The independent variables can be continuous or categorical depending on the user's need.

The Equation of Mutiple Linear regression is : Y=B0+B1X1 +B2X2 + B3X3++C

Y represents the Output/Dependent Variable. B0, B1 represents slope coefficient respectively X1,X2 represents Predictor Variable C represents the Error term.

3.3 Model Design

Figure 3: Model Design

4. Module Description

In the paper, to train my model I am using two Regression Models, the Linear Regression model and the Lasso Regression Model, which are part of the linear model of the sklearn library. The other libraries used in the paper are pandas, NumPy, Matplotlib, Seaborn, and metrics and preprocessing from sklearn. Now let's see each of these libraries one by one:-

NumPy is a Python library used for operating with multidimensional arrays. It additionally has capabilities for operating in the area of linear algebra, Fourier transform, and matrices.

Pandas is a software program library written for the Python programming language for statistics manipulation and analysis. In particular, it gives statistics systems and operations for manipulating numerical tables and time series.

Seaborn is a remarkable visualization library for statistical

color palettes to make statistical plots more attractive. It is constructed at the pinnacle of the Matplotlib library and additionally intently included in the data structures from pandas. Seaborn targets to make visualization the principal component of exploring and know-how statistics.

Matplotlib is a popular visualization library in Python for 2D plots of arrays. Matplotlib is a multi-platform statistics visualization library constructed on NumPy arrays.

```
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.linear_model import Lasso
from sklearn import metrics
from sklearn import preprocessing
```

Lasso stands for Least Absolute Shrinkage and Selection Operator. It is a type of Linear Regression Model that shrinks the data value towards a central point like mean.

Figure 4 : Libraries Used in the Paper

2. Lasso Regression

lasso_reg_model=Lasso()

```
lasso_reg_model.fit(X_train,Y_train)
Lasso()
```

Model Training

Prediction of Training Data
training_data_prediction=lasso_reg_model.predict(X_train)

```
# R square Error
error_score= metrics.r2_score(Y_train, training_data_prediction)
print("R square error ", error_score)
```

R square error 0.17130651180690104

Figure 5 : Training the Model with Lasso Regression

1. Linear Regression

<pre>lin_reg_model=LinearRegression()</pre>	
<pre>lin_reg_model.fit(X_train,Y_train)</pre>	
LinearRegression()	

Model Evaluation

<pre># Prediction of training_data_pr</pre>	Training Data ediction=lin_reg_model.predict(X_train)
<pre># R square Error error_score= met print("R square</pre>	<pre>rics.r2_score(Y_train, training_data_prediction) error ", error_score)</pre>
R square error	0.17130651180824064

Figure 6 : Training the Model with Linear Regression Here in the above pictures of code, we first initialized the model into the respective variable which is named lasso_reg_model and lin_reg_model. We then fit the training input and output into the data. After the model is trained (i.e fitted) with the training data, it's time to evaluate the model. First, we evaluate the model with the training data and then with the test data. To assess our model for accuracy, we find the R² error of the model. In a regression model, the R2 score also called the coefficient of determination how much variance in a dependent variable is explained by the independent variable(s).

Exploratory Analysis

Now coming to the data preprocessing step of our Paper, as earlier mentioned that in our paper we had taken datasets from multiple sources so integrating them into a single entity was one of the most painful and time-consuming steps of the paper. Here, we analyzed all the different aspects that could be considered so that our model could predict with greater accuracy.

Importing all datasets

df1=pd.read_c	<pre>sv("Datasets/Car_sales.csv")</pre>
df2=pd.read_c	sv("Datasets/car data.csv")
df3=pd.read_c	sv("Datasets/CAR DETAILS FROM CAR DEKHO.csv")
df4=pd.read_c	<pre>sv("Datasets/Car details v3.csv")</pre>
df5=pd.read_c	<pre>sv("Datasets/cars_ds_final.csv")</pre>
df6=pd.read_c	<pre>sv("Datasets/cars_ds_final_2021.csv")</pre>
df7=pd.read_c	<pre>sv("Datasets/datasets3.csv")</pre>
df8=pd.read_c	<pre>sv("Datasets/indian-auto-mpg.csv")</pre>

Figure 7 : Importing the Datasets

5. Dataset Preprocessing

Dataset preprocessing is the process of cleaning up the data so that it can be given to our model and the model trains on it without any hindrance. In this step, we adapted many different techniques to get the desired data. Among them, was to segregate the year of manufacture from the date and month of manufacture as shown below. We did this by splitting the column using the str. split() function and splitting it whenever we found the '/' symbol. Similarly, we split many different columns to extract the meaningful data from it.

	Manufacturer	Name	Price	Mileage	Year	Fuel	Transmission
0	Acura	Integra	215000.0	28.0	2012	NaN	NaN
1	Acura	TL	284000.0	25.0	2011	NaN	NaN
3	Acura	RL	420000.0	22.0	2011	NaN	NaN
4	Audi	A4	239900.0	27.0	2011	NaN	NaN
5	Audi	A6	339500.0	22.0	2011	NaN	NaN

Figure 8 : Sample Final Dataset made Data Set Split

This is the last step before the model is trained, it is called so because in this step we split the dataset into two halves- the training and testing dataset. We have kept the testing data 20% of the original dataset which is 23237 rows. This Train dataset is used to train the model and the test part is used to check the accuracy of the model.

Splitting data into Train and test data

X=df.drop(['Price'],axis=1)
Y=df["Price"]

X_train,X_test,Y_train,Y_test= train_test_split(X,Y,test_size=0.2, random_state=2)

Figure 9 : Train- Test Split.

6. Results

The model predicted quite well in the case of Linear Regression the training data with an R^2 -score 0.17130651180824064 while in the case of test data it was 0.17836986214106343. The Graph of the prediction and the Z-Score is as follows:

R square Error
error_score= metrics.r2_score(Y_train, training_data_prediction)
print("R square error ", error_score)
R square error 0.17130651180824064

Visualising the actual price and predicted prices

Figure 10: Result of Linear Regression on Training Data

```
error_score= metrics.r2_score(Y_test, testing_data_prediction)
print("R square error ", error_score)
```

R square error 0.17836986214106343

```
plt.scatter(Y_test, testing_data_prediction)
plt.xlabel("Actual Price")
plt.ylabel("Predicted Price")
plt.title("Actual Price vs Predicted Prices")
plt.show()
```


Figure 11: Result of Linear Regression on Testing Data

In the case of Lasso Regression, the R2-score is 0.17130651180690104 on training data and 0.17836978200409426 on the test data which is quite good.

Figure 12 : Result of Lasso Regression on Training Data

error_score= metrics.r2_score(Y_test, testing_data_prediction)
print("R square error ", error_score)

R square error 0.17836978200409426

```
plt.scatter(Y_test, testing_data_prediction)
plt.xlabel("Actual Price")
plt.ylabel("Predicted Price")
plt.title("Actual Price vs Predicted Prices")
plt.show()
```


Figure 13 : Result of Lasso Regression on Testing Data

7. Conclusion

In this paper I was able to understand what it takes for a data scientist of a car manufacturing firm to be able to analysis the market for a good car to be released as per the demands. Although poor dataset availability in this field, I was able to extract the present dataset of second hand cars and use it to predict the market value of the new car.

Though it was all from my side, but there are many scope of improvements in this paper. If in future a more reliable and variety of dataset is available to us, we would also analyze different aspects like colour of car, state of sale of car, type of car, top speed of car, total sales of car and many more.

Also this paper can be integrated to front end section to create a user friendly interface, where users can find the right car for themselves or for the firm owners where they can see if the car which they are planning to release would be a boom or crash in the market. The model in future will become more accurate as more datasets will be provided to it. The model can also be used to learn itself from the queries of the customer as well as can conduct the important analysis of the market demand which would a major boost for the manufacturing firm.

Through this Paper, I was able to learn many new concepts which is commonly used in the field of Data Analysis. I was able to implement all of the features on my own and it is first major success in my career as a Data Scientist.

References

- 1. Jian-DaWuJun-ChingLiu published title "Development of a predictive system for car fuel consumption using an artificial neural network"
- 2. Enis Gegic, Becir Isakovic, Dino Kečo, Zerina Mašetić, Jasmin Kevrić published in TEM Journal with title "Car Price Prediction using Machine Learning Techniques"
- Fons Wijnhoven, Olivia Plant published in ICIS 2017 Proceeding with title "Sentiment Analysis and Google Trends Data for Predicting Car Sales"
- <u>Khodayari; A. Ghaffari; M. Nouri; S. Salehinia; F. Alimardani</u> published in IEEE with title "Model Predictive Control system design for car-following behavior in real traffic flow"
- 5. Mariana Listiani in Master Thesis Proceeding with title "Support Vector Regression Analysis for Price Prediction in a Car Leasing Application"
- 6. M. J. H. Mogridge published in Journal of Transport Economics and Policy Proceeding with title "The Prediction of Car Ownership"
- M. Dehghani, R. M. Dangelico, "Smart wearable technologies: Current status and market orientation through a patent analysis", Proc. IEEE Int. Conf. on Industrial Technology: 1570-1575, 2017.
- L. F. Lai, J. F. Jiang, H. Y. Wei and K. S. Hsu, "Depth sensor used in vehicle-related patent analysis" Int. Conf. IEEE-ICAMSE, 2016.
- Z. Jing, "Patent Analysis on New Energy Auto Industry" Int. Conf. on Computer Science and Information Processing, 2012.
- H. C. Wu, R. W. P. Luk, K. F. Wong, and K. L. Kwok., Interpreting TF–IDF Term Weights as Making Relevance Decisions. ACM Transactions on Information Systems 26(3):1-37, 2008.
- A. Buja, D. Swayne, M. Littman, N. Dean, H. Hofmann, and L. Chen, "Data Visualization with Multidimensional Scaling" Journal ofComputational and Graphical Statistics17(2):444-472, 2008.

Acceptance:ICIRSMT2021

1 message

ICIRSMT2021 <icirsmt2021@easychair.org> To: Ansh Shankar <anshshankar@gmail.com> 9 December 2021 at 21:12

Dear Ansh Shankar,

Paper ID: T035, Track : TECHNOLOGY

Congratulations!

On behalf of the review committee and conference organizing committee, I am happy to inform you that your Paper/Abstract entitled

"PREDICTIVE SYSTEM ON THE CAR MARKET TREND USING AI & ML

has been accepted for presentation at the 2021 ABVU-AIMT: International Conference on Innovative Research in Science, Management and Technology (ICIRSMT 2021) to be held in hybrid mode during December 27-28, 2021 organized by Department of Computer Science and Application, Atal Bihari Vajpayee University, Bilaspur (C.G.), India in association with American Institute of Management and Technology (AIMT), USA You are requested to do the following:

Pay your registration fee in any one of the following mode

i. Online: https://icirsmt2021.gkfusa.org/registration/ (Only if you have international VISA card)

ii. UPI payment: 9926709807(Phone pay) For Indian authors only.

Fee detail are as follow:CategoryINRUSDFaculty/Industry150020Research Student120016

2. Pay registration fee and send detail of payment at using following link https://forms.gle/Cxq1FqNEJtdHb2W17.

Please note the following information regarding the registration in conference and publication:

1. Your paper presented in conference will be published Compulsorily in Conference proceedings : AIMTCP (Visit https://gkfusa.org/aimtcp/ for more detail) and may also be published in any one of the journal/Edited book in subjected to review and scope of the journal/edited book after the conference. You need to submit your paper as per the desired template soon after the conference, We will let you know the decision of reviewer]decision:

i. CRC press edited Book: Taylor and Francis Groups- Publication within 3 to 6 months

ii. Scopus Indexed Journal: Publication within a month (In process ,not confirmed).

iii. UGC care listed journal- Publication within a month (In process, not confirmed).

iv. International journal of Decision Science and Information Technology (IJDSIT): A journal of Atal Bihari Vajpayee University, Bilaspur, India in association with Modern Technology and Management Institutions, Inc., USA – Publication within a month.

v. Global Journal of Review and Business Technology (GRBT): Published by The Global Knowledge Foundation, Inc. USA (Web site www.gkfusa.org).

vi. Global Journal of Modeling and Intelligent Computing (GJMIC): Published by The Global Knowledge Foundation, Inc. USA (Web site www.gkfusa.org).

vii. Global Journal of Computer and Engineering Technology (GJCET): Published by The Global Knowledge Foundation, Inc. USA (Web site www.gkfusa.org).

viii. Advanced Computing Techniques: Informatics and Emerging Technologies-Volume I, Edited Book by Bentham Publication (https://benthambooks.com/book/9789814998451/).

Special Note

Completing the registration and paying the registration fee is not the guarantee of the paper publication. The registration fee is for only to present the paper(s) in ICIRSMT 2021. The papers will be considered for publications as per the respective journal/Edited book policies. The paper publication will depend on the reviewer's reports and editor's decision during the journal review process. However abstract/Full length paper will positively publish in conference proceedings (AIMTCP) with ISSN No.

2. At least one author of an accepted paper must register and pay the registration fee to be included in the program and the conference publication.

3. If more than one authors are going to register for the same paper than each author has to pay registration fee separately and to register himself/herself as mentioned above.

Gmail - Acceptance:ICIRSMT2021

4. An author submitted more than one paper has to pay full registration fee for the first paper and 50% registration fee for remaining papers.

5. The schedule of the conference will be available after 20th December 2021 on the conference website(http://icirsmt2021.gkfusa.org/) and will be sent to you in your E-mail ID.

6. Please note that your paper presentation should be of 10 minutes including question answer session. Thank you for your support and we look forward to the pleasure of meeting either virtually or offline and interacting with you during the conference.

Feel free to contact us at icirsmt2021@gmail.com or through mobile No. 9425222658 in case of any queries. Also refer your Paper ID for further communication.

Keep in touch with conference website http://icirsmt2021.gkfusa.org/

Thanks and Regards Programme Chair ICIRSMT2021

3rd International Conference

ON

Innovative Research In Science, Management and Technology (ICIRSMT 2021)

Conference Website : www.icirsmt2021.gkfusa.org

27-28 December, 2021

Venue Hybrid Mode (Online and offline)

Department of Computer Science and Application

Atal Bihari Vajpayee University, Bilaspur (C.G.), India

Publication Partners

American Institute of Management and Technology (AIMT), USA

(A Subsidiary of The Global Knowledge Foundation, Inc, USA) www.gkfusa.org

SUPPORTED BY Computer Society of India (CSI), Chhattisgarh Chapter

Important Dates

Abstract/Full length paper submission deadline 25-November, 2021, 10 December 2021 Notification of Acceptance and Registration 08-December, 2021, 15 December 2021

Program Chairs

Dr. H.S Hota Atal Bihari Vajpayee University, Bilaspur (C.G.), India Dr. D.K. Sharma University of Maryland, Eastern Shore, USA

Contact

E-mail : icirsmt2021@gmail.com Mob. : +91 9425222658

Chief Patron

Acharya Arun Diwakar Nath Bajpai Hon'ble Vice Chancellor, Atal Bihari Vajpayee University, Bilaspur, India

2021

ABVU-AIMT

Patrons

Dr. Deva Sharma, President, The GKF, Inc. USA Dr. Sudheer Sharma, Registrar, Atal Bihari Vajpayee University, Bilaspur, India

Conference Chairs

Dr. Daniel Okunbor, Fayetteville University, USA Dr. Madhu Jain, Indian Institute of Technology (IIT) Roorkee, India Dr. Aaron Rababaah, American University of Kuwait, Kuwait

Ansh Shankar <anshshankar@gmail.com>

ICIRSMT2021 (Kindly fill all details carefully as same will reflect in your certificate.)

1 message

Google Forms <forms-receipts-noreply@google.com> To: anshshankar@gmail.com 9 December 2021 at 21:50

Google Forms

Thanks for filling in ICIRSMT2021 (Kindly fill all details carefully as same will reflect in your certificate.)

Here's what was received.

ICIRSMT2021 (Kindly fill all details carefully as same will reflect in your certificate.)

Email *

anshshankar@gmail.com

ICIRSMT2021

Paper ID *

T035, Track : TECHNOLOGY

Paper Title *

PREDICTIVE SYSTEM ON THE CAR MARKET TREND USING AI & ML

Name of Registered Author *

Ansh Shankar

Institute/Organization *

Galgotias University

City *

Greater Noida

Country *

India

Contact Number *

8287504975

Preferred Mode of Presentation *

Online

Amount Paid (If you have more than one paper then fill separate google form for that) * 1200 Transaction Receipt * Submitted files Image: Paper Fees Payment_Paper-id T035 - Ansh Shankar.jpeg	0 0	ffline
1200 Transaction Receipt * Submitted files Image: Paper Fees Payment_Paper-id T035 - Ansh Shankar.jpeg	Amoun that) *	t Paid (If you have more than one paper then fill separate google form for
Transaction Receipt * Submitted files Paper Fees Payment_Paper-id T035 - Ansh Shankar.jpeg	1200	
Submitted files Paper Fees Payment_Paper-id T035 - Ansh Shankar.jpeg	Transa	ction Receipt *
Paper Fees Payment_Paper-id T035 - Ansh Shankar.jpeg	Submitte	ed files
	P	aper Fees Payment_Paper-id T035 - Ansh Shankar.jpeg

Create your own Google Form Report Abuse