Show simple item record

dc.contributor.authorPRADHAN, NILANJANA
dc.contributor.authorSagar, Shrddha
dc.contributor.authorSingh, Ajay Shankar
dc.date.accessioned2024-09-15T06:22:06Z
dc.date.available2024-09-15T06:22:06Z
dc.date.issued2024-01
dc.identifier.urihttp://10.10.11.6/handle/1/17983
dc.descriptionTABLE OF CONTENT Candidate’s Declaration............................................................................................... ii Abstract ....................................................................................................................... ix List of Tables ............................................................................................................... xi List of Figures............................................................................................................. xii List of Publications......................................................................................................xv CHAPTER 1.................................................................................................................1 INTRODUCTION TO MACHINE LEARNING ARCHITECTURE AND FRAMEWORK............................................................................................................1 1.1. Introduction.....................................................................................................1 1.2. Machine Learning Algorithms........................................................................3 1.2.1. Regression.......................................................................................................3 1.2.2. Linear Regression ...........................................................................................4 1.2.3. Support Vector Machine .................................................................................4 1.2.4. Linear Classifiers............................................................................................4 1.2.5. Classifier Margin ............................................................................................5 1.3. SVM Applications ..........................................................................................8 1.3.1. The Naïve Bayes Model..................................................................................9 1.3.2. Random Forest................................................................................................9 1.3.3. K-Nearest Neighbor (KNN)............................................................................9 1.3.4. K-Means Clustering......................................................................................10 1.3.5. Business Use Cases.......................................................................................10 1.4. ML Architecture Data Acquisition ...............................................................15 1.5. Latest Application of Machine Learning ......................................................17 1.5.1. Sentiment Analysis .......................................................................................17 1.5.2. News Classification ......................................................................................18 1.5.3. Spam Filtering and Email Classification ......................................................18 1.5.3.1. Speech Recognition ......................................................................................18 1.5.3.2. Detection of Cyber Crime.............................................................................18 1.5.3.3. Classification.................................................................................................19 1.5.3.4. Author Identification and Prediction ............................................................19 iv 1.5.3.5. Services of social media................................................................................19 1.5.3.6. Recommendation for Products and Services ................................................20 1.5.4. Machine Learning in Education....................................................................20 1.5.4.1. Machine Learning in Search Engine.............................................................20 1.5.4.2. Machine Learning in Digital Marketing .......................................................20 1.5.4.3. Machine Learning in Healthcare...................................................................20 1.5.4.4. Future of Machine Learning .........................................................................21 1.6. Cognitive Computing: Architecture, Technologies And Intelligent Applications..................................................................................................23 1.7. Cognitive Computing: Architecture, Technologies And Intelligent Applications..................................................................................................26 1.8. The Components of A Cognitive Computing System ..................................29 1.8.1. Artificial Intelligence (AI):...........................................................................29 1.8.2. Machine Learning and Deep Learning: ........................................................29 1.8.3. Data Mining: .................................................................................................29 1.8.4. Speech Recognition and Natural Language Processing (NLP): ...................30 1.9. Subjective Computing Versus Computerized Reasoning .............................30 1.10. Cognitive Design and Evaluation .................................................................33 1.11. Architectures Conceived in the 1940s Can’t Handle the Data of 2020 ........43 1.12. Cognitive Technology Mines Wealth in Masses of Information..................44 1.12.1. Technology Is Only as Strong as Its Flexible, Secure Foundation...............44 1.13. Cognitive Computing: Overview..................................................................46 1.14. The Future of Cognitive Computing.............................................................50 CHAPTER 2...............................................................................................................52 MACHINE LEARNING AND DEEP LEARNING ALGORITHMS FOR EXISTING APPROACHES/RELATED WORKS.................................................52 2.1 In Healthcare, Artificial Intelligences...........................................................59 2.2 What a neuroscientist has to say about big data, machine learning, and artificial intelligence .....................................................................................74 2.3 Introduction...................................................................................................76 2.4 Blockchain Technology ................................................................................77 2.4.1. System architecture.......................................................................................77 v 2.4.2. Sensor-based devices that also operate with Emergency Medical Service patients (EMS): .............................................................................................78 2.5 Blockchain in Electronic Healthcare ............................................................79 2.6 Architecture for Blockchain..........................................................................81 2.7 Distributed System........................................................................................83 2.8 Security and Privacy .....................................................................................84 2.9 Blockchain Healthcare Management Systems..............................................88 2.9.1. Electronic medical record (EMR) data storage uses the blockchain. ...........88 2.9.2. Blockchains and data security are related.....................................................88 2.9.3. Blockchain for Personal Health Information ................................................89 2.9.4. Blockchain is a strong technology for point-of-care genomic analytics.......89 2.10 Applications of IoT in Blockchain................................................................90 2.11 Challenges.....................................................................................................90 2.12 Conclusion ....................................................................................................91 CHAPTER 3...............................................................................................................93 DEEP LEARNING-BASED ALZHEIMER DISEASE DETECTION.................93 3.1 Introduction...................................................................................................93 3.1.1. Deep Learning...............................................................................................94 3.2 Review of Literature .....................................................................................96 3.3 Background Study.........................................................................................98 3.4 Problem Formulation ....................................................................................99 3.5 Research Objectives......................................................................................99 3.6 Research Methodology ...............................................................................100 3.6.1. Imaging Dataset ..........................................................................................100 3.6.2. EHR Dataset................................................................................................100 3.6.3. SNP Dataset ................................................................................................101 3.7 Expected outcomes .....................................................................................103 CHAPTER 4.............................................................................................................104 A REVIEW ON THE IMPROVING TRANSPORTATION SYSTEM BY USING DEEP LEARNING ALGORITHMS........................................................104 4.1 Introduction.................................................................................................104 vi 4.2 Deep learning techniques / algorithms........................................................105 4.2.1 Recursive Neural Network..........................................................................105 4.2.2 Recurrent Neural Network (RNN)..............................................................106 4.2.3 Convolutional Neural Network...................................................................107 4.2.4 Deep Generative Network...........................................................................108 4.3 Transportation network representation using Deep Learning.....................108 4.4 Various domains that are being revolutionized by Deep Learning .....110 4.4.1 Self-Driving Cars........................................................................................111 4.4.2 Traffic Congestion Identification and Prediction ..................................112 4.4.3 Predicting Vehicle Maintenance Needs..................................................113 4.4.4 Public Transportation Optimization........................................................114 4.5 Architecture of Convolutional Neural Network (CNN)Model...................115 4.5.1 High Resolution Data Collection................................................................118 4.5.2 CNN for Crash Predict................................................................................120 4.6 Traffic flow prediction................................................................................121 4.7 Urban traffic flow prediction: .....................................................................122 4.8 Open research challenges and future directions..........................................123 4.8.1 CNN Design with Alzheimer Disease ........................................................123 4.8.1.1 Examples in the Preprocessed Dataset........................................................126 4.8.1.2 Results.........................................................................................................126 4.9 Alzheimer Disease Early Diagnosis and Prediction using Deep Learning Techniques: A survey. ................................................................................127 4.9.1 Convolutional Neural Network(CNN)........................................................128 4.10 Deep Learning Techniques For Early Diagnosis And Prediction Of Alzheimer’s Disease ...................................................................................129 4.11 Conclusion ..................................................................................................131 CHAPTER 5.............................................................................................................132 ANALYSIS OF BIOMEDICAL AND MRI IMAGE DATA FOR ALZHEIMER DISEASE DETECTION USING DEEP LEARNING TECHNIQUES..............132 5.1 Deep Learning.............................................................................................133 5.2. Review of Literature ...................................................................................134 5.3. Background Study.......................................................................................140 vii 5.4. Problem Formulation ..................................................................................141 5.5. Research Objectives....................................................................................142 5.6. Research Methodology ...............................................................................142 5.6.1. Imaging Dataset ..........................................................................................142 5.6.2. EHR Dataset................................................................................................143 5.6.3. SNP Dataset................................................................................................144 5.6.4. CNN............................................................................................................145 5.7. Implementation Tool Used .........................................................................146 5.7.1. Confusion Matrix........................................................................................146 5.7.1.1. TP (True Positive).......................................................................................147 5.7.1.2. TN (True Negative).....................................................................................147 5.7.1.3. FP (False Positive) – Type 1 error..............................................................147 5.7.1.4. FN (False Negative) – Type 2 error............................................................147 5.8. RESULTS ...................................................................................................148 5.8.1. Result I: (Imaging Dataset).........................................................................148 5.8.2. Result II: (EHR Dataset).............................................................................150 5.8.3. Result III: SNP Dataset...............................................................................153 5.9. Conclusion ..................................................................................................155 6.1 Introduction.................................................................................................156 6.2 literature of Review.....................................................................................158 6.2.1. Comparative Analysis of Literature Review...............................................160 6.3 Background Study.......................................................................................161 6.4 Problem Formation .....................................................................................162 6.5 Research Methodology ...............................................................................162 6.5.1. Technique Used ..........................................................................................162 6.6 Proposed Methodology ...............................................................................163 CHAPTER 7.............................................................................................................167 ADVANCE CONVOLUTIONAL NETWORK ARCHITECTURE FOR MRI DATA INVESTIGATION FOR ALZHEIMER'S DISEASE EARLY DIAGNOSIS.............................................................................................................167 1.1 Introduction.................................................................................................167 7.2 Literature of Review ...................................................................................168 viii 7.3 Background Study.......................................................................................171 7.4 research Methodology.................................................................................172 7.5 Problem Formation .....................................................................................172 7.6 Technique Used ..........................................................................................172 7.7 Proposed Methodology ...............................................................................173 7.7.1 ResNet 18....................................................................................................175 7.7.2 ResNet 34....................................................................................................175 7.7.3 ResNet 50....................................................................................................176 7.7.4 ResNet 101..................................................................................................177 CONCLUSION ........................................................................................................178 REFERENCES.........................................................................................................179 LIST OF ABBREVIATIONS .................................................................................200 ix ABSTRACT Research on the identification of Alzheimer's disease (AD) has become more and more important, and using Convolutional Neural Networks (CNNs) with many data modalities has showed promise in improving accuracy. A 3-layer Convolutional Neural Network is an effective method in this situation since it can integrate data from three different data modalities. Anatomical details of the brain can be seen in great detail by structural magnetic resonance imaging (MRI). These pictures can be processed by the CNN's first layer, which can identify patterns and structural anomalies suggestive of Alzheimer's disease. The network picks up spatial hierarchies and characteristics that help identify structural alterations linked to the illness. Functional MRI Data: By monitoring variations in blood flow, Functional Magnetic Resonance Imaging (fMRI) captures information on brain activity. From fMRI data, the CNN's second layer may extract temporal elements that reveal dynamic patterns linked to cognitive processes. This modality facilitates comprehension of the changes in functional connections linked to Alzheimer's disease. Brain metabolism is shown by PET (positron emission tomography) scans. By analysing PET scan data, the third layer of the CNN can identify metabolic abnormalities that may be signs of Alzheimer's disease. For a more thorough examination, this modality supplements structural and functional data with metabolic insights. Multimodal Integration: A more thorough understanding of Alzheimer's disease is made possible by combining data from structural, functional, and metabolic modalities. Hierarchical Feature Learning: By automatically extracting pertinent features from each modality and identifying both local and global trends, the CNN's hierarchical architecture facilitates the learning of features. Enhanced Sensitivity and Specificity: By utilising a variety of data modalities, the model is better able to identify minute alterations linked to Alzheimer's disease, which improves diagnostic precision. Early Detection Potential: Integrating data from several modalities may help identify Alzheimer's early on, enabling prompt treatment and intervention. Even though the 3- layer CNN method with numerous data modalities appears promising for AD diagnosis, large-scale, diversified datasets must be regularly used to evaluate and improve these models in order to achieve robust performance across various settings and populations. In the field of deep learning, using Residual Networks (ResNets) to diagnose Alzheimer's disease is a novel and successful method. ResNets are especially well- x suited for difficult tasks like medical image processing because of their special residual connections, which solve the difficulties associated with training very deep neural networks. Principal Components of ResNets for Alzheimer's Disease Identification: Deep Architecture: ResNets are renowned for having deep architectures that make it possible to build multi-layered models. This depth allows the network to learn complex hierarchical characteristics and representations from medical imaging data in the context of Alzheimer's disease detection. Residual connections: During training, information might flow through some layers thanks to the addition of residual connections, also known as skip connections. This reduces the vanishing gradient issue and makes it easier to train extraordinarily deep networks—a necessary step in identifying the nuanced and intricate patterns that characterise Alzheimer's pathology. Resilience of Features: ResNets improve feature learning's resilience. The model is better able to identify small anomalies in medical imaging, such as structural alterations in the brain linked to Alzheimer's disease, because the residual connections allow the model to preserve and improve upon crucial aspects. Transfer Learning: Alzheimer's detection can be improved by fine-tuning ResNet models that have already been trained on sizable datasets, like ImageNet. Transfer learning may enhance the generalisation and performance of the model by utilising knowledge from other datasets and tailoring it to the unique characteristics pertinent to medical imaging. Better Training Dynamics: The residual connections facilitate the model's convergence during training by streamlining the optimisation process. This is especially helpful for tasks involving medical imaging, where there may be fewer datasets and more significant convergence issues. Interpretable Features: ResNets offer some interpretability for learning features. Researchers and physicians can learn more about the precise areas or structures in medical pictures that contribute to the identification of Alzheimer's disease by looking at the activation patterns within the network. In conclusion, using ResNets to detect Alzheimer's illness provides a potent blend of interpretability, feature robustness, and deep architecture. As this field of study develops, deep learning techniques to refine ResNet structures for particular modalities and integrate multi-modal data may further improve the precision and dependability of Alzheimer's diagnosis. LIST OF TABLES xi Table 2. 1: Blockchain healthcare data processing firms [61].....................................86 Table 4. 1: Classification performance in ADNI held out set and an external validation set. ..............................................................................................................................126 Table 4. 2: Classification performance in ADNI held-out with different neural network architectures. Please refer paper for more details......................................................127 Table 5. 1: Summarize Table of Literature review. ...................................................139 Table 5. 2: Important Parameters...............................................................................149 Table 5. 3: Comparison of the classification performance ........................................155 Table 6 1: Comparative analysis of literature review ................................................160en_US
dc.description.abstractResearch on the identification of Alzheimer's disease (AD) has become more and more important, and using Convolutional Neural Networks (CNNs) with many data modalities has showed promise in improving accuracy. A 3-layer Convolutional Neural Network is an effective method in this situation since it can integrate data from three different data modalities. Anatomical details of the brain can be seen in great detail by structural magnetic resonance imaging (MRI). These pictures can be processed by the CNN's first layer, which can identify patterns and structural anomalies suggestive of Alzheimer's disease. The network picks up spatial hierarchies and characteristics that help identify structural alterations linked to the illness. Functional MRI Data: By monitoring variations in blood flow, Functional Magnetic Resonance Imaging (fMRI) captures information on brain activity. From fMRI data, the CNN's second layer may extract temporal elements that reveal dynamic patterns linked to cognitive processes. This modality facilitates comprehension of the changes in functional connections linked to Alzheimer's disease. Brain metabolism is shown by PET (positron emission tomography) scans. By analysing PET scan data, the third layer of the CNN can identify metabolic abnormalities that may be signs of Alzheimer's disease. For a more thorough examination, this modality supplements structural and functional data with metabolic insights. Multimodal Integration: A more thorough understanding of Alzheimer's disease is made possible by combining data from structural, functional, and metabolic modalities. Hierarchical Feature Learning: By automatically extracting pertinent features from each modality and identifying both local and global trends, the CNN's hierarchical architecture facilitates the learning of features. Enhanced Sensitivity and Specificity: By utilising a variety of data modalities, the model is better able to identify minute alterations linked to Alzheimer's disease, which improves diagnostic precision. Early Detection Potential: Integrating data from several modalities may help identify Alzheimer's early on, enabling prompt treatment and intervention. Even though the 3-layer CNN method with numerous data modalities appears promising for AD diagnosis, large-scale, diversified datasets must be regularly used to evaluate and improve these models in order to achieve robust performance across various settings and populations. In the field of deep learning, using Residual Networks (ResNets) to diagnose Alzheimer's disease is a novel and successful method. ResNets are especially well- x suited for difficult tasks like medical image processing because of their special residual connections, which solve the difficulties associated with training very deep neural networks. Principal Components of ResNets for Alzheimer's Disease Identification: Deep Architecture: ResNets are renowned for having deep architectures that make it possible to build multi-layered models. This depth allows the network to learn complex hierarchical characteristics and representations from medical imaging data in the context of Alzheimer's disease detection. Residual connections: During training, information might flow through some layers thanks to the addition of residual connections, also known as skip connections. This reduces the vanishing gradient issue and makes it easier to train extraordinarily deep networks—a necessary step in identifying the nuanced and intricate patterns that characterise Alzheimer's pathology. Resilience of Features: ResNets improve feature learning's resilience. The model is better able to identify small anomalies in medical imaging, such as structural alterations in the brain linked to Alzheimer's disease, because the residual connections allow the model to preserve and improve upon crucial aspects. Transfer Learning: Alzheimer's detection can be improved by fine-tuning ResNet models that have already been trained on sizable datasets, like ImageNet. Transfer learning may enhance the generalisation and performance of the model by utilising knowledge from other datasets and tailoring it to the unique characteristics pertinent to medical imaging. Better Training Dynamics: The residual connections facilitate the model's convergence during training by streamlining the optimisation process. This is especially helpful for tasks involving medical imaging, where there may be fewer datasets and more significant convergence issues. Interpretable Features: ResNets offer some interpretability for learning features. Researchers and physicians can learn more about the precise areas or structures in medical pictures that contribute to the identification of Alzheimer's disease by looking at the activation patterns within the network. In conclusion, using ResNets to detect Alzheimer's illness provides a potent blend of interpretability, feature robustness, and deep architecture. As this field of study develops, deep learning techniques to refine ResNet structures for particular modalities and integrate multi-modal data may further improve the precision and dependability of Alzheimer's diagnosis.en_US
dc.language.isoenen_US
dc.publisherGalgotias Universityen_US
dc.subjectComputing Science, Engineeringen_US
dc.subjectPhd Thesisen_US
dc.subjectAlzheimers disease, ADen_US
dc.subjectConvolutional Neural Networks, CNNsen_US
dc.subjectDiagnosisen_US
dc.titleENHANCING EARLY DETECTION OF ALZHEIMER’S DISEASE THROUGH CONVOLUTIONAL NEURAL NETWORK ANALYSISen_US
dc.typeThesisen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record