
P a g e 1 | 49

A Project Report

on

FOLA: A Decentralized Cab Rental Service

Submitted in partial fulfillment of the

requirement for the award of the degree of

Bachelor of Technology in Computer Science and

Engineering

Under The Supervision of

Dr. Prashant Johri

Professor

Department of Computer Science and Engineering

Submitted By

18SCSE1050017 – CHHAVI TUTEJA

18SCSE1070012 – NITESH SAXENA

SCHOOL OF COMPUTING SCIENCE AND ENGINEERING

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

GALGOTIAS UNIVERSITY, GREATER NOIDA, INDIA

MAY - 2022

P a g e 2 | 49

SCHOOL OF COMPUTING SCIENCE AND
ENGINEERING

GALGOTIAS UNIVERSITY, GREATER NOIDA

CANDIDATE’S DECLARATION

I/We hereby certify that the work which is being presented in the project, entitled “FOLA: A

Decentralized Cab Rental Service” in partial fulfillment of the requirements for the award of

the BACHELOR OF TECHNOLOGY IN COMPUTER SCIENCE AND ENGINEERING

submitted in the School of Computing Science and Engineering of Galgotias University, Greater

Noida, is an original work carried out during the period of JANUARY-2022 to MAY-2022,

under the supervision of Dr. Prashant Johri, Professor, Department of Computer Science

and Engineering of School of Computing Science and Engineering, Galgotias University,

Greater Noida

The matter presented in the project has not been submitted by me/us for the award of any other

degree of this or any other places.

18SCSE1050017 - CHHAVI TUTEJA

18SCSE1070012 – NITESH SAXENA

This is to certify that the above statement made by the candidates is correct to the best of my

knowledge.

Supervisor

 (Dr. Prashant Johri, Professor)

P a g e 3 | 49

 CERTIFICATE

The Final Thesis/Project/ Dissertation Viva-Voce examination of 18SCSE1050017 – CHHAVI

TUTEJA, 18SCSE1070012 - NITESH SAXENA has been held on _ and his/her

work is recommended for the award of BACHELOR OF TECHNOLOGY IN COMPUTER

SCIENCE AND ENGINEERING.

Signature of Examiner(s) Signature of Supervisor(s)

Signature of Project Coordinator Signature of Dean

Date:

Place:

P a g e 4 | 49

ABSTRACT

The introduction of car rental services via mobile applications has brought the ease of transportation to the

customers. However, the pricing is quite controversial. Neither the customers nor the drivers get benefitted

from this. Also, the need to trust the middleman for the availing services is a security concern among many

people. There is a conflict in categorization of drivers as employees or service providers.

This led us to the idea of a Decentralized Cab Rental System. A decentralized cab system eliminates all the

prime ill concerns of the traditional cab rental systems. It is decentralized, i.e., there is no central authority

or middleman governing and interfering between the transacting parties. The fares can directly be

transferred to the drivers from the customers with minimal charges. This system is based on Blockchain

Technology. We’ll use Solidity, JavaScript. For front end React Native and Socket.io. For Backend:

MongoDB, Express.js, Ethereum Blockchain.

The output will be a car rental application that’s based on Blockchain along with a research paper on

“Blockchain Technology: A case study on its Decentralized Use”.

Using the previously mentioned technologies, we’re drafting a system that would prove to be beneficial not

only for the users but also for the ones who are actually providing the services. The problem with

categorization of drivers as Employees or service providers will now be removed. There is no need to trust a

third party via our proposed system. We’ll look for ways to publish this software and bring further reforms

according to the requirements of the then time.

P a g e 5 | 49

Table of Contents

Title
Page

No.

Candidates Declaration

Acknowledgement

Abstract

List of Table

List of Figures

Acronyms

Chapter 1 Introduction 8

1.1 INTRODUCTION 9

1.2 DISADVANTAGE OF CURRENT SYSTEM 10

1.3 MERITS OF PROPOSED SYSTEM

Chapter 2 Literature Survey/Project Design 12

Chapter 3 Functionality/Working of Project 13

Chapter 4 Results and Discussion 47

Chapter 5 Conclusion and Future Scope 48

P a g e 6 | 49

List of Figures

S.No. Caption Page No.

1 Landing Page 14

2 Sign Up Page 15

3 Create a Drive 15

P a g e 7 | 49

Acronyms

FOLA Free OLA

 ETH Ether

EVM Ethereum Virtual Machine

dApp Decentralized Application

P a g e 8 | 49

CHAPTER-1

Introduction

1.1 Introduction

The introduction of car rental services via mobile applications has brought the ease of

transportation to the customers. They don’t have to walk or wait or find taxis, and can easily go

about their way simply by pressing a few buttons on their mobile phones which come handy.

Travelling from one place to another has now become hassle-free. However, with all the perks,

come some disadvantages. The pricing is one of them.

One of the disadvantages of the now available cab rental services is that they offer variable pricing.

In the rush hour the prices increase while in the night or early morning they stoop low. In festivals

the prices are hiked in comparison to the non-festive days. They increase and decrease the prices

according to the demands.

Another disadvantage for the driver is that it becomes inconvenient. Most of the times when a

driver wants to be taking fares and making money, but there are less passenger compare to drivers

and it is frustrating for drivers who wants to work, but not getting any passenger. There are

expenses that are not reimbursed for example wear and tear on the car. Drivers are held responsible

for all car expenses. There is a conflict in categorizing driver as the actual service provider rather

than an employee who’s working and will get due pay.

This led us to come up with the idea of creating a decentralized cab rental system which allows

customers to directly come in contact and exchange services with money directly. In such a system

no middleman is needed to regulate and govern the exchange between the transacting parties. Both

the customers and actual service providers aka the drivers are benefitted in this manner. This

system is based on the Blockchain Technology which offers benefits like traceability via

timestamps and immutable transaction information, more security and hence reliable, decentralized

as well as efficient and scalable.

P a g e 9 | 49

1.2 Formulation of Problem

With all the disadvantages encountered in the present system as mentioned above there is a

need to improvise the solution. A system that is decentralized, i.e., that does not involve a

central governing system that improvises the rates according to the demands poses a good

solution for the first problem of variable rates. This way the drivers can charge fees

according to their services.

The second problem was the conflict in categorization of the drivers as employees who

work for an organization or as the actual service providers. In such cab rental systems,

usually the drivers are responsible for the maintenance and upkeep of the cabs. They have

to pay due taxes with employee cut. This can be resolved if the drivers got all that they

deserve according to the services they offer rather than the minimal employee leverage that

they get.

The third and another major concern could be the need to put your trust on a third party to

avail the services rather than transacting with the service provider. This might pose a

security threat

For this we propose a decentralized cab rental system which is based on Blockchain

Technology.

P a g e 10 | 49

1.3 Merits of the Proposed System

There has been a paradigm shift to the emerging Blockchain technology due to the various benefits

that it offers.

1. Full Control

One of the most significant advantages of decentralization is that it allows users to be in full control

of their transactions. Therefore, they can start a transaction whenever they want and without the

need to authorize it from a central authority. In other words, the verification process is independent

from third parties.

2. Data cannot be altered nor deleted

Blockchain’s data structure is an “add only” system, which means data cannot be modified or

destroyed; any attempt to do so will become immediately obvious within the network because of

the work the consensus algorithm does to make sure the data integrity is maintained. Moreover,

Timestamps provide transparency.

 3. Security

Tying into the point above, decentralized networks are exceptionally secure because of how they

handle data and transactions. These networks use cryptography and hashing to create blocks, but

also to ensure that the data ledgers are secure. The data in each block requires data from the block

before and after it in the chain so that it can use cryptography to validate the data; the more

transactions that occur on the network, the more blocks are created, and the more secure the data

becomes: there is truly no weak link in the chain. While it’s inaccurate to claim a blockchain ledger

could never be hacked, it is accurate to assert that doing so would be impractical since it would

require altering data in thousands if not millions of blocks while avoiding detection.

4. Lack of Censorship

In a centralized system, more information can be censored, while the decentralized paradigm leads

to less censorship because no central authority controls the data. Take Twitter and Facebook, for

example. Whether you believe these accusations hold water or not is up to you, but both social

media giants are routinely accused of censoring accounts and content, which is ultimately easy to

do since they are centralized platforms.

5. Open Development

Decentralized networks, by their nature of operation, support open development. By creating an

environment of open development, the networks can add services, tools, and even products on top

of the network itself. Linux, for example, is open-source and has an ecosystem allowing anyone to

improve it. In contrast, centralized networks are closed source, which limits development.

The decentralized model is here to stay, and it has the potential to overturn the centralized model as

P a g e 11 | 49

the de facto approach. Not only have we seen the rise of bitcoin and other cryptocurrencies, but

some governments are considering what the future of voting may look like and whether the

decentralized approach is viable, while the energy sector and Environmental, Social, and

Governance are also considered the future on blockchain. In sum, this is an exciting time for

decentralization and blockchain, the technology that makes it all possible.

P a g e 12 | 49

CHAPTER-2

Literature Survey

In the existing system, the prices are based on supply and demand. In some areas the same distance

fares are higher than the other areas which are considerably remote. There are expenses that are not

reimbursed for example wear and tear on the car. Drivers are held responsible for all car expenses.

There is a need for an electronic system that allows two parties to transact digitally without the

need of a third party organization. This system should be based on proof rather than trust. And a

viable solution for this is offered by the inculcation of blockchain technology in our system.

Blockchain is a shared, immutable ledger that facilitates the process of recording transactions and

tracking assets in a business network.

Blockchain could be regarded as a public ledger, in which all committed transactions are stored in a

chain of blocks. This chain continuously grows when new blocks are appended to it. Each block

points to the previous block except the first block called Genesis Block. It offers enhanced security

by creating a record that can’t be altered and is encrypted end-to-end, blockchain helps prevent

fraud and unauthorized activity.

It offers Greater transparency because blockchain uses a distributed ledger, transactions and data

are recorded identically in multiple locations. All network participants with permissioned access

see the same information at the same time, providing full transparency. Instant Traceability can be

achieved because each block in blockchain holds unmodifiable information about all the

transactions along with the timestamp for each, this is an added advantage. Each transaction can

easily be traced.

P a g e 13 | 49

CHAPTER-3

Functionality/Working of the Project

FOLA looks to become a decentralized sharing economy platform that combines the growing trend

of peer-to-peer businesses with long-distance/inter-city traveling. Through a web application,

FOLA connects Riders, those who would like a convenient way of getting from one city to another

without driving, with our Drivers who happen to be going along that route and have extra seats in

their vehicles. From a business standpoint, a distinct advantage that FOLA has over other solutions

lies in its ability to maximize economic efficiency. The platform provides value to customers who

now have a reliable and low-cost alternative for traveling, as well as commuters/drivers who are

able to cut down or recoup the cost of gas for a journey they were planning on regardless.

But where does the blockchain and decentralization come into play? All data concerning

delivery transactions are stored on the Ethereum blockchain network. In a nutshell, Ethereum gives

you the power to trust. It enables the development of systems of automated and executable

agreements facilitated by smart contracts that ensure that all counterparties are treated fairly

throughout a transaction. Decentralization allows us to further maximize economic efficiency by

replacing any profit-seeking intermediaries with smart contracts established directly between

parties (Rider and Driver). This is unlike services like Uber and Lyft, which take a cut of the

payment from the user of the service to the provider to compensate them for facilitating the

transaction. We believe this reinforces our mission for creating positive change in a non-profit

manner.

In addition, since Ethereum tracks every transaction non-repudiably on the blockchain, there is

always a trusted record. This allows for better transparency and more trust between Riders and

Drivers in this open development platform. Lastly, with on-chain data concerning the reputation of

both Riders and Drivers and the success of their prior "transactions", the use of blockchain

technology promises to help facilitate the decentralized credit scoring system of the future.

Installation Instructions

1. Install Node.js & npm

2. Download Ganache

3. Install Truffle

Instructions to run

http://truffleframework.com/ganache/

P a g e 14 | 49

1. truffle compile
2. truffle deploy
3. npm start

4. Open in localhost in browser

Screenshots of the Application:

1. Home Page

2. SignUp

P a g e 15 | 49

3. Create a Drive

P a g e 16 | 49

SOURCE CODE

1. File : authentication.sol

pragma solidity ^0.4.2;

import './zeppelin/lifecycle/Killable.sol';

contract Authentication is Killable {

 struct User {

 bytes32 name;

 }

 mapping (address => User) public users;

 uint private id; // Stores user id temporarily

 modifier onlyExistingUser {

 // Check if user exists or terminate

 require(!(users[msg.sender].name == 0x0));

 _;

 }

 modifier onlyValidName(bytes32 name) {

 // Only valid names allowed

 require(!(name == 0x0));

 _;

 }

 function login() constant

 public

 onlyExistingUser

 returns (bytes32) {

 return (users[msg.sender].name);

 }

 function signup(bytes32 name)

 public

 payable

 onlyValidName(name)

 returns (bytes32) {

 // Check if user exists.

 // If yes, return user name.

 // If no, check if name was sent.

 // If yes, create and return user.

 if (users[msg.sender].name == 0x0)

 {

 users[msg.sender].name = name;

 return (users[msg.sender].name);

 }

 return (users[msg.sender].name);

P a g e 17 | 49

 }

 function update(bytes32 name)

 public

 payable

 onlyValidName(name)

 onlyExistingUser

 returns (bytes32) {

 // Update user name.

 if (users[msg.sender].name != 0x0)

 {

 users[msg.sender].name = name;

 return (users[msg.sender].name);

 }

 }

}

File : rideshare.sol

pragma solidity ^0.4.2;

import './zeppelin/lifecycle/Killable.sol';

contract Rideshare is Killable {

 struct Passenger {

 uint price;

 string state; // initial, driverConfirmed, passengerConfirmed, enRoute, completion, canceled

 }

 struct Ride {

 address driver;

 uint drivingCost;

 uint capacity;

 string originAddress;

 string destAddress;

 uint createdAt;

 uint confirmedAt;

 uint departAt;

 mapping (address => Passenger) passengers;

 address[] passengerAccts;

 }

 Ride[] public rides;

 uint public rideCount;

 mapping (address => uint) reputation;

 // for now, only drivers can create Rides

 function createRide(uint _driverCost, uint _capacity, string _originAddress, string _destAddress, uint _confirmedAt,

uint _departAt) {

 address[] memory _passengerAccts;

 rides.push(Ride(msg.sender, _driverCost, _capacity, _originAddress, _destAddress, block.timestamp, _confirmedAt,

P a g e 18 | 49

_departAt, _passengerAccts));

 }

 function checkBalance() public view returns (uint){

 return address(this).balance;

 }

 // called by passenger

 function joinRide(uint rideNumber) public payable {

 Ride curRide = rides[rideNumber];

 require(msg.value == curRide.drivingCost);

 var passenger = curRide.passengers[msg.sender];

 passenger.price = msg.value;

 passenger.state = "initial";

 rides[rideNumber].passengerAccts.push(msg.sender) -1; //***

 }

 function getPassengers(uint rideNumber) view public returns(address[]) {

 return rides[rideNumber].passengerAccts;

 }

 function getPassengerRideState(uint rideNumber, address passenger) view public returns(string) {

 return rides[rideNumber].passengers[passenger].state;

 }

 function getRide(uint rideNumber) public view returns (

 address _driver,

 uint _drivingCost,

 uint _capacity,

 string _originAddress,

 string _destAddress,

 uint _createdAt,

 uint _confirmedAt,

 uint _departAt

) {

 Ride ride = rides[rideNumber];

 return (

 ride.driver,

 ride.drivingCost,

 ride.capacity,

 ride.originAddress,

 ride.destAddress,

 ride.createdAt,

 ride.confirmedAt,

 ride.departAt

);

 }

 function getRideCount() public constant returns(uint) {

 return rides.length;

 }

 function passengerInRide(uint rideNumber, address passengerAcct) returns (bool) {

 Ride curRide = rides[rideNumber];

P a g e 19 | 49

 for(uint i = 0; i < curRide.passengerAccts.length; i++) {

 if (curRide.passengerAccts[i] == passengerAcct) {

 return true;

 }

 }

 return false;

 }

 function cancelRide(uint rideNumber) {

 Ride curRide = rides[rideNumber];

 require(block.timestamp < curRide.confirmedAt);

 if (msg.sender == curRide.driver) {

 for (uint i = 0; i < curRide.passengerAccts.length; i++) {

 curRide.passengerAccts[i].transfer(curRide.passengers[curRide.passengerAccts[i]].price);

 }

 } else if (passengerInRide(rideNumber, msg.sender)) {

 msg.sender.transfer(curRide.passengers[msg.sender].price);

 }

 }

 // called by passenger

 function confirmDriverMet(uint rideNumber) {

 require(passengerInRide(rideNumber, msg.sender));

 Ride curRide = rides[rideNumber];

 if (keccak256(curRide.passengers[msg.sender].state) == keccak256("passengersConfirmed")) {

 curRide.passengers[msg.sender].state = "enRoute";

 } else {

 curRide.passengers[msg.sender].state = "driverConfirmed";

 }

 }

 // called by driver

 function confirmPassengersMet(uint rideNumber, address[] passengerAddresses) {

 Ride curRide = rides[rideNumber];

 require(msg.sender == curRide.driver);

 for(uint i=0; i < passengerAddresses.length; i++) {

 string curState = curRide.passengers[passengerAddresses[i]].state;

 if (keccak256(curRide.passengers[passengerAddresses[i]].state) == keccak256("driverConfirmed")) {

 curRide.passengers[passengerAddresses[i]].state = "enRoute";

 } else {

 curRide.passengers[passengerAddresses[i]].state = "passengersConfirmed";

 }

 }

 // require(rides[rideNumber].state == "confirmed");

 }

 function enRouteList(uint rideNumber) view public returns(address[]) {

 Ride curRide = rides[rideNumber];

 address[] addressesEnRoute;

 for(uint i = 0; i < curRide.passengerAccts.length; i++) {

 if (keccak256(curRide.passengers[curRide.passengerAccts[i]].state) == keccak256("enRoute")) {

 addressesEnRoute.push(curRide.passengerAccts[i]);

 }

 }

 }

 // called by passenger

P a g e 20 | 49

 function arrived(uint rideNumber) {

 require(passengerInRide(rideNumber, msg.sender));

 Ride curRide = rides[rideNumber];

 curRide.driver.transfer(curRide.passengers[msg.sender].price);

 curRide.passengers[msg.sender].state = "completion";

 }

}

File: dashboard.js

import React, { Component } from 'react'

import RideList from './RideList'

class Dashboard extends Component {

 constructor(props, { authData }) {

 super(props)

 authData = this.props

 }

 render() {

 return(

 <main className="container">

 <div className="pure-g">

 <div className="pure-u-1-1">

 <h1>Dashboard</h1>

 <RideList/>

 </div>

 </div>

 </main>

)

 }

}

export default Dashboard

File : ridelist.js

import React, { Component } from 'react'

import RideshareContract from '../../../build/contracts/Rideshare.json'

import store from '../../store'

import JoinRideContainer from '../../rideshare/ui/joinride/JoinRideContainer'

P a g e 21 | 49

import { Link } from 'react-router'

const contract = require('truffle-contract')

class RideList extends Component {

 constructor(props) {

 super(props)

 this.state = {

 rideshares: [],

 passengers: [],

 rideshareLoading: true

 };

 this.getRides = this.getRides.bind(this);

 this.rideshareButton = this.rideshareButton.bind(this);

 }

 componentDidMount() {

 this.getRides();

 }

 getRides() {

 let web3 = store.getState().web3.web3Instance

 const rideshare = contract(RideshareContract)

 rideshare.setProvider(web3.currentProvider)

 // Declaring this for later so we can chain functions on Authentication.

 var rideshareInstance

 var _this = this;

 // Get current ethereum wallet.

 web3.eth.getCoinbase((error, coinbase) => {

 // Log errors, if any.

 if (error) {

 console.error(error);

 }

 rideshare.deployed().then(function(instance) {

 rideshareInstance = instance

 rideshareInstance.getRideCount.call()

 .then(function(result) {

 console.log('get rideshare count')

 console.log(result)

 let rideshareCount = result["c"][0];

P a g e 22 | 49

 for (let i = 0; i < rideshareCount; i++) {

 rideshareInstance.getRide.call(i)

 .then(function(result) {

 // If no error, login user.

 console.log('getridesharecount')

 console.log(result)

 var tempArr = _this.state.rideshares;

 let tempRideshares = tempArr.concat([result]);

 _this.setState({rideshares: tempRideshares})

 console.log('test2');

 console.log(_this.state.rideshares);

 // debugger

 // return result;

 // return dispatch(loginUser())

 })

 rideshareInstance.getPassengers.call(i)

 .then(function(result) {

 var tempArr = _this.state.passengers;

 let tempPassengers = tempArr.concat([result]);

 _this.setState({passengers: tempPassengers})

 })

 // Attempt to sign up user.

 .catch(function(result) {

 // If error...

 })

 }

 _this.setState({rideshareLoading: false})

 })

 })

 })

 }

 rideshareButton(condition, bigNum,i) {

 let web3 = store.getState().web3.web3Instance

 console.log('passengers');

 console.log(this.state.passengers);

 if (condition) {

 return (

 Leave

)

 } else {

 return (

 <JoinRideContainer ride_number={i} payment={web3.fromWei(bigNum, "ether"

).toNumber()}/>

)

P a g e 23 | 49

 }

 }

 render() {

 let web3 = store.getState().web3.web3Instance

 if (this.state.rideshareLoading) {

 return (

 <p>Loading</p>

)

 } else {

 return(

 <main className="container">

 <div className="pure-g">

 <div className="pure-u-1-1">

 {this.state.rideshares.map((ride, i) => {

 console.log(ride);

 return (

 <p>{ride[0]}, {web3.fromWei(ride[1], "ether").toNumber()},

{ride[2]["c"][0]}, {ride[3]}, {ride[4]},

{this.rideshareButton(this.state.passengers[i].indexOf(web3.eth.accounts[0]) > -1,

ride[1],i)}

 <Link to={`/details/${i}`}>Details</Link>

 </p>

)

 })}

 </div>

 </div>

 </main>

)

 }

 }

}

export default RideList

File: details.js

import React, { Component } from 'react'

import { Link } from 'react-router'

import RideDetails from './RideDetails'

P a g e 24 | 49

class Details extends Component {

 constructor(props) {

 super(props)

 }

 render() {

 console.log(this.props);

 return(

 <main className="container">

 <div className="pure-g">

 <div className="pure-u-1-1">

 <RideDetails rideId={this.props.params.id}/>

 </div>

 </div>

 </main>

)

 }

}

export default Details

File : RideDetails.js

import React, { Component } from 'react'

import RideshareContract from '../../../build/contracts/Rideshare.json'

import store from '../../store'

import JoinRideContainer from '../../rideshare/ui/joinride/JoinRideContainer'

import ConfirmDriverMetContainer from

'../../rideshare/ui/confirmDriverMet/ConfirmDriverMetContainer'

import ConfirmPassengersMetContainer from

'../../rideshare/ui/confirmPassengersMet/ConfirmPassengersMetContainer'

import ArrivedContainer from '../../rideshare/ui/arrived/ArrivedContainer'

import { Link } from 'react-router'

const contract = require('truffle-contract')

class RideDetails extends Component {

 constructor(props) {

 super(props)

 this.state = {

 ride: [],

 passenger: [],

 isPassenger: false,

P a g e 25 | 49

 isDriver: false,

 passengerState: '',

 passengerStates: [],

 rideshareLoading: true,

 passengerLoaded: false,

 };

 this.getRides = this.getRides.bind(this);

 }

 componentDidMount() {

 this.getRides();

 }

 getRides() {

 let web3 = store.getState().web3.web3Instance

 const rideshare = contract(RideshareContract)

 rideshare.setProvider(web3.currentProvider)

 // Declaring this for later so we can chain functions on Authentication.

 var rideshareInstance

 var _this = this;

 // Get current ethereum wallet.

 web3.eth.getCoinbase((error, coinbase) => {

 // Log errors, if any.

 if (error) {

 console.error(error);

 }

 rideshare.deployed().then(function(instance) {

 rideshareInstance = instance

 rideshareInstance.getPassengers(_this.props.rideId)

 .then(function(result) {

 _this.setState({passenger: result})

 if (_this.state.passenger.indexOf(web3.eth.accounts[0]) > -1) {

 _this.setState({isPassenger: true});

 rideshareInstance.getPassengerRideState(_this.props.rideId,

web3.eth.accounts[0])

 .then(function(result) {

 _this.setState({passengerState: result})

 })

 }

 console.log(result);

P a g e 26 | 49

 rideshareInstance.getRide(_this.props.rideId)

 .then(function(result) {

 _this.setState({ride: result})

 if (result[0] == web3.eth.accounts[0]) {

 for (var i = 0; i < _this.state.passenger.length; i++) {

 rideshareInstance.getPassengerRideState(_this.props.rideId,

_this.state.passenger[i])

 .then(function(result) {

 var tempArr = _this.state.passengerStates;

 let tempPassengerStates = tempArr.concat([result]);

 _this.setState({passengerStates: tempPassengerStates});

 })

 _this.forceUpdate();

 }

 }

 _this.setState({passengerLoaded: true})

 console.log(result);

 })

 })

 })

 })

 }

 render() {

 let web3 = store.getState().web3.web3Instance

 if (this.state.passengerLoaded == false) {

 return (

 <p>Loading...</p>

)

 } else {

 let rideId = this.props.rideId;

 let ride = this.state.ride;

 let isPassenger = (this.state.passenger.indexOf(web3.eth.accounts[0]) > -1);

 let isDriver = (ride[0] == web3.eth.accounts[0]);

 let passengerState = this.state.passengerState;

 let passengerStates = this.state.passengerStates;

 let passenger = this.state.passenger;

 if (isPassenger) {

 let confirmDriverMet;

 if (passengerState == "initial") {

 confirmDriverMet = <ConfirmDriverMetContainer ride_number={rideId}/>;

 } else if (passengerState == "enRoute") {

 confirmDriverMet = <ArrivedContainer ride_number={rideId} />

 }

P a g e 27 | 49

 return(

 <main className="container">

 <div className="pure-g">

 <div className="pure-u-1-1">

 <p>You are a passenger</p>

 <p>Current state: {passengerState}</p>

 {confirmDriverMet}

 </div>

 </div>

 </main>

)

 } else if (isDriver) {

 if (passengerStates.length == 0) {

 return (<p>Loading...</p>)

 } else {

 return(

 <main className="container">

 <div className="pure-g">

 <div className="pure-u-1-1">

 <p>You are a driver</p>

 <p>Passenger States: </p>

 {passengerStates.length == 0 ? '' :

passengerStates.map((passengerState, i) => {

 return (

 <p>{passenger[i]} {passengerState}</p>

)

 })}

 <ConfirmPassengersMetContainer ride_number={rideId} />

 </div>

 </div>

 </main>

)

 }

 } else {

 return(

 <main className="container">

 <div className="pure-g">

 <div className="pure-u-1-1">

 <p>Would you like to join this ride?</p>

P a g e 28 | 49

 <JoinRideContainer ride_number={rideId}

payment={web3.fromWei(ride[1], "ether").toNumber()}/>

 </div>

 </div>

 </main>

)

 }

 }

 }

}

export default RideDetails

File : Driver.js

import React, { Component } from 'react'

import { Link } from 'react-router'

import CreateRideContainer from

'../../rideshare/ui/createride/CreateRideContainer'

class Driver extends Component {

 render() {

 return(

 <main className="container">

 <div className="pure-g">

 <div className="pure-u-1-1">

 <h1>Driver</h1>

 <p>Form here</p>

 <CreateRideContainer/>

 </div>

 </div>

 </main>

)

 }

}

export default Driver

P a g e 29 | 49

File : Home.js

import React, { Component } from 'react'

import { Link } from 'react-router'

class Home extends Component {

 render() {

 return(

 <main className="container">

 <div className="pure-g">

 <div className="pure-u-1-1">

 <h1>Good to Go!</h1>

 <p><Link to={`/dashboard`}>Dashboard</Link></p>

 <p>Your Truffle Box is installed and ready.</p>

 <h2>Smart Contract Authentication</h2>

 <p>This particular box comes with autentication via a smart contract

built-in.</p>

 <p>In the upper-right corner, you'll see a login button. Click it to

login with with the Authentication smart contract. If there is no user information

for the given address, you'll be redirected to sign up. There are two

authenticated routes: "/dashboard", which displays the user's name once

authenticated; and "/profile", which allows a user to update their name.</p>

 <h3>Redirect Path</h3>

 <p>This example redirects home ("/") when trying to access an

authenticated route without first authenticating. You can change this path in the

failureRedriectUrl property of the UserIsAuthenticated wrapper on line

9 of util/wrappers.js.</p>

 <h3>Accessing User Data</h3>

 <p>Once authenticated, any component can access the user's data by

assigning the authData object to a component's props.
<code>{"// In

component's render function."}
{"const { authData } =

this.props"}

{"// Use in component."}
{"Hello {

this.props.authData.name }!"}</code></p>

 <h3>Further Reading</h3>

 <p>The React/Redux portions of the authentication fuctionality are

provided by <a href="https://github.com/mjrussell/redux-auth-wrapper"

target="_blank">mjrussell/redux-auth-wrapper.</p>

 </div>

 </div>

 </main>

)

 }

}

export default Home

P a g e 30 | 49

File : Payment.js

import React, { Component } from 'react'

class Payment extends Component {

 constructor(props) {

 super(props)

 }

 render() {

 return(

 <main className="container">

 <div className="pure-g">

 <div className="pure-u-1-1">

 <h1>Dashboard</h1>

 <p>Congratulations. If you're seeing this page,

you've logged in with your own smart contract successfully.</p>

 </div>

 </div>

 </main>

)

 }

}

export default Payment

File : ConfirmPassengersMet.js

import React, { Component } from 'react'

class ConfirmPassengersMet extends Component {

 constructor(props) {

 super(props)

 this.state = {

 gps_location: '',

 passengers: ''

 }

P a g e 31 | 49

 }

 onGpsLocationChange(event) {

 this.setState({ gps_location: event.target.value })

 }

 onPassengersChange(event) {

 this.setState({ passengers: event.target.value })

 }

 handleSubmit(event) {

 event.preventDefault()

 this.props.onConfirmPassengersMetFormSubmit(this.props.ride_number,

this.state.passengers, this.state.gps_location)

 }

 render() {

 return(

 <form className="pure-form pure-form-stacked"

onSubmit={this.handleSubmit.bind(this)}>

 <fieldset>

 <label htmlFor="name">GPS Location</label>

 <input id="gps_location" type="text" value={this.state.gps_location}

onChange={this.onGpsLocationChange.bind(this)} placeholder="GPS Location" />

 <label htmlFor="name">Passengers</label>

 <textarea id="passengers" type="text" value={this.state.passengers}

onChange={this.onPassengersChange.bind(this)} placeholder="Passengers" />

 <button type="submit" className="pure-button pure-button-

primary">Confirm Passengers Met</button>

 </fieldset>

 </form>

)

 }

}

export default ConfirmPassengersMet

P a g e 32 | 49

File : ConfirmPassengersMetActions.js

import RideshareContract from '../../../../build/contracts/Rideshare.json'

// import { loginUser } from '../loginbutton/LoginButtonActions'

import { browserHistory } from 'react-router'

import store from '../../../store'

const contract = require('truffle-contract')

export function confirmPassengersMet(ride_number, passengers, gps_location) {

 let web3 = store.getState().web3.web3Instance

 // Double-check web3's status.

 if (typeof web3 !== 'undefined') {

 return function(dispatch) {

 // Using truffle-contract we create the authentication object.

 const rideshare = contract(RideshareContract)

 rideshare.setProvider(web3.currentProvider)

 // Declaring this for later so we can chain functions on Authentication.

 var rideshareInstance

 // Get current ethereum wallet.

 web3.eth.getCoinbase((error, coinbase) => {

 // Log errors, if any.

 if (error) {

 console.error(error);

 }

 rideshare.deployed().then(function(instance) {

 rideshareInstance = instance

 let new_passengers = passengers.split(",");

 console.log(new_passengers);

 // console.log('shipping cost');

 // console.log(shipping_cost);

 // console.log(shipping_cost * 10^18);

 // console.log(parseInt(shipping_cost * Math.pow(10,18)))

 // Attempt to sign up user.

 rideshareInstance.confirmPassengersMet(ride_number, new_passengers,

{from: coinbase})

 .then(function(result) {

P a g e 33 | 49

 // If no error, login user.

 return browserHistory.push('/dashboard')

 })

 .catch(function(result) {

 // If error...

 })

 rideshareInstance.checkBalance().then(function(result){

 console.log("current Balance: "+result);

 })

 })

 })

 }

 } else {

 console.error('Web3 is not initialized.');

 }

}

File : ConfirmPassengersMetContainer.js

import { connect } from 'react-redux'

import ConfirmPassengersMet from './ConfirmPassengersMet'

import { confirmPassengersMet } from './ConfirmPassengersMetActions'

const mapStateToProps = (state, ownProps) => {

 return {}

}

const mapDispatchToProps = (dispatch) => {

 return {

 onConfirmPassengersMetFormSubmit: (ride_number, passengers, gps_location) => {

 dispatch(confirmPassengersMet(ride_number, passengers, gps_location))

 }

 }

}

const ConfirmPassengersMetContainer = connect(

 mapStateToProps,

 mapDispatchToProps

)(ConfirmPassengersMet)

export default ConfirmPassengersMetContainer

P a g e 34 | 49

File : CreateRide.js

import React, { Component } from 'react'

class CreateRide extends Component {

 constructor(props) {

 super(props)

 this.state = {

 expected_payment: '',

 capacity: 0,

 origin_address: '',

 destination_address: '',

 confirmed_at: 0,

 depart_at: 0

 }

 }

 onExpectedPaymentChange(event) {

 this.setState({ expected_payment: event.target.value })

 }

 onCapacityChange(event) {

 this.setState({ capacity: event.target.value })

 }

 onOriginAddressChange(event) {

 this.setState({ origin_address: event.target.value })

 }

 onDestinationAddressChange(event) {

 this.setState({ destination_address: event.target.value })

 }

 onConfirmedAtChange(event) {

 this.setState({ confirmed_at: event.target.value })

 }

 onDepartAtChange(event) {

 this.setState({ depart_at: event.target.value })

P a g e 35 | 49

 }

 handleSubmit(event) {

 event.preventDefault()

 this.props.onCreateRideFormSubmit(this.state.expected_payment,

this.state.capacity, this.state.origin_address, this.state.destination_address,

this.state.confirmed_at, this.state.depart_at)

 }

 render() {

 return(

 <form className="pure-form pure-form-stacked"

onSubmit={this.handleSubmit.bind(this)}>

 <fieldset>

 <label htmlFor="name">Expected Payment</label>

 <input id="expected_payment" type="text"

value={this.state.expected_payment}

onChange={this.onExpectedPaymentChange.bind(this)} placeholder="Expected Payment"

/>

 <label htmlFor="name">Capacity</label>

 <input id="capacity" type="text" value={this.state.capacity}

onChange={this.onCapacityChange.bind(this)} placeholder="Capacity" />

 <label htmlFor="name">Origin Address</label>

 <input id="origin_address" type="text" value={this.state.origin_address}

onChange={this.onOriginAddressChange.bind(this)} placeholder="Origin Address" />

 <label htmlFor="name">Destination Address</label>

 <input id="destination_address" type="text"

value={this.state.destination_address}

onChange={this.onDestinationAddressChange.bind(this)} placeholder="Destination

Address" />

 <label htmlFor="name">Needs to be confirmed by:</label>

 <input id="confirmed_at" type="text" value={this.state.confirmed_at}

onChange={this.onConfirmedAtChange.bind(this)} placeholder="Confirmed At" />

 <label htmlFor="name">Depart at:</label>

 <input id="depart_at" type="text" value={this.state.depart_at}

onChange={this.onDepartAtChange.bind(this)} placeholder="Depart At" />

P a g e 36 | 49

 <button type="submit" className="pure-button pure-button-primary">Create

Rideshare</button>

 </fieldset>

 </form>

)

 }

}

export default CreateRide

File : CreateRideActions.js

import RideshareContract from '../../../../build/contracts/Rideshare.json'

// import { loginUser } from '../loginbutton/LoginButtonActions'

import { browserHistory } from 'react-router'

import store from '../../../store'

const contract = require('truffle-contract')

export function createRide(expected_payment, capacity, origin_address,

destination_address, confirmed_at, depart_at) {

 let web3 = store.getState().web3.web3Instance

 // Double-check web3's status.

 if (typeof web3 !== 'undefined') {

 return function(dispatch) {

 // Using truffle-contract we create the authentication object.

 const rideshare = contract(RideshareContract)

 rideshare.setProvider(web3.currentProvider)

 // Declaring this for later so we can chain functions on Authentication.

 var rideshareInstance

 // Get current ethereum wallet.

 web3.eth.getCoinbase((error, coinbase) => {

 // Log errors, if any.

 if (error) {

P a g e 37 | 49

 console.error(error);

 }

 rideshare.deployed().then(function(instance) {

 rideshareInstance = instance

 // console.log('shipping cost');

 // console.log(shipping_cost);

 // console.log(shipping_cost * 10^18);

 // console.log(parseInt(shipping_cost * Math.pow(10,18)))

 console.log(expected_payment);

 console.log(parseInt(expected_payment * Math.pow(10,18)));

 // Attempt to sign up user.

 rideshareInstance.createRide(parseInt(expected_payment *

Math.pow(10,18)), capacity, origin_address, destination_address, confirmed_at,

depart_at, {from: coinbase})

 .then(function(result) {

 // If no error, login user.

 return browserHistory.push('/dashboard')

 })

 .catch(function(result) {

 // If error...

 })

 })

 })

 }

 } else {

 console.error('Web3 is not initialized.');

 }

}

File : CreateRideContainer.js

import { connect } from 'react-redux'

import CreateRide from './CreateRide'

import { createRide } from './CreateRideActions'

const mapStateToProps = (state, ownProps) => {

 return {}

}

P a g e 38 | 49

const mapDispatchToProps = (dispatch) => {

 return {

 onCreateRideFormSubmit: (expected_payment, capacity, origin_address,

destination_address, confirmed_at, depart_at) => {

 dispatch(createRide(expected_payment, capacity, origin_address,

destination_address, confirmed_at, depart_at))

 }

 }

}

const CreateRideContainer = connect(

 mapStateToProps,

 mapDispatchToProps

)(CreateRide)

export default CreateRideContainer

File : joinRide.js

import React, { Component } from 'react'

class JoinRide extends Component {

 constructor(props) {

 super(props)

 }

 handleSubmit(event) {

 this.props.onJoinRideFormSubmit(this.props.ride_number, this.props.payment);

 }

 render() {

 return(

 <button onClick={this.handleSubmit.bind(this)}>Join Ride</button>

)

 }

}

export default JoinRide

P a g e 39 | 49

File : JoinRideActions.js

import RideshareContract from '../../../../build/contracts/Rideshare.json'

// import { loginUser } from '../loginbutton/LoginButtonActions'

import { browserHistory } from 'react-router'

import store from '../../../store'

const contract = require('truffle-contract')

export function joinRide(ride_number, payment) {

 let web3 = store.getState().web3.web3Instance

 // Double-check web3's status.

 if (typeof web3 !== 'undefined') {

 return function(dispatch) {

 // Using truffle-contract we create the authentication object.

 const rideshare = contract(RideshareContract)

 rideshare.setProvider(web3.currentProvider)

 // Declaring this for later so we can chain functions on Authentication.

 var rideshareInstance

 // Get current ethereum wallet.

 web3.eth.getCoinbase((error, coinbase) => {

 // Log errors, if any.

 if (error) {

 console.error(error);

 }

 rideshare.deployed().then(function(instance) {

 rideshareInstance = instance

 // console.log('shipping cost');

 // console.log(shipping_cost);

 // console.log(shipping_cost * 10^18);

 // console.log(parseInt(shipping_cost * Math.pow(10,18)))

 console.log(payment);

P a g e 40 | 49

 // Attempt to sign up user.

 rideshareInstance.joinRide(ride_number, {value: parseInt(payment *

Math.pow(10,18)), from: coinbase})

 .then(function(result) {

 // If no error, login user.

 return browserHistory.push('/dashboard')

 })

 .catch(function(result) {

 // If error...

 })

 })

 })

 }

 } else {

 console.error('Web3 is not initialized.');

 }

}

File : JoinRideContainer.js

import { connect } from 'react-redux'

import JoinRide from './JoinRide'

import { joinRide } from './JoinRideActions'

const mapStateToProps = (state, ownProps) => {

 return {}

}

const mapDispatchToProps = (dispatch) => {

 return {

 onJoinRideFormSubmit: (ride_number, payment) => {

 dispatch(joinRide(ride_number, payment))

 }

 }

}

const JoinRideContainer = connect(

 mapStateToProps,

 mapDispatchToProps

)(JoinRide)

export default JoinRideContainer

P a g e 41 | 49

File : userReducer.js

const initialState = {

 data: null

}

const userReducer = (state = initialState, action) => {

 if (action.type === 'USER_LOGGED_IN' || action.type === 'USER_UPDATED')

 {

 return Object.assign({}, state, {

 data: action.payload

 })

 }

 if (action.type === 'USER_LOGGED_OUT')

 {

 return Object.assign({}, state, {

 data: null

 })

 }

 return state

}

export default userReducer

File : getWeb3.js

import store from '../../store'

import Web3 from 'web3'

export const WEB3_INITIALIZED = 'WEB3_INITIALIZED'

function web3Initialized(results) {

 return {

 type: WEB3_INITIALIZED,

 payload: results

 }

P a g e 42 | 49

}

let getWeb3 = new Promise(function(resolve, reject) {

 // Wait for loading completion to avoid race conditions with web3 injection

timing.

 window.addEventListener('load', function(dispatch) {

 var results

 var web3 = window.web3

 // Checking if Web3 has been injected by the browser (Mist/MetaMask)

 if (typeof web3 !== 'undefined') {

 // Use Mist/MetaMask's provider.

 web3 = new Web3(web3.currentProvider)

 results = {

 web3Instance: web3

 }

 console.log('Injected web3 detected.');

 resolve(store.dispatch(web3Initialized(results)))

 } else {

 // Fallback to localhost if no web3 injection. We've configured this to

 // use the development console's port by default.

 var provider = new Web3.providers.HttpProvider('http://127.0.0.1:9545')

 web3 = new Web3(provider)

 results = {

 web3Instance: web3

 }

 console.log('No web3 instance injected, using Local web3.');

 resolve(store.dispatch(web3Initialized(results)))

 }

 })

})

export default getWeb3

File : web3Reducer.js

P a g e 43 | 49

const initialState = {

 web3Instance: null

}

const web3Reducer = (state = initialState, action) => {

 if (action.type === 'WEB3_INITIALIZED')

 {

 return Object.assign({}, state, {

 web3Instance: action.payload.web3Instance

 })

 }

 return state

}

export default web3Reducer

File : wrapper.js

import { UserAuthWrapper } from 'redux-auth-wrapper'

import { routerActions } from 'react-router-redux'

// Layout Component Wrappers

export const UserIsAuthenticated = UserAuthWrapper({

 authSelector: state => state.user.data,

 redirectAction: routerActions.replace,

 failureRedirectPath: '/', // '/login' by default.

 wrapperDisplayName: 'UserIsAuthenticated'

})

export const UserIsNotAuthenticated = UserAuthWrapper({

 authSelector: state => state.user,

 redirectAction: routerActions.replace,

 failureRedirectPath: (state, ownProps) => ownProps.location.query.redirect ||

'/dashboard',

 wrapperDisplayName: 'UserIsNotAuthenticated',

 predicate: user => user.data === null,

 allowRedirectBack: false

})

// UI Component Wrappers

export const VisibleOnlyAuth = UserAuthWrapper({

 authSelector: state => state.user,

P a g e 44 | 49

 wrapperDisplayName: 'VisibleOnlyAuth',

 predicate: user => user.data,

 FailureComponent: null

})

export const HiddenOnlyAuth = UserAuthWrapper({

 authSelector: state => state.user,

 wrapperDisplayName: 'HiddenOnlyAuth',

 predicate: user => user.data === null,

 FailureComponent: null

})

File : App.js

import React, { Component } from 'react'

import { Link } from 'react-router'

import { HiddenOnlyAuth, VisibleOnlyAuth } from './util/wrappers.js'

// UI Components

import LoginButtonContainer from './user/ui/loginbutton/LoginButtonContainer'

import LogoutButtonContainer from './user/ui/logoutbutton/LogoutButtonContainer'

// Styles

import './css/oswald.css'

import './css/open-sans.css'

import './css/pure-min.css'

import './App.css'

class App extends Component {

 render() {

 const OnlyAuthLinks = VisibleOnlyAuth(() =>

 <li className="pure-menu-item">

 <Link to="/dashboard" className="pure-menu-link">Dashboard</Link>

 <li className="pure-menu-item">

 <Link to="/profile" className="pure-menu-link">Profile</Link>

 <li className="pure-menu-item">

 <Link to="/driver" className="pure-menu-link">Drive</Link>

 <LogoutButtonContainer />

P a g e 45 | 49

)

 const OnlyGuestLinks = HiddenOnlyAuth(() =>

 <li className="pure-menu-item">

 <Link to="/signup" className="pure-menu-link">Sign Up</Link>

 <LoginButtonContainer />

)

 return (

 <div className="App">

 <nav className="navbar pure-menu pure-menu-horizontal">

 <ul className="pure-menu-list navbar-right">

 <OnlyGuestLinks />

 <OnlyAuthLinks />

 <Link to="/" className="pure-menu-heading pure-menu-link">Truffle

Box</Link>

 </nav>

 {this.props.children}

 </div>

);

 }

}

export default App

File : index.js

import React from 'react';

import ReactDOM from 'react-dom';

import { Router, Route, IndexRoute, browserHistory } from 'react-router'

import { Provider } from 'react-redux'

import { syncHistoryWithStore } from 'react-router-redux'

import { UserIsAuthenticated, UserIsNotAuthenticated } from './util/wrappers.js'

import getWeb3 from './util/web3/getWeb3'

// Layouts

P a g e 46 | 49

import App from './App'

import Home from './layouts/home/Home'

import Dashboard from './layouts/dashboard/Dashboard'

import Landing from './layouts/landing/Landing'

import Payment from './layouts/payment/Payment'

import Driver from './layouts/driver/Driver'

import Details from './layouts/details/Details'

import SignUp from './user/layouts/signup/SignUp'

import Profile from './user/layouts/profile/Profile'

// Redux Store

import store from './store'

// Initialize react-router-redux.

const history = syncHistoryWithStore(browserHistory, store)

// Initialize web3 and set in Redux.

getWeb3

.then(results => {

 console.log('Web3 initialized!')

})

.catch(() => {

 console.log('Error in web3 initialization.')

})

ReactDOM.render((

 <Provider store={store}>

 <Router history={history}>

 <Route path="/" component={App}>

 <IndexRoute component={Landing} />

 <Route path="dashboard" component={UserIsAuthenticated(Dashboard)} />

 <Route path="signup" component={UserIsNotAuthenticated(SignUp)} />

 <Route path="profile" component={UserIsAuthenticated(Profile)} />

 <Route path="home" component={UserIsAuthenticated(Home)} />

 <Route path="payment" component={UserIsAuthenticated(Payment)} />

 <Route path="driver" component={UserIsAuthenticated(Driver)} />

 <Route path="/details/:id" component={UserIsAuthenticated(Details)}/>

 </Route>

 </Router>

 </Provider>

),

 document.getElementById('root')

)

P a g e 47 | 49

P a g e 48 | 49

CHAPTER-4

Results and Discussions

The primary purpose of this project is to offer cab rental services to customers offering immense

security without the need to be dependent on third party systems, no governing authority is

required to administer and look over the transacting parties and the system is particularly

transparent. This system is crafted on Ethereum Blockchain. Ethereum is a blockchain platform

with its own cryptocurrency, called Ether (ETH) or Ethereum, and its own programming language,

called Solidity. Ethereum is a decentralized public ledger for verifying and recording transactions.

The network's users can create, publish, monetize, and use applications on the platform, and use its

Ether cryptocurrency as payment. This project can be deployed on Polygon Network for now.

Polygon is a protocol and a framework for building and connecting Ethereum-compatible

blockchain networks. Aggregating scalable solutions on Ethereum supporting a multi-chain

Ethereum ecosystem.

P a g e 49 | 49

CHAPTER-5

Conclusion and Future Scope

Technologies such as blockchain have disrupted the entire fintech market and even though it has

created a lot of controversies, the technology is going to get more and more integrated into our

lives. When it comes to the matter of tracking financial properties, Blockchain technology has kept

its promise as well as has shown consistency. Several financial institutions have invested in this

technology after recognizing its potential and beneficial impacts. Because of its transparent ledger

system, Blockchain can tackle the flow and dealings of black money flow. Governments are

considering it as an option to have more efficient regulations over the countries’ economies.

The current system that has been drafted takes in Longitude and Latitudes to track the Pick-up and

Drop Locations, in future the integration of Google Maps can be done. This would surely be an

added advantage, enhancing the user experience and usability.

As of now, FOLA is built on Ethereum Blockchain written in Solidity. To address the issue of

Scalability we are deploying the application on Polygon Network but in future, we’ll be migrating

our codebase to Rust so that we can deploy it on Solana Network. It is a high performance

blockchain that uses a proof of stake consensus mechanism. It has a low barrier to entry along with

timestamped transactions to maximize efficiency.

