• Login
    View Item 
    •   DSpace Home
    • PROJECT REPORTS
    • SCHOOL OF COMPUTING SCIENCE & ENGINEERING
    • B.TECH
    • View Item
    •   DSpace Home
    • PROJECT REPORTS
    • SCHOOL OF COMPUTING SCIENCE & ENGINEERING
    • B.TECH
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    DRIVER DROWSINESS DETECTION USING MACHINE LEARNING

    Thumbnail
    View/Open
    SCSE_MEHEDI HASAN MONI_19SCSE1140001 (872.4Kb)
    Date
    2023-05
    Author
    MONI, MEHEDI HASAN
    Metadata
    Show full item record
    Abstract
    Drowsiness and fatigue are one of the main causes leading to road accidents. They can be prevented by taking effort to get enough sleep before driving, drink coffee or energy drink, or havea rest when the signs of drowsiness occur. The popular drowsiness detection method uses complexmethods, such as EEG and ECG. This method has high accuracy for its measurement but it need to use contact measurement and it has many limitations on driver fatigue and drowsiness monitor[18]. Thus, it is not comfortable to be used in real time driving. This paper proposes a way to detectthe drowsiness signs among drivers by measuring the eye closing rate and yawning. This project describes on how to detect the eyes and mouth in a video recorded from the experiment conducted by MIROS (Malaysian Institute of Road Safety). In the video, a participant will drive the driving simulation system and a webcam will be place in front of the driving simulator. The video will be recorded using the webcam to see the transition from awaketo fatigue and finally, drowsy. The designed system deals with detecting the face area of the image captured from the video. The purpose of using the face area so it can narrow down to detect eyes and mouth within the face area. Once the face is found, the eyes and mouth are foundby creating the eye for left and right eye detection and also mouth detection. The parameters of the eyes and mouth detection are created within the face image. The video were change into images frames per second. From there, locating the eyes and mouth can be performed. Once the eyes are located, measuring the intensity changes in the eye area determine the eyes are open or closed. If the eyes are found closed for 4 consecutive frames, it is confirm that the driver is in drowsiness condition
    URI
    http://10.10.11.6/handle/1/12350
    Collections
    • B.TECH [1324]

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV