dc.contributor.author | PRADHAN, NILANJANA | |
dc.contributor.author | Sagar, Shrddha | |
dc.contributor.author | Singh, Ajay Shankar | |
dc.date.accessioned | 2024-09-15T06:22:06Z | |
dc.date.available | 2024-09-15T06:22:06Z | |
dc.date.issued | 2024-01 | |
dc.identifier.uri | http://10.10.11.6/handle/1/17983 | |
dc.description | TABLE OF CONTENT
Candidate’s Declaration............................................................................................... ii
Abstract ....................................................................................................................... ix
List of Tables ............................................................................................................... xi
List of Figures............................................................................................................. xii
List of Publications......................................................................................................xv
CHAPTER 1.................................................................................................................1
INTRODUCTION TO MACHINE LEARNING ARCHITECTURE AND
FRAMEWORK............................................................................................................1
1.1. Introduction.....................................................................................................1
1.2. Machine Learning Algorithms........................................................................3
1.2.1. Regression.......................................................................................................3
1.2.2. Linear Regression ...........................................................................................4
1.2.3. Support Vector Machine .................................................................................4
1.2.4. Linear Classifiers............................................................................................4
1.2.5. Classifier Margin ............................................................................................5
1.3. SVM Applications ..........................................................................................8
1.3.1. The Naïve Bayes Model..................................................................................9
1.3.2. Random Forest................................................................................................9
1.3.3. K-Nearest Neighbor (KNN)............................................................................9
1.3.4. K-Means Clustering......................................................................................10
1.3.5. Business Use Cases.......................................................................................10
1.4. ML Architecture Data Acquisition ...............................................................15
1.5. Latest Application of Machine Learning ......................................................17
1.5.1. Sentiment Analysis .......................................................................................17
1.5.2. News Classification ......................................................................................18
1.5.3. Spam Filtering and Email Classification ......................................................18
1.5.3.1. Speech Recognition ......................................................................................18
1.5.3.2. Detection of Cyber Crime.............................................................................18
1.5.3.3. Classification.................................................................................................19
1.5.3.4. Author Identification and Prediction ............................................................19
iv
1.5.3.5. Services of social media................................................................................19
1.5.3.6. Recommendation for Products and Services ................................................20
1.5.4. Machine Learning in Education....................................................................20
1.5.4.1. Machine Learning in Search Engine.............................................................20
1.5.4.2. Machine Learning in Digital Marketing .......................................................20
1.5.4.3. Machine Learning in Healthcare...................................................................20
1.5.4.4. Future of Machine Learning .........................................................................21
1.6. Cognitive Computing: Architecture, Technologies And Intelligent
Applications..................................................................................................23
1.7. Cognitive Computing: Architecture, Technologies And Intelligent
Applications..................................................................................................26
1.8. The Components of A Cognitive Computing System ..................................29
1.8.1. Artificial Intelligence (AI):...........................................................................29
1.8.2. Machine Learning and Deep Learning: ........................................................29
1.8.3. Data Mining: .................................................................................................29
1.8.4. Speech Recognition and Natural Language Processing (NLP): ...................30
1.9. Subjective Computing Versus Computerized Reasoning .............................30
1.10. Cognitive Design and Evaluation .................................................................33
1.11. Architectures Conceived in the 1940s Can’t Handle the Data of 2020 ........43
1.12. Cognitive Technology Mines Wealth in Masses of Information..................44
1.12.1. Technology Is Only as Strong as Its Flexible, Secure Foundation...............44
1.13. Cognitive Computing: Overview..................................................................46
1.14. The Future of Cognitive Computing.............................................................50
CHAPTER 2...............................................................................................................52
MACHINE LEARNING AND DEEP LEARNING ALGORITHMS FOR
EXISTING APPROACHES/RELATED WORKS.................................................52
2.1 In Healthcare, Artificial Intelligences...........................................................59
2.2 What a neuroscientist has to say about big data, machine learning, and
artificial intelligence .....................................................................................74
2.3 Introduction...................................................................................................76
2.4 Blockchain Technology ................................................................................77
2.4.1. System architecture.......................................................................................77
v
2.4.2. Sensor-based devices that also operate with Emergency Medical Service
patients (EMS): .............................................................................................78
2.5 Blockchain in Electronic Healthcare ............................................................79
2.6 Architecture for Blockchain..........................................................................81
2.7 Distributed System........................................................................................83
2.8 Security and Privacy .....................................................................................84
2.9 Blockchain Healthcare Management Systems..............................................88
2.9.1. Electronic medical record (EMR) data storage uses the blockchain. ...........88
2.9.2. Blockchains and data security are related.....................................................88
2.9.3. Blockchain for Personal Health Information ................................................89
2.9.4. Blockchain is a strong technology for point-of-care genomic analytics.......89
2.10 Applications of IoT in Blockchain................................................................90
2.11 Challenges.....................................................................................................90
2.12 Conclusion ....................................................................................................91
CHAPTER 3...............................................................................................................93
DEEP LEARNING-BASED ALZHEIMER DISEASE DETECTION.................93
3.1 Introduction...................................................................................................93
3.1.1. Deep Learning...............................................................................................94
3.2 Review of Literature .....................................................................................96
3.3 Background Study.........................................................................................98
3.4 Problem Formulation ....................................................................................99
3.5 Research Objectives......................................................................................99
3.6 Research Methodology ...............................................................................100
3.6.1. Imaging Dataset ..........................................................................................100
3.6.2. EHR Dataset................................................................................................100
3.6.3. SNP Dataset ................................................................................................101
3.7 Expected outcomes .....................................................................................103
CHAPTER 4.............................................................................................................104
A REVIEW ON THE IMPROVING TRANSPORTATION SYSTEM BY
USING DEEP LEARNING ALGORITHMS........................................................104
4.1 Introduction.................................................................................................104
vi
4.2 Deep learning techniques / algorithms........................................................105
4.2.1 Recursive Neural Network..........................................................................105
4.2.2 Recurrent Neural Network (RNN)..............................................................106
4.2.3 Convolutional Neural Network...................................................................107
4.2.4 Deep Generative Network...........................................................................108
4.3 Transportation network representation using Deep Learning.....................108
4.4 Various domains that are being revolutionized by Deep Learning .....110
4.4.1 Self-Driving Cars........................................................................................111
4.4.2 Traffic Congestion Identification and Prediction ..................................112
4.4.3 Predicting Vehicle Maintenance Needs..................................................113
4.4.4 Public Transportation Optimization........................................................114
4.5 Architecture of Convolutional Neural Network (CNN)Model...................115
4.5.1 High Resolution Data Collection................................................................118
4.5.2 CNN for Crash Predict................................................................................120
4.6 Traffic flow prediction................................................................................121
4.7 Urban traffic flow prediction: .....................................................................122
4.8 Open research challenges and future directions..........................................123
4.8.1 CNN Design with Alzheimer Disease ........................................................123
4.8.1.1 Examples in the Preprocessed Dataset........................................................126
4.8.1.2 Results.........................................................................................................126
4.9 Alzheimer Disease Early Diagnosis and Prediction using Deep Learning
Techniques: A survey. ................................................................................127
4.9.1 Convolutional Neural Network(CNN)........................................................128
4.10 Deep Learning Techniques For Early Diagnosis And Prediction Of
Alzheimer’s Disease ...................................................................................129
4.11 Conclusion ..................................................................................................131
CHAPTER 5.............................................................................................................132
ANALYSIS OF BIOMEDICAL AND MRI IMAGE DATA FOR ALZHEIMER
DISEASE DETECTION USING DEEP LEARNING TECHNIQUES..............132
5.1 Deep Learning.............................................................................................133
5.2. Review of Literature ...................................................................................134
5.3. Background Study.......................................................................................140
vii
5.4. Problem Formulation ..................................................................................141
5.5. Research Objectives....................................................................................142
5.6. Research Methodology ...............................................................................142
5.6.1. Imaging Dataset ..........................................................................................142
5.6.2. EHR Dataset................................................................................................143
5.6.3. SNP Dataset................................................................................................144
5.6.4. CNN............................................................................................................145
5.7. Implementation Tool Used .........................................................................146
5.7.1. Confusion Matrix........................................................................................146
5.7.1.1. TP (True Positive).......................................................................................147
5.7.1.2. TN (True Negative).....................................................................................147
5.7.1.3. FP (False Positive) – Type 1 error..............................................................147
5.7.1.4. FN (False Negative) – Type 2 error............................................................147
5.8. RESULTS ...................................................................................................148
5.8.1. Result I: (Imaging Dataset).........................................................................148
5.8.2. Result II: (EHR Dataset).............................................................................150
5.8.3. Result III: SNP Dataset...............................................................................153
5.9. Conclusion ..................................................................................................155
6.1 Introduction.................................................................................................156
6.2 literature of Review.....................................................................................158
6.2.1. Comparative Analysis of Literature Review...............................................160
6.3 Background Study.......................................................................................161
6.4 Problem Formation .....................................................................................162
6.5 Research Methodology ...............................................................................162
6.5.1. Technique Used ..........................................................................................162
6.6 Proposed Methodology ...............................................................................163
CHAPTER 7.............................................................................................................167
ADVANCE CONVOLUTIONAL NETWORK ARCHITECTURE FOR MRI
DATA INVESTIGATION FOR ALZHEIMER'S DISEASE EARLY
DIAGNOSIS.............................................................................................................167
1.1 Introduction.................................................................................................167
7.2 Literature of Review ...................................................................................168
viii
7.3 Background Study.......................................................................................171
7.4 research Methodology.................................................................................172
7.5 Problem Formation .....................................................................................172
7.6 Technique Used ..........................................................................................172
7.7 Proposed Methodology ...............................................................................173
7.7.1 ResNet 18....................................................................................................175
7.7.2 ResNet 34....................................................................................................175
7.7.3 ResNet 50....................................................................................................176
7.7.4 ResNet 101..................................................................................................177
CONCLUSION ........................................................................................................178
REFERENCES.........................................................................................................179
LIST OF ABBREVIATIONS .................................................................................200
ix
ABSTRACT
Research on the identification of Alzheimer's disease (AD) has become more and more
important, and using Convolutional Neural Networks (CNNs) with many data
modalities has showed promise in improving accuracy. A 3-layer Convolutional Neural
Network is an effective method in this situation since it can integrate data from three
different data modalities. Anatomical details of the brain can be seen in great detail by
structural magnetic resonance imaging (MRI). These pictures can be processed by the
CNN's first layer, which can identify patterns and structural anomalies suggestive of
Alzheimer's disease. The network picks up spatial hierarchies and characteristics that
help identify structural alterations linked to the illness. Functional MRI Data: By
monitoring variations in blood flow, Functional Magnetic Resonance Imaging (fMRI)
captures information on brain activity. From fMRI data, the CNN's second layer may
extract temporal elements that reveal dynamic patterns linked to cognitive processes.
This modality facilitates comprehension of the changes in functional connections linked
to Alzheimer's disease. Brain metabolism is shown by PET (positron emission
tomography) scans. By analysing PET scan data, the third layer of the CNN can identify
metabolic abnormalities that may be signs of Alzheimer's disease. For a more thorough
examination, this modality supplements structural and functional data with metabolic
insights. Multimodal Integration: A more thorough understanding of Alzheimer's
disease is made possible by combining data from structural, functional, and metabolic
modalities. Hierarchical Feature Learning: By automatically extracting pertinent
features from each modality and identifying both local and global trends, the CNN's
hierarchical architecture facilitates the learning of features. Enhanced Sensitivity and
Specificity: By utilising a variety of data modalities, the model is better able to identify
minute alterations linked to Alzheimer's disease, which improves diagnostic precision.
Early Detection Potential: Integrating data from several modalities may help identify
Alzheimer's early on, enabling prompt treatment and intervention. Even though the 3-
layer CNN method with numerous data modalities appears promising for AD diagnosis,
large-scale, diversified datasets must be regularly used to evaluate and improve these
models in order to achieve robust performance across various settings and populations.
In the field of deep learning, using Residual Networks (ResNets) to diagnose
Alzheimer's disease is a novel and successful method. ResNets are especially well-
x
suited for difficult tasks like medical image processing because of their special residual
connections, which solve the difficulties associated with training very deep neural
networks. Principal Components of ResNets for Alzheimer's Disease Identification:
Deep Architecture: ResNets are renowned for having deep architectures that make it
possible to build multi-layered models. This depth allows the network to learn complex
hierarchical characteristics and representations from medical imaging data in the
context of Alzheimer's disease detection. Residual connections: During training,
information might flow through some layers thanks to the addition of residual
connections, also known as skip connections. This reduces the vanishing gradient issue
and makes it easier to train extraordinarily deep networks—a necessary step in
identifying the nuanced and intricate patterns that characterise Alzheimer's pathology.
Resilience of Features: ResNets improve feature learning's resilience. The model is
better able to identify small anomalies in medical imaging, such as structural alterations
in the brain linked to Alzheimer's disease, because the residual connections allow the
model to preserve and improve upon crucial aspects. Transfer Learning: Alzheimer's
detection can be improved by fine-tuning ResNet models that have already been trained
on sizable datasets, like ImageNet. Transfer learning may enhance the generalisation
and performance of the model by utilising knowledge from other datasets and tailoring
it to the unique characteristics pertinent to medical imaging. Better Training Dynamics:
The residual connections facilitate the model's convergence during training by
streamlining the optimisation process. This is especially helpful for tasks involving
medical imaging, where there may be fewer datasets and more significant convergence
issues. Interpretable Features: ResNets offer some interpretability for learning features.
Researchers and physicians can learn more about the precise areas or structures in
medical pictures that contribute to the identification of Alzheimer's disease by looking
at the activation patterns within the network. In conclusion, using ResNets to detect
Alzheimer's illness provides a potent blend of interpretability, feature robustness, and
deep architecture. As this field of study develops, deep learning techniques to refine
ResNet structures for particular modalities and integrate multi-modal data may further
improve the precision and dependability of Alzheimer's diagnosis.
LIST OF TABLES
xi
Table 2. 1: Blockchain healthcare data processing firms [61].....................................86
Table 4. 1: Classification performance in ADNI held out set and an external validation
set. ..............................................................................................................................126
Table 4. 2: Classification performance in ADNI held-out with different neural network
architectures. Please refer paper for more details......................................................127
Table 5. 1: Summarize Table of Literature review. ...................................................139
Table 5. 2: Important Parameters...............................................................................149
Table 5. 3: Comparison of the classification performance ........................................155
Table 6 1: Comparative analysis of literature review ................................................160 | en_US |
dc.description.abstract | Research on the identification of Alzheimer's disease (AD) has become more and more important, and using Convolutional Neural Networks (CNNs) with many data modalities has showed promise in improving accuracy. A 3-layer Convolutional Neural Network is an effective method in this situation since it can integrate data from three different data modalities. Anatomical details of the brain can be seen in great detail by structural magnetic resonance imaging (MRI). These pictures can be processed by the CNN's first layer, which can identify patterns and structural anomalies suggestive of Alzheimer's disease. The network picks up spatial hierarchies and characteristics that help identify structural alterations linked to the illness. Functional MRI Data: By monitoring variations in blood flow, Functional Magnetic Resonance Imaging (fMRI) captures information on brain activity. From fMRI data, the CNN's second layer may extract temporal elements that reveal dynamic patterns linked to cognitive processes. This modality facilitates comprehension of the changes in functional connections linked to Alzheimer's disease. Brain metabolism is shown by PET (positron emission tomography) scans. By analysing PET scan data, the third layer of the CNN can identify metabolic abnormalities that may be signs of Alzheimer's disease. For a more thorough examination, this modality supplements structural and functional data with metabolic insights. Multimodal Integration: A more thorough understanding of Alzheimer's disease is made possible by combining data from structural, functional, and metabolic modalities. Hierarchical Feature Learning: By automatically extracting pertinent features from each modality and identifying both local and global trends, the CNN's hierarchical architecture facilitates the learning of features. Enhanced Sensitivity and Specificity: By utilising a variety of data modalities, the model is better able to identify minute alterations linked to Alzheimer's disease, which improves diagnostic precision. Early Detection Potential: Integrating data from several modalities may help identify Alzheimer's early on, enabling prompt treatment and intervention. Even though the 3-layer CNN method with numerous data modalities appears promising for AD diagnosis, large-scale, diversified datasets must be regularly used to evaluate and improve these models in order to achieve robust performance across various settings and populations. In the field of deep learning, using Residual Networks (ResNets) to diagnose Alzheimer's disease is a novel and successful method. ResNets are especially well-
x
suited for difficult tasks like medical image processing because of their special residual connections, which solve the difficulties associated with training very deep neural networks. Principal Components of ResNets for Alzheimer's Disease Identification: Deep Architecture: ResNets are renowned for having deep architectures that make it possible to build multi-layered models. This depth allows the network to learn complex hierarchical characteristics and representations from medical imaging data in the context of Alzheimer's disease detection. Residual connections: During training, information might flow through some layers thanks to the addition of residual connections, also known as skip connections. This reduces the vanishing gradient issue and makes it easier to train extraordinarily deep networks—a necessary step in identifying the nuanced and intricate patterns that characterise Alzheimer's pathology. Resilience of Features: ResNets improve feature learning's resilience. The model is better able to identify small anomalies in medical imaging, such as structural alterations in the brain linked to Alzheimer's disease, because the residual connections allow the model to preserve and improve upon crucial aspects. Transfer Learning: Alzheimer's detection can be improved by fine-tuning ResNet models that have already been trained on sizable datasets, like ImageNet. Transfer learning may enhance the generalisation and performance of the model by utilising knowledge from other datasets and tailoring it to the unique characteristics pertinent to medical imaging. Better Training Dynamics: The residual connections facilitate the model's convergence during training by streamlining the optimisation process. This is especially helpful for tasks involving medical imaging, where there may be fewer datasets and more significant convergence issues. Interpretable Features: ResNets offer some interpretability for learning features. Researchers and physicians can learn more about the precise areas or structures in medical pictures that contribute to the identification of Alzheimer's disease by looking at the activation patterns within the network. In conclusion, using ResNets to detect Alzheimer's illness provides a potent blend of interpretability, feature robustness, and deep architecture. As this field of study develops, deep learning techniques to refine ResNet structures for particular modalities and integrate multi-modal data may further improve the precision and dependability of Alzheimer's diagnosis. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Galgotias University | en_US |
dc.subject | Computing Science, Engineering | en_US |
dc.subject | Phd Thesis | en_US |
dc.subject | Alzheimers disease, AD | en_US |
dc.subject | Convolutional Neural Networks, CNNs | en_US |
dc.subject | Diagnosis | en_US |
dc.title | ENHANCING EARLY DETECTION OF ALZHEIMER’S DISEASE THROUGH CONVOLUTIONAL NEURAL NETWORK ANALYSIS | en_US |
dc.type | Thesis | en_US |