
A Project Report

on

NETWORK PACKET SNIFFER

Submitted in partial fulfillment of the

requirement for the award of the degree of

Bachelor of Technology

Under The Supervision of

Dr. N. Gayathri

Associate Professor

Submitted By

Ayushi Srivastava
18SCSE1010364

SCHOOL OF COMPUTING SCIENCE AND ENGINEERING

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING /

DEPARTMENT OF COMPUTER APPLICATION

GALGOTIAS UNIVERSITY, GREATER NOIDA

INDIA

MAY, 2022

SCHOOL OF COMPUTING SCIENCE AND
ENGINEERING

GALGOTIAS UNIVERSITY, GREATER NOIDA

CANDIDATE’S DECLARATION

I hereby certify that the work which is being presented in the thesis/project/dissertation, entitled

“NETWORK PACKET SNIFFER” in partial fulfillment of the requirements for the award of

the B-TECH submitted to the School of Computing Science and Engineering of Galgotias

University, Greater Noida, is an original work carried out during the period of May. Year to Month

and Year, under the supervision of Dr. N. Gayathri (Associate Professor), Department of

Computer Science and Engineering/Computer Application and Information and Science, of

School of Computing Science and Engineering, Galgotias University, Greater Noida

The matter presented in the thesis/project/dissertation has not been submitted by me/us for the

award of any other degree of this or any other places.

Ayushi Srivastava, 18SCSE1010364

This is to certify that the above statement made by the candidates is correct to the best of my

knowledge.

Dr. N. Gayathri

Ass. Professor

CERTIFICATE

The Final Thesis/Project/ Dissertation Viva-Voce examination of Ayushi Srivastava:

18SCSE1010364 has been held on 13
th

 May and his/her work is recommended for the award of B-

Tech CSE.

Signature of Examiner(s) Signature of Supervisor(s)

Signature of Project Coordinator Signature of Dean

Date: May, 2022

Place: Greater Noida

Acknowledgment

I would like to express my gratitude to everyone who has assisted

me in this attempt. I would not have completed this assignment

without their practical help, continual guidance, and

encouragement. I owe a huge debt of gratitude to Dr. N. Gayathri,

Ma’am, for his real assistance and support in completing this

project. I thank the University of Galgotias for providing me with

this chance. I also want to express my gratitude to my parents and

relatives, who have always been financially and morally

supportive of me. Last but not least, I'd like to express my

gratitude to all of my friends who assisted me in completing my

project report. Any omissions in this brief acknowledgment are

not indicative of a lack of gratitude.

Abstract

Packet sniffing is a technique for exploiting each packet as it

travels over the network. Network analysis is one of the most

difficult issues that network managers encounter. Existing

technologies for network traffic analysis provide very little

information, which would be massive data if it were all kept for

subsequent study, making it impossible to evaluate. The goal of

this research is to present a sniffing tool that can collect both IPv4

and IPv6 packets. The suggested tool uses the socket class in

Visual Studio to access the collected packets. The first scenario

involves capturing packets and identifying the ports, protocols,

and packets utilized in IPV4. The second scenario, on the other

hand, examines IPV6 in the same way. The number of captured

protocols and the utilized ports for both source and destination

ports differ from IPv4 to IPv6.

Table of Contents

Title Page

No.

Candidates Declaration I

Acknowledgement II

Abstract III

Contents IV

List of Table V

List of Figures VI

Acronyms VII

Chapter 1 Introduction 10

Chapter 2

Literature Survey/Project Design

12

Chapter 3

Functionality/Working of Project

14

Chapter 4

Results and Discussion

20

Chapter 5

Conclusion

27

Chapter 6 Reference 28

List of Table

S.No. Caption Page No.

1 Packet analyzer for IPV6 26

List of Figures

S.No. Title Page No.

1 Flowchart 18

2 Selection of desired IP address 20

3 Sniffer's main interface with packet capture results 21

4 Statistics analyzer for IPV4 23

5 Statistics analyzer for IPV6 25

Acronyms

B.Tech. Bachelor of Technology

M.Tech. Master of Technology

BCA Bachelor of Computer Applications

MCA Master of Computer Applications

B.Sc. (CS) Bachelor of Science in Computer Science

M.Sc. (CS) Master of Science in Computer Science

SCSE School of Computing Science and Engineering

CHAPTER-1

Introduction

Managers and administrators of networks employ a packet

sniffing tool to monitor data transported over the network.

Unauthorized users might use packet followers to steal

information from the network. Packet followers are used for

network security and network administration (Xu et al., 2016). A

packet analyzer can show a wide range of data delivered over the

network, as well as the network traffic (Singh and Kumar, 2018).

Packet sniffers are hardware or software devices that can record

both incoming and outgoing network traffic, as well as screen and

username and password information and other sensitive data (Anu

and Vimala, 2017).

A packet sniffer allows you to configure the network interface

such that it displays all data sent across the network. Using sniffer

tools, data sent or received across the network can be captured for

study (Chauhan and Sharma, 2014). A sniffer intercepts data and

records packets, comparing them to header formats to identify

standardized components and extract needed parts such as used

ports, addresses, and so on. There are numerous network analysis

tools available to everyone, where the user's intent cannot be

determined as to whether it is for good, useful, or destructive

purposes (Davis and Clark, 2011). Hackers might employ a

program that can collect user credentials, but a network

administrator might use the same tool to uncover network

information like available bandwidth. Sniffer can also be used to

evaluate web filters, firewalls, and client/server connections

(Elsen et al., 2015).

Network-related topics now require actual labs to learn and

comprehend protocol behavior (Gandhi et al., 2014). To fully

comprehend these protocols, we must first construct an adequate

environment for testing and confirming their behavior under

various conditions. In this paper, we will create an environment

that allows us to analyze network components including packet

loss and latency. The best approach to change the characteristics

of these networks is to use a software tool that allows you to do

so quickly and easily; this instrument is a wide-area network

emulator (also known as Sniffer) (Oluwabukola et al., 2013;

Jaisinghani et al., 2017). Following the programming and

implementation of this tool, certain tests will be run to analyze

network elements by analyzing and identifying the protocols

utilized in transceiver activities. Furthermore, the packet will be

thoroughly examined in order to display the key message

components by defining the variables' values. This will result in

a comprehensive network study to better understand network and

user behavior by identifying and collecting statistics on the most

often used protocols and data length. The tool described in this

paper assists in network analysis and provides a clear live statistic

about the network with no wasted storage.

CHAPTER-2

Literature Review

At the transport layer level, Nishanth and Babu (2014) suggested

a defense against "hijacking assaults." The web server and client

must first establish a logical connection to the TCP layer, which

is known as a triple handshake. During this process, the parties

synchronize their sequence numbers. Changing the sequence

number across the connection is necessary. The notion is that

every time a new packet is sent, the sequence number must be

recalculated. During a 'hijacking attack,' this makes it more

difficult for attackers to forecast or estimate the sequence number.

The problem with this strategy is that if an attacker gathers

enough packets, he can break the algorithm and change the

sequence.

Poonkuntran and Arun (2014) proposed employing honey pots as

a way of detecting bogus access points. On wireless networks, the

honey pots will be superfluous access points. The honey pot will

be utilized to acquire information or evidence, as well as to

identify attack patterns used by attackers. Honey pots will be used

to lure in intruders and direct them to the network trap system.

The honey pots will only detect the false access points, leaving

the identification of the legitimate stations undiscovered.

Singh et al. (2012) proposed a wireless network (cross-layer IDS)

intrusion detection system that combines the weight value of the

received signal strength (RSS) and the time it takes to request and

transmit transmission packets. The TT and RSS values are

captured and monitored on the server in technology. When the

aggregate weight of the station exceeds the specified limit during

the detecting procedure, the IDS will sound an alarm. To get an

accurate result, the technology relies on the threshold value.

When the leg is legitimate silent, this strategy gives false

negatives.

Atlas (Qazi et al., 2013) is a method for discovering granular

applications from mobile agents through collective outsourcing.

The trainer is then forwarded to a control aircraft's automatic

learning plane for classification. Mekky et al. (2014) developed

an extended application architecture for SDN systems that are

aware of the generalization of redirection abstractions, which

includes data from 4 to 7. Their implementation adds application

logic in converters to boost efficiency. FlowQoS (Seddiki, 2014)

is also a reference design for implementing application-based

service quality by delegating application identification and QoS

tuning to the SDN controller (Tsai et al., 2018).

CHAPTER – 3

Methodology

In TCP/IP networks, a packet is an extremely large data carrier.

Active information is broken down and encoded into packets in

the packet exchange network. The source nodes deliver packets

to the access point with destination and source addresses. After

obtaining the packet destination, decryption and aggregation are

conducted to extract the required data. We work on a suggestion

tool for sniffing and network packet recording in this study. The

program collects the packet and analyses its contents in order to

identify network obstructions that cause transmission, reception,

or work delays in general. The delay in network operation could

be caused by packet congestion on a certain port. It will be simple

for network administrators to propose different approaches and

techniques for solving the existing problem following the study

and comprehensive analysis of the data. Even if the network

appears to be free of difficulties, as the network grows in size and

future work progresses, new problems will emerge, hence the

major goal of the suggested tool in this project is to analyze

network behavior in order to improve performance or solve

problems. Based on past research, we believe that developing a

tool that works with both IPv4 and IPv6 will be a significant

outcome that will immediately aid network management and

improvement both now and in the near future, given the

introduction of IPv6. The implementation of the sniffing tool is

the most important stage of this project. After some coding in the

C# computer language, this step will be proposed. To begin, the

application displays all of the network's connected devices' IP

addresses. The chosen IP address will be used as an instruction to

capture the packet and offer some information about it by

determining if the packet is being transmitted or received. In

addition, the protocol used for this packet will be recognized. In

addition to the protocol, fundamental packet information such as

checksum, time to leave TTL, data length, source address, a

destination address, and port will be investigated.

Phase 1: Data collection and simulations

One of the most significant phases is simulation and data

collecting, in which the real situation is recreated and traffic data

is gathered for the project needs of both IP versions 4 and 6.

Instead of Wireshark, the simulation will use a packet generator

to capture the optimal traffic for pattern analysis. The pattern

analysis results will be incorporated into a new sniffing tool in a

novel method, allowing the new sniffing tool to monitor and

record such traffics.

Phase 2: Design and Implementation

This phase focuses on the design of the new Sniffing tool, which

is a continuation of the previous phase. Starting with the

specification of system requirements that meet the demands of the

users and progressing via software engineering diagrams,

implementation of provided requirements into source code, and

software compilation. Finally, network simulation will be used to

test the new sniffing tool.

This phase focuses on the design of the new Sniffing tool, which

is a continuation of the previous phase. Starting with the

specification of system requirements that meet the demands of the

users and progressing via software engineering diagrams,

implementation of provided requirements into source code, and

software compilation. Finally, network simulation will be used to

test the new sniffing tool.

The network's weakness may not be fully interrupted, but it's

worth noting that there's a lot of pressure on one of the network's

ports, which causes congestion, which causes the network to

weaken or slow down, resulting in poor performance and

inefficiency.

Phase 3: Tool Evaluation
The study of traffic monitoring and capture from prior

simulations will be explained in the project analysis. The new

sniffer program, like the other two, will save whatever it collects

in a log file. Depending on the settings, the log file is located in

the application folder or the home folder. This file contains

information about the type of traffic/packets that pass through an

IPv4 or IPv6 network, as well as the source and destination of the

traffic. The log file's output can determine whether the new

sniffing instruments can monitor or collect the traffic as proposed.

If not, this utility needs to be updated.

CHAPTER – 3

Proposed system

The new sniffer tool must be able to de-capsulate both IPv4 and

IPv6 data on a network. The procedure of smelling steps is

depicted in Figure 1. The process begins by conducting a

complete search of all devices connected to the network and

putting them in a list for the user to choose from, as illustrated in

Figure 1. Following the retrieval of IP addresses for all devices,

whether version 4 or 6, the required IP address is chosen, followed

by the buffer size, which is the number of packets collected. The

data is subsequently analyzed in order to present information

about each packet. Source IP address, source port, destination IP

address, destination port, and protocol will all be required and

very crucial in network analysis. This information will allow

network analysts to gain a better understanding of the network.

The proposed sniffing tool then provides various statistics for

displaying information in user-friendly interfaces.

Our packet sniffer copies packets from the kernel buffer into a

buffer formed when a live capture session is started at the user

level. The buffer only handles one packet at a time for application

processing before copying the next packet into it. The novel

method used in the creation of our packet sniffer is to boost

performance by employing our proposed tool to share buffer

space between kernel and application space. As illustrated in

Algorithm 1, the sniffing operation is carried out in real time,

providing real-time statistics on the active ports and protocols.

Because it saves storage and time, live mode sniffing is more

efficient than traditional technique

End

Save statistics

Figure 1: Flowchart

Packet Filtering by Protocols

(TCP, UDP, IGMP, ..etc)

Yes

another packet?

No

Select another IP

address to be

captured

Select packet to display data

Display packetcontent to identify message(source,

destination, port and … etc)

Capture packets

Select the required IP address

Search connected IP addresses

No

Yes

Start sniffing

ALGORITHM 1: Capture an IP address
To begin capturing, enter the desired IP address and buffer size.

Captured packets as output.

Start

Step 1: Capture all packets connected to the selected IP address

(both received and delivered).

Step 2: In the list view, list all of the collected packets.
Step 3: Use the sniffer tool's list view to determine the key

contents of the captured packet (such as the source IP address,

destination IP address, port, and packet size) by comparing the

captured packet with the header of the packet.

Step 4: Breaks if the amount of captured packets equals the buffer

size; else, proceed to step 3.

Step 5: Temporarily store all of the recorded packets in the buffer

and continue live sniffing.

End

CHAPTER – 4

Results and Discussion

Two scenarios will be tested in this section to discuss the results

received while using the proposed tool.

Scenario A (IPV4)

IP address version 4 is tested in this scenario by scanning all IP

addresses linked to the network and then specifying an address to

begin the capturing and sniffing operation. All network-related

addresses are scanned and listed in a drop-down list for selection,

as illustrated in Figure 2.

Figure 2: Selection of desired IP address

The number of IP addresses on the network, as indicated in Figure

2. The size of the buffer, which saves captured packets, should be

specified after selecting the required IP address. In other words,

the buffer size is equal to the number of packets collected.

Pressing the start button in the capturing process after selecting

the desired basic information such as IP address and buffer size

will display the system's main screen with the beginning of the

data for this IP address gradually displayed on the screen as new

packets are captured automatically, as shown in Figure 3.

Figure 3: Sniffer's main interface with packet capture results

As illustrated in Figure 3, the primary interface will be separated

into three main areas, each of which displays distinct results in

addition to the existence of auxiliary conditions such as a status

bar, which contains a progress bar that represents the number of

packets in the buffer. The upper portion, dubbed the 'packet

analyzer,' is the most important of these three sections. Each of

the eight columns in the packet analyzer list view has a different

function: (No, Time, Source IP address, Source port, Destination

IP address, Destination port, Protocol, Package size). The

information is organized into rows. Each row represents a

collected packet, with simple and basic information displayed as

previously mentioned. The number of packets captured is

flexible, but it is fully determined by the buffer value given in the

first interface before you begin capturing. When you press once

on any of the collected packets, the program's second sub-

interface is activated. This interface contains more detailed

information on the selected packet, which is critical for system

engineers who are analyzing network data. For example, if the IP

address version is 4 or 6, this information is useful.

There is also information on the protocol utilized by this packet

in either transmitting or receiving it. Because this packet uses the

TCP protocol, there will be more information about it, such as

sequence number, acknowledgment number, header length, flags,

checksum, and message length. Changing the kind of protocol

used by this packet changes this information. TCP, UDP, ICMP,

and IGMP are the four types of protocols that our suggested

system recognizes and analyses. Because the protocol utilized is

TCP, which is a trustworthy protocol, there is acknowledgment in

this scenario. When you click on a different packet, the data in

this sub-interface of the comprehensive information about the

captured packet changes to the information of the newly selected

packet.

Figure 4: Statistics analyzer for IPV4

The system also shows the most frequently used ports in the

network by providing the most often used source port. This is only

for the most often used source ports and the most frequently used

destination ports from the sample used to open the statistics pane.

This only applies to destination ports within the network packet

sample until the statistics window is opened. This data is critical

for analysing the network and determining the pressure areas on

each transmission or receiving port that could cause network

congestion. Figure 4 shows three intercepted protocols that were

found within the captured sample and estimated to be 1,000

packets each. TCP, UDP, and IGMP are the protocols in question,

with TCP having the highest percentage and being depicted in

blue, followed by the UDP protocol. The IGMP protocol was the

least commonly used in this sample of network packets.

Furthermore, port 1901 is the most often used source port.

However, in the network packets recorded, port 443 was the most

often used destination port. These statistics' percentages and clear

numbers are all distinct and conflicting. They differ from one

network to the next and from time to time, depending on how the

network is being used at the time. As a result, all protocols may

appear, or some may be lost as a result of usage. The proportions

can change dramatically. Also, depending on network usage and

sample size collected from network packets, the most common

source port and most frequent destination port will almost likely

differ.

Scenario B (IP v6)

Table 1 provides a sample of statistics from IPv6 network

packets. These statistics' percentages and clear numbers are all

distinct and conflicting. Where they differ from network to

network and from time to time depending on how the network is

being used at the time, so that all protocols may appear or be

absent for some users, and ratios may be significantly different.

Also, depending on network usage and sample size collected from

network packets, the most common source port and most frequent

destination port will almost likely differ.

IPV6
40

35

30

25

20
IPV6

15

10

TCP UDP IGMP ICMP

Figure 5: Statistics analyzer for IPV6

The buffer size chosen for this situation was 2,000 collected

packages in the sample. Within this sample, we notice the

emergence of four protocols: TCP, UDP, ICMP, and IGMP,

which have been emphasised by the system and employed in both

transmission and receiving network operations. Figure 5 depicts

the use of the TCP and ICMP protocols, with the ICMP being

represented by red and the TCP being represented by light blue.

While the use of the IGMP protocol, which is shown in dark blue,

was slightly higher than the use of the UDP protocol, which is

shown in yellow.

For the selected sample of IPv6 network packets recorded, the

most common source port was 1742, and the most common

destination port was 80.

TABLE 1: PACKET ANALYZER FOR IPV6

No. Time Source Source

port

Destination Destination

port

Protoc

ol

Package

size

62 06:56:38:7

72

fe80::a4b3:e404:1eec:3

746

1900 2001:e68:5414::0001:2

2cf

1900 IGMP 74

63

06:56:38:7

93

fe80::a4b3:e404:1eec:3

746

1900

2001:a18:25:11::40

1900

UDP

74

64

06:56:38:8

54

2001:4860:4860::8888

1901

2001:4860:40::8114

1901

ICMP

90

65

06:56:38:9

15

fe80::a4b3:e404:1eec:3

746

1901

2001:4860:40::8114

1901

IGMP

90

66

06:56:38:9

74

fe80::a4b3:e404:1eec:3

746

1901

2001:4860:40::8114

1901

TCP

90

67

06:56:39:3

5

2001:4860:4860::8888

1740

2001:4860::25cc:877

80

TCP

133

68

06:56:39:9

3

fe80::a4b3:e404:1eec:3

746

1740

2001:a18:25:11::40

80

ICMP

133

69

06:56:39:1

53

fe80::a4b3:e404:1eec:3

746

1740

2001:4860::25cc:877

80

TCP

133

70

06:56:39:2

14

2001:4860:4860::8888

1741

2001:a18:25:11::40

80

ICMP

255

71

06:56:39:2

75

fe80::a4b3:e404:1eec:3

746

1741

2001:e68:5414::0001:2

2cf

80

IGMP

255

72

06:56:39:3

35

fe80::a4b3:e404:1eec:3

746

1741

2001:e68:5414::0001:2

2cf

80

UDP

255

73

06:56:39:3

95

2001:4860:4860::8888

1742

2001:a18:25:11::40

80

TCP

180

74

06:56:39:4

55

fe80::a4b3:e404:1eec:3

746

1742

2001:e68:5414::0001:2

2cf

80

UDP

180

CHAPTER – 5

Conclusion

Finally, we may see a significant variation in the apparent results

of IPv4 and IPv6 network packets. The outcomes of each scenario

were examined and analyzed independently in order to determine

the lessons learned from each scenario, and then a conversation

about the scenarios' outcomes was held with some. There was a

difference in the outcomes between the two scenarios. The

variation in values and protocols employed accounts for this

disparity. Because the ICMP protocol was not caught in Scenario

A, only three protocols were captured: TCP, UDP, and IGMP. In

Scenario B, however, four protocols were utilized and recorded:

TCP, UDP, ICMP, and IGMP. It was discovered that the

protocols utilized in Scenario B for IP version 6 were not visible

and did not exist in IP version 4. The ICMP protocol, for example,

appeared to be a distinction between the two cases. Aside from

the protocols employed, the ports in the two cases differed, or

more accurately, the most commonly used ports in the network.

This discrepancy is attributable to a number of factors that have a

direct impact on the results, including the collected IP packet

(version 4 or 6) and the sample size. Furthermore, the network

used at the time of system development has a significant impact

on the results, both in terms of protocols collected and through

the most commonly used network ports.

CHAPTER – 6

REFERENCE

Anu, P. and Vimala, S. (2017) ‘A survey on sniffing attacks on

computer networks’, 2017 International Conference on Intelligent

Computing and Control (I2C2), pp.1–5 [online]

http://ieeexplore.ieee.org/document/8321914/ (accessed 21 May

2019).

Chauhan, D. and Sharma, S. (2014) ‘A survey on next generation

internet protocol IPV6’, International Journal of Electronics and

Electrical Engineering, Vol. 2, No. 2, pp.143–146.

Davis, J.J. and Clark, A.J. (2011) ‘Data pre-processing for

anomaly based network intrusion detection: a review’, Comput.

Secur., Vol. 30, Nos. 6–7, pp.353–375.

Elsen, L. et al. (2015) ‘goProbe: a scalable distributed network

monitoring solution’, 2015 IEEE International Conference on

Peer-to-peer Computing (P2P), pp.1–10, Boston, MA, USA.

Gandhi, C., Suri, G., Golyan, R., Saxena, P. and Saxena, B.

(2014) ‘Packet sniffer – a comparative study’, International

Journal of Computer Networks and Communications Security,

Vol. 2, No. 5 pp.179–187.

Jaisinghani, D., Naik, V., Kaul, S.K. and Roy, S. (2017) ‘Sniffer-

based inference of the causes of active scanning in WiFi

networks’, 2017 Twenty-third National Conference on

Communications (NCC), Chennai, pp.1–6.

Mekky, H. et al. (2014) ‘Application-aware data plane processing

in SDN’, in ACM Workshop Hot Topics Network, pp.13–18,

Chicago, IL, USA.

http://ieeexplore.ieee.org/document/8321914/

Nishanth, N. and Babu, S.S. (2014) ‘Sequence number alteration

by logical transformation (SALT): a novel method for defending

session hijacking attack in mobile ad hoc network’, International

Journal of Computer and Communication Engineering, Vol. 3,

No. 5, pp.338–342. Oluwabukola, O., Awodele, O., Ogbonna, C.,

Chigozirim, A. and Anyaehie, A. (2013) ‘A packet sniffer

(PSniffer) application for network security in Java’, Proceedings

of the Informing Science and Information Technology Education

Conference, Informing Science Institute, pp.389–400.

Poonkuntran, S. and Arun, A.M. (2014) ‘Study of Honeypots:

analysis of WiFi Honeypots and Honeypots tools’, AENSI

Journals on Advances in Natural and Applied Sciences, Special

Edition, Vol. 8, No. 17, pp.48–59. 244 R.F. Albadri

Qadeer, M.A., Iqbal, A., Zahid, M. and Siddiqui, M.R. (2010)

‘Network traffic analysis and intrusion detection using packet

sniffer’, 2010 Second International Conference on

Communication Software and Networks, Singapore, Singapore.

Qazi, Z.A. et al. (2013) ‘Application-awareness in SDN’, ACM

SIGCOMM Comput. Commun. Rev., Vol. 43, No. 4, pp.487–

488.

Seddiki, M.S. (2014) ‘FlowQoS: QoS for the rest of us’, in

Workshop Hot Topics Softw. Defined Network. pp.207–208,

Chicago, IL, USA.

Singh, J., Gupta, S. and Kaur, L. (2012) ‘A cross-layer based

intrusion detection technique for wireless networks’,

International Arab Journal of Information Technology, Vol. 9,

No. 3, pp.201–207.

Singh, R. and Kumar, S. (2018) ‘A comparative study of various

wireless network monitoring tools’, 2018 First International

Conference on Secure Cyber Computing and Communication

(ICSCCC), Jalandhar, India, pp.379–384.

Tsai, P-W. et al. (2018) ‘Network monitoring in software-defined

networking: a review’, IEEE Systems Journal, Vol. 12, No. 4,

pp.3958–3969.

Xu, J., Liu, W. and Zeng, K. (2016) ‘Monitoring multi-hop multi-

channel wireless networks: online sniffer channel assignment’,

2016 IEEE 41st Conference on Local Computer Networks

(LCN), Dubai, pp.579–582.

Yang, J., Zhang, Y., King, R. and Tolbert, T. (2018) ‘Sniffing and

chaffing network traffic in stepping-stone intrusion detection’,

2018 32nd International Conference on Advanced Information

Networking and Applications Workshops (WAINA), Krakow,

Poland, pp.515–520.

Zhao, Z., Huangfu, W. and Sun, L. (2012) ‘NSSN: a network

monitoring and packet sniffing tool for wireless sensor networks’,

2012 8th International Wireless Communications and Mobile

Computing Conference (IWCMC), Limassol, Cyprus, pp.537–

542.

